1prm Citations

Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions.

Science 266 1241-7 (1994)
Related entries: 1prl, 1rlp, 1rlq

Cited: 491 times
EuropePMC logo PMID: 7526465

Abstract

Solution structures of two Src homology 3 (SH3) domain-ligand complexes have been determined by nuclear magnetic resonance. Each complex consists of the SH3 domain and a nine-residue proline-rich peptide selected from a large library of ligands prepared by combinatorial synthesis. The bound ligands adopt a left-handed polyproline type II (PPII) helix, although the amino to carboxyl directionalities of their helices are opposite. The peptide orientation is determined by a salt bridge formed by the terminal arginine residues of the ligands and the conserved aspartate-99 of the SH3 domain. Residues at positions 3, 4, 6, and 7 of both peptides also intercalate into the ligand-binding site; however, the respective proline and nonproline residues show exchanged binding positions in the two complexes. These structural results led to a model for the interactions of SH3 domains with proline-rich peptides that can be used to predict critical residues in complexes of unknown structure. The model was used to identify correctly both the binding orientation and the contact and noncontact residues of a peptide derived from the nucleotide exchange factor Sos in association with the amino-terminal SH3 domain of the adaptor protein Grb2.

Reviews - 1prm mentioned but not cited (1)

  1. Dynamic regulatory features of the protein tyrosine kinases. Amatya N, Lin DY, Andreotti AH. Biochem Soc Trans 47 1101-1116 (2019)

Articles - 1prm mentioned but not cited (4)

  1. Biochemistry on a leash: the roles of tether length and geometry in signal integration proteins. Van Valen D, Haataja M, Phillips R. Biophys J 96 1275-1292 (2009)
  2. o-Nitrotyrosine and p-iodophenylalanine as spectroscopic probes for structural characterization of SH3 complexes. De Filippis V, Draghi A, Frasson R, Grandi C, Musi V, Fontana A, Pastore A. Protein Sci 16 1257-1265 (2007)
  3. Separation and Collision Cross Section Measurements of Protein Complexes Afforded by a Modular Drift Tube Coupled to an Orbitrap Mass Spectrometer. Sipe SN, Sanders JD, Reinecke T, Clowers BH, Brodbelt JS. Anal Chem 94 9434-9441 (2022)
  4. Characterization of a fold in TANGO1 evolved from SH3 domains for the export of bulky cargos. Arnolds O, Stoll R. Nat Commun 14 2273 (2023)


Reviews citing this publication (83)

  1. Cellular functions regulated by Src family kinases. Thomas SM, Brugge JS. Annu Rev Cell Dev Biol 13 513-609 (1997)
  2. Protein modules and signalling networks. Pawson T. Nature 373 573-580 (1995)
  3. Phosphoinositide kinases. Fruman DA, Meyers RE, Cantley LC. Annu Rev Biochem 67 481-507 (1998)
  4. The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. Kay BK, Williamson MP, Sudol M. FASEB J 14 231-241 (2000)
  5. Regulation, substrates and functions of src. Brown MT, Cooper JA. Biochim Biophys Acta 1287 121-149 (1996)
  6. Protein tyrosine kinase structure and function. Hubbard SR, Till JH. Annu Rev Biochem 69 373-398 (2000)
  7. Modular binding domains in signal transduction proteins. Cohen GB, Ren R, Baltimore D. Cell 80 237-248 (1995)
  8. Structure and regulation of Src family kinases. Boggon TJ, Eck MJ. Oncogene 23 7918-7927 (2004)
  9. Modular peptide recognition domains in eukaryotic signaling. Kuriyan J, Cowburn D. Annu Rev Biophys Biomol Struct 26 259-288 (1997)
  10. RAFTK/Pyk2-mediated cellular signalling. Avraham H, Park SY, Schinkmann K, Avraham S. Cell Signal 12 123-133 (2000)
  11. Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Funke L, Dakoji S, Bredt DS. Annu Rev Biochem 74 219-245 (2005)
  12. Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling. Denhardt DT. Biochem J 318 ( Pt 3) 729-747 (1996)
  13. Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Li SS. Biochem J 390 641-653 (2005)
  14. Characterization of a novel protein-binding module--the WW domain. Sudol M, Chen HI, Bougeret C, Einbond A, Bork P. FEBS Lett 369 67-71 (1995)
  15. Polyproline-II helix in proteins: structure and function. Adzhubei AA, Sternberg MJ, Makarov AA. J Mol Biol 425 2100-2132 (2013)
  16. The structure and function of proline recognition domains. Zarrinpar A, Bhattacharyya RP, Lim WA. Sci STKE 2003 RE8 (2003)
  17. Intrinsic disorder in scaffold proteins: getting more from less. Cortese MS, Uversky VN, Dunker AK. Prog Biophys Mol Biol 98 85-106 (2008)
  18. Protein-tyrosine phosphatase-1B acts as a negative regulator of insulin signal transduction. Byon JC, Kusari AB, Kusari J. Mol Cell Biochem 182 101-108 (1998)
  19. The gift of Gab. Liu Y, Rohrschneider LR. FEBS Lett 515 1-7 (2002)
  20. Hepatitis E virus. Panda SK, Thakral D, Rehman S. Rev Med Virol 17 151-180 (2007)
  21. Signaling pathways are focused at specialized regions of the plasma membrane by scaffolding proteins of the MAGUK family. Dimitratos SD, Woods DF, Stathakis DG, Bryant PJ. Bioessays 21 912-921 (1999)
  22. Recognition of proline-rich motifs by protein-protein-interaction domains. Ball LJ, Kühne R, Schneider-Mergener J, Oschkinat H. Angew Chem Int Ed Engl 44 2852-2869 (2005)
  23. SH3 domain ligand binding: What's the consensus and where's the specificity? Saksela K, Permi P. FEBS Lett 586 2609-2614 (2012)
  24. SH3 domains. Minding your p's and q's. Mayer BJ, Eck MJ. Curr Biol 5 364-367 (1995)
  25. The WW domain: linking cell signalling to the membrane cytoskeleton. Ilsley JL, Sudol M, Winder SJ. Cell Signal 14 183-189 (2002)
  26. SH3 domains and drug design: ligands, structure, and biological function. Dalgarno DC, Botfield MC, Rickles RJ. Biopolymers 43 383-400 (1997)
  27. The structure of "unstructured" regions in peptides and proteins: role of the polyproline II helix in protein folding and recognition. Rath A, Davidson AR, Deber CM. Biopolymers 80 179-185 (2005)
  28. Protein-peptide interactions. Stanfield RL, Wilson IA. Curr Opin Struct Biol 5 103-113 (1995)
  29. The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and function. Horne WC, Sanjay A, Bruzzaniti A, Baron R. Immunol Rev 208 106-125 (2005)
  30. Membrane-targeting of signalling molecules by SH2/SH3 domain-containing adaptor proteins. Buday L. Biochim Biophys Acta 1422 187-204 (1999)
  31. Towards prediction of cognate complexes between the WW domain and proline-rich ligands. Einbond A, Sudol M. FEBS Lett 384 1-8 (1996)
  32. Leukocyte protein tyrosine kinases: potential targets for drug discovery. Bolen JB, Brugge JS. Annu Rev Immunol 15 371-404 (1997)
  33. The hunchback and its neighbours: proline as an environmental modulator. Reiersen H, Rees AR. Trends Biochem Sci 26 679-684 (2001)
  34. The mode of action of peptidyl prolyl cis/trans isomerases in vivo: binding vs. catalysis. Fischer G, Tradler T, Zarnt T. FEBS Lett 426 17-20 (1998)
  35. Phage display as a technology delivering on the promise of peptide drug discovery. Hamzeh-Mivehroud M, Alizadeh AA, Morris MB, Church WB, Dastmalchi S. Drug Discov Today 18 1144-1157 (2013)
  36. Searching for specificity in SH domains. Ladbury JE, Arold S. Chem Biol 7 R3-8 (2000)
  37. Constrained peptides as binding entities. Ladner RC. Trends Biotechnol 13 426-430 (1995)
  38. Conquering the complex world of human septins: implications for health and disease. Peterson EA, Petty EM. Clin Genet 77 511-524 (2010)
  39. WW domains. Staub O, Rotin D. Structure 4 495-499 (1996)
  40. SH3 domains: modules of protein-protein interactions. Kurochkina N, Guha U. Biophys Rev 5 29-39 (2013)
  41. The NADPH oxidase complex of phagocytic leukocytes: a biochemical and cytochemical view. Robinson JM, Badwey JA. Histochem Cell Biol 103 163-180 (1995)
  42. BTKbase: a database of XLA-causing mutations. International Study Group. Vihinen M, Cooper MD, de Saint Basile G, Fischer A, Good RA, Hendriks RW, Kinnon C, Kwan SP, Litman GW, Notarangelo LD. Immunol Today 16 460-465 (1995)
  43. X-linked agammaglobulinemia (XLA): a genetic tyrosine kinase (Btk) disease. Mattsson PT, Vihinen M, Smith CI. Bioessays 18 825-834 (1996)
  44. SH2 and SH3 domains as targets for anti-proliferative agents. Vidal M, Gigoux V, Garbay C. Crit Rev Oncol Hematol 40 175-186 (2001)
  45. Structures of protein complexes by multidimensional heteronuclear magnetic resonance spectroscopy. Gronenborn AM, Clore GM. Crit Rev Biochem Mol Biol 30 351-385 (1995)
  46. The discovery of modular binding domains: building blocks of cell signalling. Mayer BJ. Nat Rev Mol Cell Biol 16 691-698 (2015)
  47. Recognition and regulation of primary-sequence motifs by signaling modular domains. Songyang Z. Prog Biophys Mol Biol 71 359-372 (1999)
  48. The Src module: an ancient scaffold in the evolution of cytoplasmic tyrosine kinases. Shah NH, Amacher JF, Nocka LM, Kuriyan J. Crit Rev Biochem Mol Biol 53 535-563 (2018)
  49. Peptide interactions with G-protein coupled receptors. Marshall GR. Biopolymers 60 246-277 (2001)
  50. Structural and mechanistic determinants of affinity and specificity of ligands discovered or engineered by phage display. Katz BA. Annu Rev Biophys Biomol Struct 26 27-45 (1997)
  51. Pex13p: docking or cargo handling protein? Williams C, Distel B. Biochim Biophys Acta 1763 1585-1591 (2006)
  52. Diversity of polyproline recognition by EVH1 domains. Peterson FC, Volkman BF. Front Biosci (Landmark Ed) 14 833-846 (2009)
  53. Tyrosine kinases: modular signaling enzymes with tunable specificities. Shokat KM. Chem Biol 2 509-514 (1995)
  54. The B-lymphoid Grb2 interaction code. Neumann K, Oellerich T, Urlaub H, Wienands J. Immunol Rev 232 135-149 (2009)
  55. Intracellular adapter molecules. Norian LA, Koretzky GA. Semin Immunol 12 43-54 (2000)
  56. How pathogens exploit interactions mediated by SH3 domains. Bliska J. Chem Biol 3 7-11 (1996)
  57. Interfacial water molecules in SH3 interactions: Getting the full picture on polyproline recognition by protein-protein interaction domains. Zafra-Ruano A, Luque I. FEBS Lett 586 2619-2630 (2012)
  58. Reading between the lines: SH3 recognition of an intact protein. Lim WA. Structure 4 657-659 (1996)
  59. Structure and function of the Mind bomb E3 ligase in the context of Notch signal transduction. Guo B, McMillan BJ, Blacklow SC. Curr Opin Struct Biol 41 38-45 (2016)
  60. Growth factor-dependent phosphoinositide signalling. Hsuan JJ, Tan SH. Int J Biochem Cell Biol 29 415-435 (1997)
  61. Small G proteins and the neutrophil NADPH oxidase. Dagher MC, Fuchs A, Bourmeyster N, Jouan A, Vignais PV. Biochimie 77 651-660 (1995)
  62. The molecular basis of renal tubular transport disorders. Hamilton KL, Butt AG. Comp Biochem Physiol A Mol Integr Physiol 126 305-321 (2000)
  63. Accommodating structurally diverse peptides in proteins. Wilkinson AJ. Chem Biol 3 519-524 (1996)
  64. Spectrin and its interacting partners in nuclear structure and function. Lambert MW. Exp Biol Med (Maywood) 243 507-524 (2018)
  65. Targeting signal transduction in the discovery of antiproliferative drugs. Saltiel AR, Sawyer TK. Chem Biol 3 887-893 (1996)
  66. Uncovering new aspects of protein interactions through analysis of specificity landscapes in peptide recognition domains. Gfeller D. FEBS Lett 586 2764-2772 (2012)
  67. Functions of short lifetime biological structures at large: the case of intrinsically disordered proteins. Uversky VN. Brief Funct Genomics 19 60-68 (2020)
  68. Conformational landscape of substituted prolines. Ganguly HK, Basu G. Biophys Rev 12 25-39 (2020)
  69. Ligand recognition by SH3 and WW domains: the role of N-alkylation in PPII helices. Aghazadeh B, Rosen MK. Chem Biol 6 R241-6 (1999)
  70. Nuclear alpha spectrin: Critical roles in DNA interstrand cross-link repair and genomic stability. Lambert MW. Exp Biol Med (Maywood) 241 1621-1638 (2016)
  71. The mechanism of action of the SSB interactome reveals it is the first OB-fold family of genome guardians in prokaryotes. Bianco PR. Protein Sci 30 1757-1775 (2021)
  72. Do polyproline II helix associations modulate biomolecular condensates? Mompeán M, Oroz J, Laurents DV. FEBS Open Bio 11 2390-2399 (2021)
  73. The Spectrinome: The Interactome of a Scaffold Protein Creating Nuclear and Cytoplasmic Connectivity and Function. Goodman SR, Johnson D, Youngentob SL, Kakhniashvili D. Exp Biol Med (Maywood) 244 1273-1302 (2019)
  74. Rapid Actions of the Nuclear Progesterone Receptor through cSrc in Cancer. Bello-Alvarez C, Zamora-Sánchez CJ, Camacho-Arroyo I. Cells 11 1964 (2022)
  75. Secondary Resistant Mutations to Small Molecule Inhibitors in Cancer Cells. Hamid AB, Petreaca RC. Cancers (Basel) 12 (2020)
  76. Structural insights into redox-active cysteine residues of the Src family kinases. Heppner DE. Redox Biol 41 101934 (2021)
  77. The Androgen Receptor and Its Crosstalk With the Src Kinase During Castrate-Resistant Prostate Cancer Progression. Gao L, Han B, Dong X. Front Oncol 12 905398 (2022)
  78. The EphB6 Receptor: Kinase-Dead but Very Much Alive. Strozen TG, Sharpe JC, Harris ED, Uppalapati M, Toosi BM. Int J Mol Sci 22 (2021)
  79. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. Cells 12 2054 (2023)
  80. Adapter molecules in T cell receptor signaling. Boerth NJ, Koretzky GA. Inflamm Bowel Dis 5 107-118 (1999)
  81. Deoxyribozymes and bioinformatics: complementary tools to investigate axon regeneration. Grimpe B. Cell Tissue Res 349 181-200 (2012)
  82. Novel Roles of SH2 and SH3 Domains in Lipid Binding. Sipeki S, Koprivanacz K, Takács T, Kurilla A, László L, Vas V, Buday L. Cells 10 (2021)
  83. Viral Proteins with PxxP and PY Motifs May Play a Role in Multiple Sclerosis. Pi KS, Sang Y, Straus SK. Viruses 14 281 (2022)

Articles citing this publication (403)

  1. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Nature 384 83-87 (1996)
  2. The structural basis for 14-3-3:phosphopeptide binding specificity. Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ, Cantley LC. Cell 91 961-971 (1997)
  3. Three-dimensional structure of the tyrosine kinase c-Src. Xu W, Harrison SC, Eck MJ. Nature 385 595-602 (1997)
  4. Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Tu JC, Xiao B, Yuan JP, Lanahan AA, Leoffert K, Li M, Linden DJ, Worley PF. Neuron 21 717-726 (1998)
  5. WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. Staub O, Dho S, Henry P, Correa J, Ishikawa T, McGlade J, Rotin D. EMBO J 15 2371-2380 (1996)
  6. Identification of the familial cylindromatosis tumour-suppressor gene. Bignell GR, Warren W, Seal S, Takahashi M, Rapley E, Barfoot R, Green H, Brown C, Biggs PJ, Lakhani SR, Jones C, Hansen J, Blair E, Hofmann B, Siebert R, Turner G, Evans DG, Schrander-Stumpel C, Beemer FA, van Den Ouweland A, Halley D, Delpech B, Cleveland MG, Leigh I, Leisti J, Rasmussen S. Nat Genet 25 160-165 (2000)
  7. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Gertler FB, Niebuhr K, Reinhard M, Wehland J, Soriano P. Cell 87 227-239 (1996)
  8. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. Miki H, Miura K, Takenawa T. EMBO J 15 5326-5335 (1996)
  9. Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Moarefi I, LaFevre-Bernt M, Sicheri F, Huse M, Lee CH, Kuriyan J, Miller WT. Nature 385 650-653 (1997)
  10. A Grb2-associated docking protein in EGF- and insulin-receptor signalling. Holgado-Madruga M, Emlet DR, Moscatello DK, Godwin AK, Wong AJ. Nature 379 560-564 (1996)
  11. Crystal structure of the conserved core of HIV-1 Nef complexed with a Src family SH3 domain. Lee CH, Saksela K, Mirza UA, Chait BT, Kuriyan J. Cell 85 931-942 (1996)
  12. The solution structure of HIV-1 Nef reveals an unexpected fold and permits delineation of the binding surface for the SH3 domain of Hck tyrosine protein kinase. Grzesiek S, Bax A, Clore GM, Gronenborn AM, Hu JS, Kaufman J, Palmer I, Stahl SJ, Wingfield PT. Nat Struct Biol 3 340-345 (1996)
  13. Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cheng AM, Saxton TM, Sakai R, Kulkarni S, Mbamalu G, Vogel W, Tortorice CG, Cardiff RD, Cross JC, Muller WJ, Pawson T. Cell 95 793-803 (1998)
  14. Mouse disabled (mDab1): a Src binding protein implicated in neuronal development. Howell BW, Gertler FB, Cooper JA. EMBO J 16 121-132 (1997)
  15. Molecular characterization of human and mouse fatty acid amide hydrolases. Giang DK, Cravatt BF. Proc Natl Acad Sci U S A 94 2238-2242 (1997)
  16. Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses. Schaeper U, Gehring NH, Fuchs KP, Sachs M, Kempkes B, Birchmeier W. J Cell Biol 149 1419-1432 (2000)
  17. Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. Schild L, Lu Y, Gautschi I, Schneeberger E, Lifton RP, Rossier BC. EMBO J 15 2381-2387 (1996)
  18. Binding specificity and in vivo targets of the EH domain, a novel protein-protein interaction module. Salcini AE, Confalonieri S, Doria M, Santolini E, Tassi E, Minenkova O, Cesareni G, Pelicci PG, Di Fiore PP. Genes Dev 11 2239-2249 (1997)
  19. The quaking gene product necessary in embryogenesis and myelination combines features of RNA binding and signal transduction proteins. Ebersole TA, Chen Q, Justice MJ, Artzt K. Nat Genet 12 260-265 (1996)
  20. The hematopoietic-specific adaptor protein gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors. Liu SK, Fang N, Koretzky GA, McGlade CJ. Curr Biol 9 67-75 (1999)
  21. Distinct ligand preferences of Src homology 3 domains from Src, Yes, Abl, Cortactin, p53bp2, PLCgamma, Crk, and Grb2. Sparks AB, Rider JE, Hoffman NG, Fowlkes DM, Quillam LA, Kay BK. Proc Natl Acad Sci U S A 93 1540-1544 (1996)
  22. Association of neuronal calcium channels with modular adaptor proteins. Maximov A, Südhof TC, Bezprozvanny I. J Biol Chem 274 24453-24456 (1999)
  23. The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation. Cowan-Jacob SW, Fendrich G, Manley PW, Jahnke W, Fabbro D, Liebetanz J, Meyer T. Structure 13 861-871 (2005)
  24. Functional rapidly folding proteins from simplified amino acid sequences. Riddle DS, Santiago JV, Bray-Hall ST, Doshi N, Grantcharova VP, Yi Q, Baker D. Nat Struct Biol 4 805-809 (1997)
  25. Drosophila photoreceptor axon guidance and targeting requires the dreadlocks SH2/SH3 adapter protein. Garrity PA, Rao Y, Salecker I, McGlade J, Pawson T, Zipursky SL. Cell 85 639-650 (1996)
  26. Regulation of Btk function by a major autophosphorylation site within the SH3 domain. Park H, Wahl MI, Afar DE, Turck CW, Rawlings DJ, Tam C, Scharenberg AM, Kinet JP, Witte ON. Immunity 4 515-525 (1996)
  27. Optimization of specificity in a cellular protein interaction network by negative selection. Zarrinpar A, Park SH, Lim WA. Nature 426 676-680 (2003)
  28. The PAG gene product, a stress-induced protein with antioxidant properties, is an Abl SH3-binding protein and a physiological inhibitor of c-Abl tyrosine kinase activity. Wen ST, Van Etten RA. Genes Dev 11 2456-2467 (1997)
  29. A single amino acid in the SH3 domain of Hck determines its high affinity and specificity in binding to HIV-1 Nef protein. Lee CH, Leung B, Lemmon MA, Zheng J, Cowburn D, Kuriyan J, Saksela K. EMBO J 14 5006-5015 (1995)
  30. Identification of a novel cortactin SH3 domain-binding protein and its localization to growth cones of cultured neurons. Du Y, Weed SA, Xiong WC, Marshall TD, Parsons JT. Mol Cell Biol 18 5838-5851 (1998)
  31. Structure of the enabled/VASP homology 1 domain-peptide complex: a key component in the spatial control of actin assembly. Prehoda KE, Lee DJ, Lim WA. Cell 97 471-480 (1999)
  32. Proline-rich sequences that bind to Src homology 3 domains with individual specificities. Alexandropoulos K, Cheng G, Baltimore D. Proc Natl Acad Sci U S A 92 3110-3114 (1995)
  33. Structural basis for the specific interaction of lysine-containing proline-rich peptides with the N-terminal SH3 domain of c-Crk. Wu X, Knudsen B, Feller SM, Zheng J, Sali A, Cowburn D, Hanafusa H, Kuriyan J. Structure 3 215-226 (1995)
  34. Analysis of osm-6, a gene that affects sensory cilium structure and sensory neuron function in Caenorhabditis elegans. Collet J, Spike CA, Lundquist EA, Shaw JE, Herman RK. Genetics 148 187-200 (1998)
  35. Regulatory intramolecular association in a tyrosine kinase of the Tec family. Andreotti AH, Bunnell SC, Feng S, Berg LJ, Schreiber SL. Nature 385 93-97 (1997)
  36. Structure of the SH3-guanylate kinase module from PSD-95 suggests a mechanism for regulated assembly of MAGUK scaffolding proteins. McGee AW, Dakoji SR, Olsen O, Bredt DS, Lim WA, Prehoda KE. Mol Cell 8 1291-1301 (2001)
  37. Crystallographic analysis of endogenous peptides associated with HLA-DR1 suggests a common, polyproline II-like conformation for bound peptides. Jardetzky TS, Brown JH, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC. Proc Natl Acad Sci U S A 93 734-738 (1996)
  38. Candidate adaptor protein CED-6 promotes the engulfment of apoptotic cells in C. elegans. Liu QA, Hengartner MO. Cell 93 961-972 (1998)
  39. Structural changes in the carboxyl terminus of the gap junction protein connexin43 indicates signaling between binding domains for c-Src and zonula occludens-1. Sorgen PL, Duffy HS, Sahoo P, Coombs W, Delmar M, Spray DC. J Biol Chem 279 54695-54701 (2004)
  40. Specific interactions outside the proline-rich core of two classes of Src homology 3 ligands. Feng S, Kasahara C, Rickles RJ, Schreiber SL. Proc Natl Acad Sci U S A 92 12408-12415 (1995)
  41. A survey of left-handed polyproline II helices. Stapley BJ, Creamer TP. Protein Sci 8 587-595 (1999)
  42. Cloning of ligand targets: systematic isolation of SH3 domain-containing proteins. Sparks AB, Hoffman NG, McConnell SJ, Fowlkes DM, Kay BK. Nat Biotechnol 14 741-744 (1996)
  43. Formin binding proteins bear WWP/WW domains that bind proline-rich peptides and functionally resemble SH3 domains. Chan DC, Bedford MT, Leder P. EMBO J 15 1045-1054 (1996)
  44. Stromelysin-1: three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme. Becker JW, Marcy AI, Rokosz LL, Axel MG, Burbaum JJ, Fitzgerald PM, Cameron PM, Esser CK, Hagmann WK, Hermes JD. Protein Sci 4 1966-1976 (1995)
  45. Structural basis for the recruitment of profilin-actin complexes during filament elongation by Ena/VASP. Ferron F, Rebowski G, Lee SH, Dominguez R. EMBO J 26 4597-4606 (2007)
  46. MDC9, a widely expressed cellular disintegrin containing cytoplasmic SH3 ligand domains. Weskamp G, Krätzschmar J, Reid MS, Blobel CP. J Cell Biol 132 717-726 (1996)
  47. Phosphorylation regulates tau interactions with Src homology 3 domains of phosphatidylinositol 3-kinase, phospholipase Cgamma1, Grb2, and Src family kinases. Reynolds CH, Garwood CJ, Wray S, Price C, Kellie S, Perera T, Zvelebil M, Yang A, Sheppard PW, Varndell IM, Hanger DP, Anderton BH. J Biol Chem 283 18177-18186 (2008)
  48. beta-arrestin1 interacts with the catalytic domain of the tyrosine kinase c-SRC. Role of beta-arrestin1-dependent targeting of c-SRC in receptor endocytosis. Miller WE, Maudsley S, Ahn S, Khan KD, Luttrell LM, Lefkowitz RJ. J Biol Chem 275 11312-11319 (2000)
  49. Proline residues in CD28 and the Src homology (SH)3 domain of Lck are required for T cell costimulation. Holdorf AD, Green JM, Levin SD, Denny MF, Straus DB, Link V, Changelian PS, Allen PM, Shaw AS. J Exp Med 190 375-384 (1999)
  50. Structure of the Homer EVH1 domain-peptide complex reveals a new twist in polyproline recognition. Beneken J, Tu JC, Xiao B, Nuriya M, Yuan JP, Worley PF, Leahy DJ. Neuron 26 143-154 (2000)
  51. Simplified amino acid alphabets for protein fold recognition and implications for folding. Murphy LR, Wallqvist A, Levy RM. Protein Eng 13 149-152 (2000)
  52. Crystal structure of the amphiphysin-2 SH3 domain and its role in the prevention of dynamin ring formation. Owen DJ, Wigge P, Vallis Y, Moore JD, Evans PR, McMahon HT. EMBO J 17 5273-5285 (1998)
  53. Phosphoinositide-3 kinase binds to a proline-rich motif in the Na+, K+-ATPase alpha subunit and regulates its trafficking. Yudowski GA, Efendiev R, Pedemonte CH, Katz AI, Berggren PO, Bertorello AM. Proc Natl Acad Sci U S A 97 6556-6561 (2000)
  54. Src and FAK kinases cooperate to phosphorylate paxillin kinase linker, stimulate its focal adhesion localization, and regulate cell spreading and protrusiveness. Brown MC, Cary LA, Jamieson JS, Cooper JA, Turner CE. Mol Biol Cell 16 4316-4328 (2005)
  55. PR-39, a proline-rich antibacterial peptide that inhibits phagocyte NADPH oxidase activity by binding to Src homology 3 domains of p47 phox. Shi J, Ross CR, Leto TL, Blecha F. Proc Natl Acad Sci U S A 93 6014-6018 (1996)
  56. Characterization of domain-peptide interaction interface: prediction of SH3 domain-mediated protein-protein interaction network in yeast by generic structure-based models. Hou T, Li N, Li Y, Wang W. J Proteome Res 11 2982-2995 (2012)
  57. Diverse recognition of non-PxxP peptide ligands by the SH3 domains from p67(phox), Grb2 and Pex13p. Kami K, Takeya R, Sumimoto H, Kohda D. EMBO J 21 4268-4276 (2002)
  58. SH3 domain recognition of a proline-independent tyrosine-based RKxxYxxY motif in immune cell adaptor SKAP55. Kang H, Freund C, Duke-Cohan JS, Musacchio A, Wagner G, Rudd CE. EMBO J 19 2889-2899 (2000)
  59. Phage display selection of ligand residues important for Src homology 3 domain binding specificity. Rickles RJ, Botfield MC, Zhou XM, Henry PA, Brugge JS, Zoller MJ. Proc Natl Acad Sci U S A 92 10909-10913 (1995)
  60. The identification of conserved interactions within the SH3 domain by alignment of sequences and structures. Larson SM, Davidson AR. Protein Sci 9 2170-2180 (2000)
  61. Structure of the N-WASP EVH1 domain-WIP complex: insight into the molecular basis of Wiskott-Aldrich Syndrome. Volkman BF, Prehoda KE, Scott JA, Peterson FC, Lim WA. Cell 111 565-576 (2002)
  62. Identification of a human PTS1 receptor docking protein directly required for peroxisomal protein import. Fransen M, Terlecky SR, Subramani S. Proc Natl Acad Sci U S A 95 8087-8092 (1998)
  63. Structure of rat procathepsin B: model for inhibition of cysteine protease activity by the proregion. Cygler M, Sivaraman J, Grochulski P, Coulombe R, Storer AC, Mort JS. Structure 4 405-416 (1996)
  64. Vav family proteins couple to diverse cell surface receptors. Moores SL, Selfors LM, Fredericks J, Breit T, Fujikawa K, Alt FW, Brugge JS, Swat W. Mol Cell Biol 20 6364-6373 (2000)
  65. Phosphorylation of TNF-alpha converting enzyme by gastrin-releasing peptide induces amphiregulin release and EGF receptor activation. Zhang Q, Thomas SM, Lui VW, Xi S, Siegfried JM, Fan H, Smithgall TE, Mills GB, Grandis JR. Proc Natl Acad Sci U S A 103 6901-6906 (2006)
  66. SRC catalytic but not scaffolding function is needed for integrin-regulated tyrosine phosphorylation, cell migration, and cell spreading. Cary LA, Klinghoffer RA, Sachsenmaier C, Cooper JA. Mol Cell Biol 22 2427-2440 (2002)
  67. Human skeletal muscle nebulin sequence encodes a blueprint for thin filament architecture. Sequence motifs and affinity profiles of tandem repeats and terminal SH3. Wang K, Knipfer M, Huang QQ, van Heerden A, Hsu LC, Gutierrez G, Quian XL, Stedman H. J Biol Chem 271 4304-4314 (1996)
  68. Identification of a new Pyk2 target protein with Arf-GAP activity. Andreev J, Simon JP, Sabatini DD, Kam J, Plowman G, Randazzo PA, Schlessinger J. Mol Cell Biol 19 2338-2350 (1999)
  69. Structural and molecular mechanisms of gap junction remodeling in epicardial border zone myocytes following myocardial infarction. Kieken F, Mutsaers N, Dolmatova E, Virgil K, Wit AL, Kellezi A, Hirst-Jensen BJ, Duffy HS, Sorgen PL. Circ Res 104 1103-1112 (2009)
  70. Structure of the profilin-poly-L-proline complex involved in morphogenesis and cytoskeletal regulation. Mahoney NM, Janmey PA, Almo SC. Nat Struct Biol 4 953-960 (1997)
  71. Interaction between PAK and nck: a template for Nck targets and role of PAK autophosphorylation. Zhao ZS, Manser E, Lim L. Mol Cell Biol 20 3906-3917 (2000)
  72. Ajuba, a cytosolic LIM protein, shuttles into the nucleus and affects embryonal cell proliferation and fate decisions. Kanungo J, Pratt SJ, Marie H, Longmore GD. Mol Biol Cell 11 3299-3313 (2000)
  73. Can we infer peptide recognition specificity mediated by SH3 domains? Cesareni G, Panni S, Nardelli G, Castagnoli L. FEBS Lett 513 38-44 (2002)
  74. The Epstein-Barr virus latent membrane protein 2A PY motif recruits WW domain-containing ubiquitin-protein ligases. Ikeda M, Ikeda A, Longan LC, Longnecker R. Virology 268 178-191 (2000)
  75. The solution structure of human thioredoxin complexed with its target from Ref-1 reveals peptide chain reversal. Qin J, Clore GM, Kennedy WP, Kuszewski J, Gronenborn AM. Structure 4 613-620 (1996)
  76. ERF: an ETS domain protein with strong transcriptional repressor activity, can suppress ets-associated tumorigenesis and is regulated by phosphorylation during cell cycle and mitogenic stimulation. Sgouras DN, Athanasiou MA, Beal GJ, Fisher RJ, Blair DG, Mavrothalassitis GJ. EMBO J 14 4781-4793 (1995)
  77. The gene INPPL1, encoding the lipid phosphatase SHIP2, is a candidate for type 2 diabetes in rat and man. Marion E, Kaisaki PJ, Pouillon V, Gueydan C, Levy JC, Bodson A, Krzentowski G, Daubresse JC, Mockel J, Behrends J, Servais G, Szpirer C, Kruys V, Gauguier D, Schurmans S. Diabetes 51 2012-2017 (2002)
  78. Slob, a novel protein that interacts with the Slowpoke calcium-dependent potassium channel. Schopperle WM, Holmqvist MH, Zhou Y, Wang J, Wang Z, Griffith LC, Keselman I, Kusinitz F, Dagan D, Levitan IB. Neuron 20 565-573 (1998)
  79. p619, a giant protein related to the chromosome condensation regulator RCC1, stimulates guanine nucleotide exchange on ARF1 and Rab proteins. Rosa JL, Casaroli-Marano RP, Buckler AJ, Vilaró S, Barbacid M. EMBO J 15 4262-4273 (1996)
  80. Activation of the c-Jun N-terminal kinase pathway by a novel protein kinase related to human germinal center kinase. Diener K, Wang XS, Chen C, Meyer CF, Keesler G, Zukowski M, Tan TH, Yao Z. Proc Natl Acad Sci U S A 94 9687-9692 (1997)
  81. Structural basis for specific binding of the Gads SH3 domain to an RxxK motif-containing SLP-76 peptide: a novel mode of peptide recognition. Liu Q, Berry D, Nash P, Pawson T, McGlade CJ, Li SS. Mol Cell 11 471-481 (2003)
  82. Regulation of CDC42 GTPase by proline-rich tyrosine kinase 2 interacting with PSGAP, a novel pleckstrin homology and Src homology 3 domain containing rhoGAP protein. Ren XR, Du QS, Huang YZ, Ao SZ, Mei L, Xiong WC. J Cell Biol 152 971-984 (2001)
  83. SH3-Domain binding function of HIV-1 Nef is required for association with a PAK-related kinase. Manninen A, Hiipakka M, Vihinen M, Lu W, Mayer BJ, Saksela K. Virology 250 273-282 (1998)
  84. Structure, expression, and chromosome mapping of LATS2, a mammalian homologue of the Drosophila tumor suppressor gene lats/warts. Yabuta N, Fujii T, Copeland NG, Gilbert DJ, Jenkins NA, Nishiguchi H, Endo Y, Toji S, Tanaka H, Nishimune Y, Nojima H. Genomics 63 263-270 (2000)
  85. Novel recognition mode between Vav and Grb2 SH3 domains. Nishida M, Nagata K, Hachimori Y, Horiuchi M, Ogura K, Mandiyan V, Schlessinger J, Inagaki F. EMBO J 20 2995-3007 (2001)
  86. A family of phosphoinositide 3-kinases in Drosophila identifies a new mediator of signal transduction. MacDougall LK, Domin J, Waterfield MD. Curr Biol 5 1404-1415 (1995)
  87. EEN encodes for a member of a new family of proteins containing an Src homology 3 domain and is the third gene located on chromosome 19p13 that fuses to MLL in human leukemia. So CW, Caldas C, Liu MM, Chen SJ, Huang QH, Gu LJ, Sham MH, Wiedemann LM, Chan LC. Proc Natl Acad Sci U S A 94 2563-2568 (1997)
  88. Insulin-stimulated trafficking of ENaC in renal cells requires PI 3-kinase activity. Blazer-Yost BL, Esterman MA, Vlahos CJ. Am J Physiol Cell Physiol 284 C1645-53 (2003)
  89. A novel mechanism of modulation of hyperpolarization-activated cyclic nucleotide-gated channels by Src kinase. Zong X, Eckert C, Yuan H, Wahl-Schott C, Abicht H, Fang L, Li R, Mistrik P, Gerstner A, Much B, Baumann L, Michalakis S, Zeng R, Chen Z, Biel M. J Biol Chem 280 34224-34232 (2005)
  90. Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides. Peterman TK, Ohol YM, McReynolds LJ, Luna EJ. Plant Physiol 136 3080-94; discussion 3001-2 (2004)
  91. Synthetic ligands discovered by in vitro selection. Wrenn SJ, Weisinger RM, Halpin DR, Harbury PB. J Am Chem Soc 129 13137-13143 (2007)
  92. Improving SH3 domain ligand selectivity using a non-natural scaffold. Nguyen JT, Porter M, Amoui M, Miller WT, Zuckermann RN, Lim WA. Chem Biol 7 463-473 (2000)
  93. The SH3 domain of Eps8 exists as a novel intertwined dimer. Kishan KV, Scita G, Wong WT, Di Fiore PP, Newcomer ME. Nat Struct Biol 4 739-743 (1997)
  94. Ajuba, a novel LIM protein, interacts with Grb2, augments mitogen-activated protein kinase activity in fibroblasts, and promotes meiotic maturation of Xenopus oocytes in a Grb2- and Ras-dependent manner. Goyal RK, Lin P, Kanungo J, Payne AS, Muslin AJ, Longmore GD. Mol Cell Biol 19 4379-4389 (1999)
  95. Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain. Hou T, Chen K, McLaughlin WA, Lu B, Wang W. PLoS Comput Biol 2 e1 (2006)
  96. Pex14p is a member of the protein linkage map of Pex5p. Brocard C, Lametschwandtner G, Koudelka R, Hartig A. EMBO J 16 5491-5500 (1997)
  97. Structure-function analysis of SH3 domains: SH3 binding specificity altered by single amino acid substitutions. Weng Z, Rickles RJ, Feng S, Richard S, Shaw AS, Schreiber SL, Brugge JS. Mol Cell Biol 15 5627-5634 (1995)
  98. Tau dephosphorylation at tau-1 site correlates with its association to cell membrane. Arrasate M, Pérez M, Avila J. Neurochem Res 25 43-50 (2000)
  99. The Dictyostelium discoideum family of Rho-related proteins. Rivero F, Dislich H, Glöckner G, Noegel AA. Nucleic Acids Res 29 1068-1079 (2001)
  100. The protein product of the c-cbl protooncogene is phosphorylated after B cell receptor stimulation and binds the SH3 domain of Bruton's tyrosine kinase. Cory GO, Lovering RC, Hinshelwood S, MacCarthy-Morrogh L, Levinsky RJ, Kinnon C. J Exp Med 182 611-615 (1995)
  101. The peroxisomal membrane protein Pex13p shows a novel mode of SH3 interaction. Barnett P, Bottger G, Klein AT, Tabak HF, Distel B. EMBO J 19 6382-6391 (2000)
  102. Phosphorylation of two regulatory tyrosine residues in the activation of Bruton's tyrosine kinase via alternative receptors. Wahl MI, Fluckiger AC, Kato RM, Park H, Witte ON, Rawlings DJ. Proc Natl Acad Sci U S A 94 11526-11533 (1997)
  103. Characterization of the beta-dystroglycan-growth factor receptor 2 (Grb2) interaction. Russo K, Di Stasio E, Macchia G, Rosa G, Brancaccio A, Petrucci TC. Biochem Biophys Res Commun 274 93-98 (2000)
  104. Crystal structure of the abl-SH3 domain complexed with a designed high-affinity peptide ligand: implications for SH3-ligand interactions. Pisabarro MT, Serrano L, Wilmanns M. J Mol Biol 281 513-521 (1998)
  105. Scaffolding protein Gab2 mediates differentiation signaling downstream of Fms receptor tyrosine kinase. Liu Y, Jenkins B, Shin JL, Rohrschneider LR. Mol Cell Biol 21 3047-3056 (2001)
  106. The SH2/SH3 adaptor protein dock interacts with the Ste20-like kinase misshapen in controlling growth cone motility. Ruan W, Pang P, Rao Y. Neuron 24 595-605 (1999)
  107. The role of protein-tyrosine phosphatase 1B in integrin signaling. Liang F, Lee SY, Liang J, Lawrence DS, Zhang ZY. J Biol Chem 280 24857-24863 (2005)
  108. Tyrosine phosphorylation of Grb2 by Bcr/Abl and epidermal growth factor receptor: a novel regulatory mechanism for tyrosine kinase signaling. Li S, Couvillon AD, Brasher BB, Van Etten RA. EMBO J 20 6793-6804 (2001)
  109. A novel SH3-containing human gene family preferentially expressed in the central nervous system. Giachino C, Lantelme E, Lanzetti L, Saccone S, Bella Valle G, Migone N. Genomics 41 427-434 (1997)
  110. PNRC: a proline-rich nuclear receptor coregulatory protein that modulates transcriptional activation of multiple nuclear receptors including orphan receptors SF1 (steroidogenic factor 1) and ERRalpha1 (estrogen related receptor alpha-1). Zhou D, Quach KM, Yang C, Lee SY, Pohajdak B, Chen S. Mol Endocrinol 14 986-998 (2000)
  111. Role of the SH3-ligand domain of simian immunodeficiency virus Nef in interaction with Nef-associated kinase and simian AIDS in rhesus macaques. Khan IH, Sawai ET, Antonio E, Weber CJ, Mandell CP, Montbriand P, Luciw PA. J Virol 72 5820-5830 (1998)
  112. SH3P7 is a cytoskeleton adapter protein and is coupled to signal transduction from lymphocyte antigen receptors. Larbolette O, Wollscheid B, Schweikert J, Nielsen PJ, Wienands J. Mol Cell Biol 19 1539-1546 (1999)
  113. Solution structure and peptide binding of the SH3 domain from human Fyn. Morton CJ, Pugh DJ, Brown EL, Kahmann JD, Renzoni DA, Campbell ID. Structure 4 705-714 (1996)
  114. Affinity and specificity requirements for the first Src homology 3 domain of the Crk proteins. Knudsen BS, Zheng J, Feller SM, Mayer JP, Burrell SK, Cowburn D, Hanafusa H. EMBO J 14 2191-2198 (1995)
  115. Cytoskeletal reorganization induced by engagement of the NG2 proteoglycan leads to cell spreading and migration. Fang X, Burg MA, Barritt D, Dahlin-Huppe K, Nishiyama A, Stallcup WB. Mol Biol Cell 10 3373-3387 (1999)
  116. A Sos-derived peptidimer blocks the Ras signaling pathway by binding both Grb2 SH3 domains and displays antiproliferative activity. Cussac D, Vidal M, Leprince C, Liu WQ, Cornille F, Tiraboschi G, Roques BP, Garbay C. FASEB J 13 31-38 (1999)
  117. NMR identification of the Tom20 binding segment in mitochondrial presequences. Muto T, Obita T, Abe Y, Shodai T, Endo T, Kohda D. J Mol Biol 306 137-143 (2001)
  118. SH3 domain-dependent interactions of endophilin with amphiphysin. Micheva KD, Ramjaun AR, Kay BK, McPherson PS. FEBS Lett 414 308-312 (1997)
  119. The endocytic protein intersectin is a major binding partner for the Ras exchange factor mSos1 in rat brain. Tong XK, Hussain NK, de Heuvel E, Kurakin A, Abi-Jaoude E, Quinn CC, Olson MF, Marais R, Baranes D, Kay BK, McPherson PS. EMBO J 19 1263-1271 (2000)
  120. The role of backbone motions in ligand binding to the c-Src SH3 domain. Wang C, Pawley NH, Nicholson LK. J Mol Biol 313 873-887 (2001)
  121. Gab3, a new DOS/Gab family member, facilitates macrophage differentiation. Wolf I, Jenkins BJ, Liu Y, Seiffert M, Custodio JM, Young P, Rohrschneider LR. Mol Cell Biol 22 231-244 (2002)
  122. Mapping the domains of interaction of p40phox with both p47phox and p67phox of the neutrophil oxidase complex using the two-hybrid system. Fuchs A, Dagher MC, Vignais PV. J Biol Chem 270 5695-5697 (1995)
  123. Role of SH3 domain-containing proteins in clathrin-mediated vesicle trafficking in Arabidopsis. Lam BC, Sage TL, Bianchi F, Blumwald E. Plant Cell 13 2499-2512 (2001)
  124. The extracellular human melanoma inhibitory activity (MIA) protein adopts an SH3 domain-like fold. Stoll R, Renner C, Zweckstetter M, Brüggert M, Ambrosius D, Palme S, Engh RA, Golob M, Breibach I, Buettner R, Voelter W, Holak TA, Bosserhoff AK. EMBO J 20 340-349 (2001)
  125. Ahi-1, a novel gene encoding a modular protein with WD40-repeat and SH3 domains, is targeted by the Ahi-1 and Mis-2 provirus integrations. Jiang X, Hanna Z, Kaouass M, Girard L, Jolicoeur P. J Virol 76 9046-9059 (2002)
  126. Mutations altering the mitochondrial-cytoplasmic distribution of Mod5p implicate the actin cytoskeleton and mRNA 3' ends and/or protein synthesis in mitochondrial delivery. Zoladek T, Vaduva G, Hunter LA, Boguta M, Go BD, Martin NC, Hopper AK. Mol Cell Biol 15 6884-6894 (1995)
  127. The multiple-specificity landscape of modular peptide recognition domains. Gfeller D, Butty F, Wierzbicka M, Verschueren E, Vanhee P, Huang H, Ernst A, Dar N, Stagljar I, Serrano L, Sidhu SS, Bader GD, Kim PM. Mol Syst Biol 7 484 (2011)
  128. Protein-protein interaction affinity plays a crucial role in controlling the Sho1p-mediated signal transduction pathway in yeast. Marles JA, Dahesh S, Haynes J, Andrews BJ, Davidson AR. Mol Cell 14 813-823 (2004)
  129. Regulation of epidermal growth factor receptor ubiquitination and trafficking by the USP8·STAM complex. Berlin I, Schwartz H, Nash PD. J Biol Chem 285 34909-34921 (2010)
  130. Tight association of GRB2 with receptor protein-tyrosine phosphatase alpha is mediated by the SH2 and C-terminal SH3 domains. den Hertog J, Hunter T. EMBO J 15 3016-3027 (1996)
  131. Metalloprotease-disintegrin ADAM 12 binds to the SH3 domain of Src and activates Src tyrosine kinase in C2C12 cells. Kang Q, Cao Y, Zolkiewska A. Biochem J 352 Pt 3 883-892 (2000)
  132. The Cdc42 binding and scaffolding activities of the fission yeast adaptor protein Scd2. Endo M, Shirouzu M, Yokoyama S. J Biol Chem 278 843-852 (2003)
  133. Unraveling principles of lead discovery: from unfrustrated energy landscapes to novel molecular anchors. Rejto PA, Verkhivker GM. Proc Natl Acad Sci U S A 93 8945-8950 (1996)
  134. A specific intermolecular association between the regulatory domains of a Tec family kinase. Brazin KN, Fulton DB, Andreotti AH. J Mol Biol 302 607-623 (2000)
  135. Interaction of nebulin SH3 domain with titin PEVK and myopalladin: implications for the signaling and assembly role of titin and nebulin. Ma K, Wang K. FEBS Lett 532 273-278 (2002)
  136. Shc contains two Grb2 binding sites needed for efficient formation of complexes with SOS in B lymphocytes. Harmer SL, DeFranco AL. Mol Cell Biol 17 4087-4095 (1997)
  137. Solution structure of the Grb2 N-terminal SH3 domain complexed with a ten-residue peptide derived from SOS: direct refinement against NOEs, J-couplings and 1H and 13C chemical shifts. Wittekind M, Mapelli C, Lee V, Goldfarb V, Friedrichs MS, Meyers CA, Mueller L. J Mol Biol 267 933-952 (1997)
  138. AMSH interacts with ESCRT-0 to regulate the stability and trafficking of CXCR4. Sierra MI, Wright MH, Nash PD. J Biol Chem 285 13990-14004 (2010)
  139. Dynamin isoform-specific interaction with the shank/ProSAP scaffolding proteins of the postsynaptic density and actin cytoskeleton. Okamoto PM, Gamby C, Wells D, Fallon J, Vallee RB. J Biol Chem 276 48458-48465 (2001)
  140. Multiple SH3 domain interactions regulate NADPH oxidase assembly in whole cells. de Mendez I, Adams AG, Sokolic RA, Malech HL, Leto TL. EMBO J 15 1211-1220 (1996)
  141. PACSIN2 is a regulator of the metalloprotease/disintegrin ADAM13. Cousin H, Gaultier A, Bleux C, Darribère T, Alfandari D. Dev Biol 227 197-210 (2000)
  142. Characterization of a brain-specific Rho GTPase-activating protein, p200RhoGAP. Moon SY, Zang H, Zheng Y. J Biol Chem 278 4151-4159 (2003)
  143. Grb2 SH3 binding to peptides from Sos: evaluation of a general model for SH3-ligand interactions. Simon JA, Schreiber SL. Chem Biol 2 53-60 (1995)
  144. Biochemical and structural studies of ASPP proteins reveal differential binding to p53, p63, and p73. Robinson RA, Lu X, Jones EY, Siebold C. Structure 16 259-268 (2008)
  145. Expanded functions in the apical cell domain to regulate the growth rate of imaginal discs. Boedigheimer MJ, Nguyen KP, Bryant PJ. Dev Genet 20 103-110 (1997)
  146. Synapsin I interacts with c-Src and stimulates its tyrosine kinase activity. Onofri F, Giovedì S, Vaccaro P, Czernik AJ, Valtorta F, De Camilli P, Greengard P, Benfenati F. Proc Natl Acad Sci U S A 94 12168-12173 (1997)
  147. Identification of Grb2 as a novel binding partner of tumor necrosis factor (TNF) receptor I. Hildt E, Oess S. J Exp Med 189 1707-1714 (1999)
  148. A molecular mechanism for autoinhibition of the tandem SH3 domains of p47phox, the regulatory subunit of the phagocyte NADPH oxidase. Yuzawa S, Suzuki NN, Fujioka Y, Ogura K, Sumimoto H, Inagaki F. Genes Cells 9 443-456 (2004)
  149. Novel Src homology 3 domain-binding motifs identified from proteomic screen of a Pro-rich region. Jia CY, Nie J, Wu C, Li C, Li SS. Mol Cell Proteomics 4 1155-1166 (2005)
  150. Cbl promotes clustering of endocytic adaptor proteins. Jozic D, Cárdenes N, Deribe YL, Moncalián G, Hoeller D, Groemping Y, Dikic I, Rittinger K, Bravo J. Nat Struct Mol Biol 12 972-979 (2005)
  151. Mammalian son of sevenless Guanine nucleotide exchange factors: old concepts and new perspectives. Rojas JM, Oliva JL, Santos E. Genes Cancer 2 298-305 (2011)
  152. Novel rab GAP-like protein, CIP85, interacts with connexin43 and induces its degradation. Lan Z, Kurata WE, Martyn KD, Jin C, Lau AF. Biochemistry 44 2385-2396 (2005)
  153. Recognition of tandem PxxP motifs as a unique Src homology 3-binding mode triggers pathogen-driven actin assembly. Aitio O, Hellman M, Kazlauskas A, Vingadassalom DF, Leong JM, Saksela K, Permi P. Proc Natl Acad Sci U S A 107 21743-21748 (2010)
  154. Structural basis for competitive interactions of Pex14 with the import receptors Pex5 and Pex19. Neufeld C, Filipp FV, Simon B, Neuhaus A, Schüller N, David C, Kooshapur H, Madl T, Erdmann R, Schliebs W, Wilmanns M, Sattler M. EMBO J 28 745-754 (2009)
  155. Vinculin proteolysis unmasks an ActA homolog for actin-based Shigella motility. Laine RO, Zeile W, Kang F, Purich DL, Southwick FS. J Cell Biol 138 1255-1264 (1997)
  156. Local structural changes caused by peptidyl-prolyl cis/trans isomerization in the native state of proteins. Reimer U, Fischer G. Biophys Chem 96 203-212 (2002)
  157. Molecular recognition properties of FN3 monobodies that bind the Src SH3 domain. Karatan E, Merguerian M, Han Z, Scholle MD, Koide S, Kay BK. Chem Biol 11 835-844 (2004)
  158. Common mechanism of ligand recognition by group II/III WW domains: redefining their functional classification. Kato Y, Nagata K, Takahashi M, Lian L, Herrero JJ, Sudol M, Tanokura M. J Biol Chem 279 31833-31841 (2004)
  159. Interaction of two proline-rich sequences of cell adhesion kinase beta with SH3 domains of p130Cas-related proteins and a GTPase-activating protein, Graf. Ohba T, Ishino M, Aoto H, Sasaki T. Biochem J 330 ( Pt 3) 1249-1254 (1998)
  160. Structural basis for a novel intrapeptidyl H-bond and reverse binding of c-Cbl-TKB domain substrates. Ng C, Jackson RA, Buschdorf JP, Sun Q, Guy GR, Sivaraman J. EMBO J 27 804-816 (2008)
  161. Syndapin I and endophilin I bind overlapping proline-rich regions of dynamin I: role in synaptic vesicle endocytosis. Anggono V, Robinson PJ. J Neurochem 102 931-943 (2007)
  162. The ScPex13p SH3 domain exposes two distinct binding sites for Pex5p and Pex14p. Pires JR, Hong X, Brockmann C, Volkmer-Engert R, Schneider-Mergener J, Oschkinat H, Erdmann R. J Mol Biol 326 1427-1435 (2003)
  163. Thermodynamic dissection of the binding energetics of proline-rich peptides to the Abl-SH3 domain: implications for rational ligand design. Palencia A, Cobos ES, Mateo PL, Martínez JC, Luque I. J Mol Biol 336 527-537 (2004)
  164. Biochemical and genetic analysis of the Drk SH2/SH3 adaptor protein of Drosophila. Raabe T, Olivier JP, Dickson B, Liu X, Gish GD, Pawson T, Hafen E. EMBO J 14 2509-2518 (1995)
  165. Kinetics of Src homology 3 domain association with the proline-rich domain of dynamins: specificity, occlusion, and the effects of phosphorylation. Solomaha E, Szeto FL, Yousef MA, Palfrey HC. J Biol Chem 280 23147-23156 (2005)
  166. SH3 domains with high affinity and engineered ligand specificities targeted to HIV-1 Nef. Hiipakka M, Poikonen K, Saksela K. J Mol Biol 293 1097-1106 (1999)
  167. SNX9 as an adaptor for linking synaptojanin-1 to the Cdc42 effector ACK1. Yeow-Fong L, Lim L, Manser E. FEBS Lett 579 5040-5048 (2005)
  168. Specificity of p47phox SH3 domain interactions in NADPH oxidase assembly and activation. de Mendez I, Homayounpour N, Leto TL. Mol Cell Biol 17 2177-2185 (1997)
  169. The Saccharomyces cerevisiae actin patch protein App1p is a phosphatidate phosphatase enzyme. Chae M, Han GS, Carman GM. J Biol Chem 287 40186-40196 (2012)
  170. The X-linked lymphoproliferative disease gene product SAP associates with PAK-interacting exchange factor and participates in T cell activation. Gu C, Tangye SG, Sun X, Luo Y, Lin Z, Wu J. Proc Natl Acad Sci U S A 103 14447-14452 (2006)
  171. ABM-1 and ABM-2 homology sequences: consensus docking sites for actin-based motility defined by oligoproline regions in Listeria ActA surface protein and human VASP. Purich DL, Southwick FS. Biochem Biophys Res Commun 231 686-691 (1997)
  172. Structural characterization of Lyn-SH3 domain in complex with a herpesviral protein reveals an extended recognition motif that enhances binding affinity. Bauer F, Schweimer K, Meiselbach H, Hoffmann S, Rösch P, Sticht H. Protein Sci 14 2487-2498 (2005)
  173. The myosin-I-binding protein Acan125 binds the SH3 domain and belongs to the superfamily of leucine-rich repeat proteins. Xu P, Mitchelhill KI, Kobe B, Kemp BE, Zot HG. Proc Natl Acad Sci U S A 94 3685-3690 (1997)
  174. X-ray crystallographic studies of serotonin N-acetyltransferase catalysis and inhibition. Wolf E, De Angelis J, Khalil EM, Cole PA, Burley SK. J Mol Biol 317 215-224 (2002)
  175. Molecular cloning of a 74-kDa regulatory subunit (B" or delta) of human protein phosphatase 2A. Tanabe O, Nagase T, Murakami T, Nozaki H, Usui H, Nishito Y, Hayashi H, Kagamiyama H, Takeda M. FEBS Lett 379 107-111 (1996)
  176. The functions of the actin nucleator Cobl in cellular morphogenesis critically depend on syndapin I. Schwintzer L, Koch N, Ahuja R, Grimm J, Kessels MM, Qualmann B. EMBO J 30 3147-3159 (2011)
  177. Anti-microbial activity and cell binding are controlled by sequence determinants in the anti-microbial peptide PR-39. Chan YR, Zanetti M, Gennaro R, Gallo RL. J Invest Dermatol 116 230-235 (2001)
  178. IL-17R-EGFR axis links wound healing to tumorigenesis in Lrig1+ stem cells. Chen X, Cai G, Liu C, Zhao J, Gu C, Wu L, Hamilton TA, Zhang CJ, Ko J, Zhu L, Qin J, Vidimos A, Koyfman S, Gastman BR, Jensen KB, Li X. J Exp Med 216 195-214 (2019)
  179. Versatile modes of peptide recognition by the AAA+ adaptor protein SspB. Levchenko I, Grant RA, Flynn JM, Sauer RT, Baker TA. Nat Struct Mol Biol 12 520-525 (2005)
  180. A novel transmembrane semaphorin can bind c-src. Eckhardt F, Behar O, Calautti E, Yonezawa K, Nishimoto I, Fishman MC. Mol Cell Neurosci 9 409-419 (1997)
  181. Identification of profilin and src homology 3 domains as binding partners for Drosophila enabled. Ahern-Djamali SM, Bachmann C, Hua P, Reddy SK, Kastenmeier AS, Walter U, Hoffmann FM. Proc Natl Acad Sci U S A 96 4977-4982 (1999)
  182. Interaction of peptides derived from the Fas ligand with the Fyn-SH3 domain. Hane M, Lowin B, Peitsch M, Becker K, Tschopp J. FEBS Lett 373 265-268 (1995)
  183. Structural basis for polyproline recognition by the FE65 WW domain. Meiyappan M, Birrane G, Ladias JAA. J Mol Biol 372 970-980 (2007)
  184. The v-Src SH3 domain facilitates a cell adhesion-independent association with focal adhesion kinase. Hauck CR, Hunter T, Schlaepfer DD. J Biol Chem 276 17653-17662 (2001)
  185. Thermal unfolding of small proteins with SH3 domain folding pattern. Knapp S, Mattson PT, Christova P, Berndt KD, Karshikoff A, Vihinen M, Smith CI, Ladenstein R. Proteins 31 309-319 (1998)
  186. Meltrin alpha cytoplasmic domain interacts with SH3 domains of Src and Grb2 and is phosphorylated by v-Src. Suzuki A, Kadota N, Hara T, Nakagami Y, Izumi T, Takenawa T, Sabe H, Endo T. Oncogene 19 5842-5850 (2000)
  187. Mutational analysis of the regulatory function of the c-Abl Src homology 3 domain. Brasher BB, Roumiantsev S, Van Etten RA. Oncogene 20 7744-7752 (2001)
  188. Structural and functional evidence that Nck interaction with CD3epsilon regulates T-cell receptor activity. Takeuchi K, Yang H, Ng E, Park SY, Sun ZY, Reinherz EL, Wagner G. J Mol Biol 380 704-716 (2008)
  189. Structural determinants of nuclear export signal orientation in binding to exportin CRM1. Fung HY, Fu SC, Brautigam CA, Chook YM. Elife 4 (2015)
  190. The N-terminal domain of Homer/Vesl is a new class II EVH1 domain. Barzik M, Carl UD, Schubert WD, Frank R, Wehland J, Heinz DW. J Mol Biol 309 155-169 (2001)
  191. The properties of the protein tyrosine phosphatase PTPMEG. Gu M, Majerus PW. J Biol Chem 271 27751-27759 (1996)
  192. The tryptophan switch: changing ligand-binding specificity from type I to type II in SH3 domains. Fernandez-Ballester G, Blanes-Mira C, Serrano L. J Mol Biol 335 619-629 (2004)
  193. An unexpected binding mode for a Pol II CTD peptide phosphorylated at Ser7 in the active site of the CTD phosphatase Ssu72. Xiang K, Manley JL, Tong L. Genes Dev 26 2265-2270 (2012)
  194. Novel inositol polyphosphate 5-phosphatase localizes at membrane ruffles. Mochizuki Y, Takenawa T. J Biol Chem 274 36790-36795 (1999)
  195. Pichia pastoris Pex14p, a phosphorylated peroxisomal membrane protein, is part of a PTS-receptor docking complex and interacts with many peroxins. Johnson MA, Snyder WB, Cereghino JL, Veenhuis M, Subramani S, Cregg JM. Yeast 18 621-641 (2001)
  196. Two-hybrid analysis of human salivary mucin MUC7 interactions. Bruno LS, Li X, Wang L, Soares RV, Siqueira CC, Oppenheim FG, Troxler RF, Offner GD. Biochim Biophys Acta 1746 65-72 (2005)
  197. A new family of intrinsically disordered proteins: structural characterization of the major phasin PhaF from Pseudomonas putida KT2440. Maestro B, Galán B, Alfonso C, Rivas G, Prieto MA, Sanz JM. PLoS One 8 e56904 (2013)
  198. ADAM12 localizes with c-Src to actin-rich structures at the cell periphery and regulates Src kinase activity. Stautz D, Sanjay A, Hansen MT, Albrechtsen R, Wewer UM, Kveiborg M. Exp Cell Res 316 55-67 (2010)
  199. Ligand-induced strain in hydrogen bonds of the c-Src SH3 domain detected by NMR. Cordier F, Wang C, Grzesiek S, Nicholson LK. J Mol Biol 304 497-505 (2000)
  200. Posttransition state desolvation of the hydrophobic core of the src-SH3 protein domain. Guo W, Lampoudi S, Shea JE. Biophys J 85 61-69 (2003)
  201. The kinase, SH3, and SH2 domains of Lck play critical roles in T-cell activation after ZAP-70 membrane localization. Yamasaki S, Takamatsu M, Iwashima M. Mol Cell Biol 16 7151-7160 (1996)
  202. Critical residues involved in tau binding to fyn: implications for tau phosphorylation in Alzheimer's disease. Lau DH, Hogseth M, Phillips EC, O'Neill MJ, Pooler AM, Noble W, Hanger DP. Acta Neuropathol Commun 4 49 (2016)
  203. Genetic evidence for a role of centrin-associated proteins in the organization and dynamics of the infraciliary lattice in Paramecium. Klotz C, Garreau de Loubresse N, Ruiz F, Beisson J. Cell Motil Cytoskeleton 38 172-186 (1997)
  204. Structural basis of beta-catenin recognition by Tax-interacting protein-1. Zhang J, Yan X, Shi C, Yang X, Guo Y, Tian C, Long J, Shen Y. J Mol Biol 384 255-263 (2008)
  205. Complete nucleotide sequence, expression, and chromosomal localisation of human mixed-lineage kinase 2. Dorow DS, Devereux L, Tu GF, Price G, Nicholl JK, Sutherland GR, Simpson RJ. Eur J Biochem 234 492-500 (1995)
  206. Evolution of binding affinity in a WW domain probed by phage display. Dalby PA, Hoess RH, DeGrado WF. Protein Sci 9 2366-2376 (2000)
  207. The interaction between EEN and Abi-1, two MLL fusion partners, and synaptojanin and dynamin: implications for leukaemogenesis. So CW, So CK, Cheung N, Chew SL, Sham MH, Chan LC. Leukemia 14 594-601 (2000)
  208. Deciphering the cross talk between hnRNP K and c-Src: the c-Src activation domain in hnRNP K is distinct from a second interaction site. Adolph D, Flach N, Mueller K, Ostareck DH, Ostareck-Lederer A. Mol Cell Biol 27 1758-1770 (2007)
  209. SH3 domains of Grb2 adaptor bind to PXpsiPXR motifs within the Sos1 nucleotide exchange factor in a discriminate manner. McDonald CB, Seldeen KL, Deegan BJ, Farooq A. Biochemistry 48 4074-4085 (2009)
  210. Effect of pH and salt bridges on structural assembly: molecular structures of the monomer and intertwined dimer of the Eps8 SH3 domain. Kishan KV, Newcomer ME, Rhodes TH, Guilliot SD. Protein Sci 10 1046-1055 (2001)
  211. Heterogeneous nuclear ribonucleoprotein k interacts with Abi-1 at postsynaptic sites and modulates dendritic spine morphology. Proepper C, Steinestel K, Schmeisser MJ, Heinrich J, Steinestel J, Bockmann J, Liebau S, Boeckers TM. PLoS One 6 e27045 (2011)
  212. Molecular basis for the binding of SH3 ligands with non-peptide elements identified by combinatorial synthesis. Feng S, Kapoor TM, Shirai F, Combs AP, Schreiber SL. Chem Biol 3 661-670 (1996)
  213. SH3 in muscles: solution structure of the SH3 domain from nebulin. Politou AS, Millevoi S, Gautel M, Kolmerer B, Pastore A. J Mol Biol 276 189-202 (1998)
  214. Solution structures of two FHA1-phosphothreonine peptide complexes provide insight into the structural basis of the ligand specificity of FHA1 from yeast Rad53. Yuan C, Yongkiettrakul S, Byeon IJ, Zhou S, Tsai MD. J Mol Biol 314 563-575 (2001)
  215. Proline isomerization preorganizes the Itk SH2 domain for binding to the Itk SH3 domain. Severin A, Joseph RE, Boyken S, Fulton DB, Andreotti AH. J Mol Biol 387 726-743 (2009)
  216. Titin as a giant scaffold for integrating stress and Src homology domain 3-mediated signaling pathways: the clustering of novel overlap ligand motifs in the elastic PEVK segment. Ma K, Forbes JG, Gutierrez-Cruz G, Wang K. J Biol Chem 281 27539-27556 (2006)
  217. Collagen type I selectively activates ectodomain shedding of the discoidin domain receptor 1: involvement of Src tyrosine kinase. Slack BE, Siniaia MS, Blusztajn JK. J Cell Biochem 98 672-684 (2006)
  218. Competing modes of self-association in the regulatory domains of Bruton's tyrosine kinase: intramolecular contact versus asymmetric homodimerization. Laederach A, Cradic KW, Brazin KN, Zamoon J, Fulton DB, Huang XY, Andreotti AH. Protein Sci 11 36-45 (2002)
  219. Molecular recognition of leucine-aspartate repeat (LD) motifs by the focal adhesion targeting homology domain of cerebral cavernous malformation 3 (CCM3). Li X, Ji W, Zhang R, Folta-Stogniew E, Min W, Boggon TJ. J Biol Chem 286 26138-26147 (2011)
  220. Structural basis for the interaction between focal adhesion kinase and CD4. Garron ML, Arthos J, Guichou JF, McNally J, Cicala C, Arold ST. J Mol Biol 375 1320-1328 (2008)
  221. Determinants of intra versus intermolecular self-association within the regulatory domains of Rlk and Itk. Laederach A, Cradic KW, Fulton DB, Andreotti AH. J Mol Biol 329 1011-1020 (2003)
  222. Modeling and prediction of binding affinities between the human amphiphysin SH3 domain and its peptide ligands using genetic algorithm-Gaussian processes. Zhou P, Tian F, Chen X, Shang Z. Biopolymers 90 792-802 (2008)
  223. Structural basis of PxxDY motif recognition in SH3 binding. Aitio O, Hellman M, Kesti T, Kleino I, Samuilova O, Pääkkönen K, Tossavainen H, Saksela K, Permi P. J Mol Biol 382 167-178 (2008)
  224. Deletion of a proline-rich region and a transmembrane domain in fatty acid amide hydrolase. Arreaza G, Deutsch DG. FEBS Lett 454 57-60 (1999)
  225. Enhanced SH3/linker interaction overcomes Abl kinase activation by gatekeeper and myristic acid binding pocket mutations and increases sensitivity to small molecule inhibitors. Panjarian S, Iacob RE, Chen S, Wales TE, Engen JR, Smithgall TE. J Biol Chem 288 6116-6129 (2013)
  226. Hydrogen exchange and ligand binding: ligand-dependent and ligand-independent protection in the Src SH3 domain. Wildes D, Marqusee S. Protein Sci 14 81-88 (2005)
  227. Identification and characterization of PKNbeta, a novel isoform of protein kinase PKN: expression and arachidonic acid dependency are different from those of PKNalpha. Oishi K, Mukai H, Shibata H, Takahashi M, Ona Y. Biochem Biophys Res Commun 261 808-814 (1999)
  228. Missense mutations affecting a conserved cysteine pair in the TH domain of Btk. Vihinen M, Nore BF, Mattsson PT, Bäckesjö CM, Nars M, Koutaniemi S, Watanabe C, Lester T, Jones A, Ochs HD, Smith CI. FEBS Lett 413 205-210 (1997)
  229. Sprouty2 binds Grb2 at two different proline-rich regions, and the mechanism of ERK inhibition is independent of this interaction. Martínez N, García-Domínguez CA, Domingo B, Oliva JL, Zarich N, Sánchez A, Gutiérrez-Eisman S, Llopis J, Rojas JM. Cell Signal 19 2277-2285 (2007)
  230. The extended left-handed helix: a simple nucleic acid-binding motif. Hicks JM, Hsu VL. Proteins 55 330-338 (2004)
  231. A new potent antigen from Echinococcus granulosus associated with muscles and tegument. Fu Y, Martinez C, Chalar C, Craig PS, Ehrlich R, Petavy AF, Bosquet G. Mol Biochem Parasitol 102 43-52 (1999)
  232. A novel structure-based encoding for machine-learning applied to the inference of SH3 domain specificity. Ferraro E, Via A, Ausiello G, Helmer-Citterich M. Bioinformatics 22 2333-2339 (2006)
  233. Characterization of CMIX, a chicken homeobox gene related to the Xenopus gene mix.1. Peale FV, Sugden L, Bothwell M. Mech Dev 75 167-170 (1998)
  234. Identification and characterization of a new human gene encoding a small protein with high homology to the proline-rich region of the SH3BGR gene. Egeo A, Mazzocco M, Arrigo P, Vidal-Taboada JM, Oliva R, Pirola B, Giglio S, Rasore-Quartino A, Scartezzini P. Biochem Biophys Res Commun 247 302-306 (1998)
  235. Isolation and characterization of a novel HS1 SH3 domain binding protein, HS1BP3. Takemoto Y, Furuta M, Sato M, Kubo M, Hashimoto Y. Int Immunol 11 1957-1964 (1999)
  236. Pharbin, a novel inositol polyphosphate 5-phosphatase, induces dendritic appearances in fibroblasts. Asano T, Mochizuki Y, Matsumoto K, Takenawa T, Endo T. Biochem Biophys Res Commun 261 188-195 (1999)
  237. Recognition of non-canonical peptides by the yeast Fus1p SH3 domain: elucidation of a common mechanism for diverse SH3 domain specificities. Kim J, Lee CD, Rath A, Davidson AR. J Mol Biol 377 889-901 (2008)
  238. Regulation and function of SKAP-55 non-canonical motif binding to the SH3c domain of adhesion and degranulation-promoting adaptor protein. Duke-Cohan JS, Kang H, Liu H, Rudd CE. J Biol Chem 281 13743-13750 (2006)
  239. Retro-MoRFs: identifying protein binding sites by normal and reverse alignment and intrinsic disorder prediction. Xue B, Dunker AK, Uversky VN. Int J Mol Sci 11 3725-3747 (2010)
  240. SH3-SH2 domain orientation in Src kinases: NMR studies of Fyn. Ulmer TS, Werner JM, Campbell ID. Structure 10 901-911 (2002)
  241. Solution structure and peptide binding studies of the C-terminal src homology 3-like domain of the diphtheria toxin repressor protein. Wang G, Wylie GP, Twigg PD, Caspar DL, Murphy JR, Logan TM. Proc Natl Acad Sci U S A 96 6119-6124 (1999)
  242. Solution structure of a Hck SH3 domain ligand complex reveals novel interaction modes. Schmidt H, Hoffmann S, Tran T, Stoldt M, Stangler T, Wiesehan K, Willbold D. J Mol Biol 365 1517-1532 (2007)
  243. CrkIII: a novel and biologically distinct member of the Crk family of adaptor proteins. Prosser S, Sorokina E, Pratt P, Sorokin A. Oncogene 22 4799-4806 (2003)
  244. Human CD6 possesses a large, alternatively spliced cytoplasmic domain. Robinson WH, Neuman de Vegvar HE, Prohaska SS, Rhee JW, Parnes JR. Eur J Immunol 25 2765-2769 (1995)
  245. Regulation of actin polymerization and adhesion-dependent cell edge protrusion by the Abl-related gene (Arg) tyrosine kinase and N-WASp. Miller MM, Lapetina S, MacGrath SM, Sfakianos MK, Pollard TD, Koleske AJ. Biochemistry 49 2227-2234 (2010)
  246. A novel NMR experiment for the sequential assignment of proline residues and proline stretches in 13C/15N-labeled proteins. Bottomley MJ, Macias MJ, Liu Z, Sattler M. J Biomol NMR 13 381-385 (1999)
  247. Axin and the Axin/Arrow-binding protein DCAP mediate glucose-glycogen metabolism. Yamazaki H, Yanagawa Si. Biochem Biophys Res Commun 304 229-235 (2003)
  248. Identification and functional characterization of an Src homology domain 3 domain-binding site on Cbl. Sanjay A, Miyazaki T, Itzstein C, Purev E, Horne WC, Baron R. FEBS J 273 5442-5456 (2006)
  249. Structural basis of Robo proline-rich motif recognition by the srGAP1 Src homology 3 domain in the Slit-Robo signaling pathway. Li X, Chen Y, Liu Y, Gao J, Gao F, Bartlam M, Wu JY, Rao Z. J Biol Chem 281 28430-28437 (2006)
  250. Structural, functional, and bioinformatic studies demonstrate the crucial role of an extended peptide binding site for the SH3 domain of yeast Abp1p. Stollar EJ, Garcia B, Chong PA, Rath A, Lin H, Forman-Kay JD, Davidson AR. J Biol Chem 284 26918-26927 (2009)
  251. A miniprotein scaffold used to assemble the polyproline II binding epitope recognized by SH3 domains. Cobos ES, Pisabarro MT, Vega MC, Lacroix E, Serrano L, Ruiz-Sanz J, Martinez JC. J Mol Biol 342 355-365 (2004)
  252. Centromeric binding and activity of Protein Phosphatase 4. Lipinszki Z, Lefevre S, Savoian MS, Singleton MR, Glover DM, Przewloka MR. Nat Commun 6 5894 (2015)
  253. Stimulation of hTAFII68 (NTD)-mediated transactivation by v-Src. Lee HJ, Kim S, Pelletier J, Kim J. FEBS Lett 564 188-198 (2004)
  254. Structural analysis of the complex between penta-EF-hand ALG-2 protein and Sec31A peptide reveals a novel target recognition mechanism of ALG-2. Takahashi T, Kojima K, Zhang W, Sasaki K, Ito M, Suzuki H, Kawasaki M, Wakatsuki S, Takahara T, Shibata H, Maki M. Int J Mol Sci 16 3677-3699 (2015)
  255. Structural investigations of a GYF domain covalently linked to a proline-rich peptide. Freund C, Kühne R, Park S, Thiemke K, Reinherz EL, Wagner G. J Biomol NMR 27 143-149 (2003)
  256. The tyrosine kinase Csk dimerizes through Its SH3 domain. Levinson NM, Visperas PR, Kuriyan J. PLoS One 4 e7683 (2009)
  257. Analysis of the tyrosine phosphorylation and calcium fluxing of human CD6 isoforms with different cytoplasmatic domains. Kobarg J, Whitney GS, Palmer D, Aruffo A, Bowen MA. Eur J Immunol 27 2971-2980 (1997)
  258. News How Src exercises self-restraint. Nguyen JT, Lim WA. Nat Struct Biol 4 256-260 (1997)
  259. Immunoinhibitory adapter protein Src homology domain 3 lymphocyte protein 2 (SLy2) regulates actin dynamics and B cell spreading. von Holleben M, Gohla A, Janssen KP, Iritani BM, Beer-Hammer S. J Biol Chem 286 13489-13501 (2011)
  260. Interactions between the Fyn SH3-domain and adaptor protein Cbp/PAG derived ligands, effects on kinase activity and affinity. Solheim SA, Petsalaki E, Stokka AJ, Russell RB, Russell RB, Taskén K, Berge T. FEBS J 275 4863-4874 (2008)
  261. Regulation of the interaction between the neuronal BIN1 isoform 1 and Tau proteins - role of the SH3 domain. Malki I, Cantrelle FX, Sottejeau Y, Lippens G, Lambert JC, Landrieu I. FEBS J 284 3218-3229 (2017)
  262. Stability and folding of the SH3 domain of Bruton's tyrosine kinase. Chen YJ, Lin SC, Tzeng SR, Patel HV, Lyu PC, Cheng JW. Proteins 26 465-471 (1996)
  263. 4-Fluoroproline derivative peptides: effect on PPII conformation and SH3 affinity. Ruzza P, Siligardi G, Donella-Deana A, Calderan A, Hussain R, Rubini C, Cesaro L, Osler A, Guiotto A, Pinna LA, Borin G. J Pept Sci 12 462-471 (2006)
  264. A Chemical Biology View of Bioactive Small Molecules and a Binder-Based Approach to Connect Biology to Precision Medicines. Schreiber SL. Isr J Chem 59 52-59 (2019)
  265. A novel PF/PN motif inhibits nuclear localization and DNA binding activity of the ESX1 homeoprotein. Yan YT, Stein SM, Ding J, Shen MM, Abate-Shen C. Mol Cell Biol 20 661-671 (2000)
  266. BIN1 membrane curvature sensing and generation show autoinhibition regulated by downstream ligands and PI(4,5)P2. Wu T, Baumgart T. Biochemistry 53 7297-7309 (2014)
  267. Conformational snapshots of Tec kinases during signaling. Joseph RE, Andreotti AH. Immunol Rev 228 74-92 (2009)
  268. Evidence for SH3 domain directed binding and phosphorylation of Sam68 by Src. Shen Z, Batzer A, Koehler JA, Polakis P, Schlessinger J, Lydon NB, Moran MF. Oncogene 18 4647-4653 (1999)
  269. Evolution of domain-peptide interactions to coadapt specificity and affinity to functional diversity. Kelil A, Levy ED, Michnick SW. Proc Natl Acad Sci U S A 113 E3862-71 (2016)
  270. Solution structure of the human Hck SH3 domain and identification of its ligand binding site. Horita DA, Baldisseri DM, Zhang W, Altieri AS, Smithgall TE, Gmeiner WH, Byrd RA. J Mol Biol 278 253-265 (1998)
  271. Structural Basis of Tau Interaction With BIN1 and Regulation by Tau Phosphorylation. Lasorsa A, Malki I, Cantrelle FX, Merzougui H, Boll E, Lambert JC, Landrieu I. Front Mol Neurosci 11 421 (2018)
  272. Structural basis for recognition of the T cell adaptor protein SLP-76 by the SH3 domain of phospholipase Cgamma1. Deng L, Velikovsky CA, Swaminathan CP, Cho S, Mariuzza RA. J Mol Biol 352 1-10 (2005)
  273. The E3 ubiquitin ligase Itch regulates sorting nexin 9 through an unconventional substrate recognition domain. Baumann C, Lindholm CK, Rimoldi D, Lévy F. FEBS J 277 2803-2814 (2010)
  274. Cloning and mapping of ZNF231, a novel brain-specific gene encoding neuronal double zinc finger protein whose expression is enhanced in a neurodegenerative disorder, multiple system atrophy (MSA). Hashida H, Goto J, Zhao N, Takahashi N, Hirai M, Kanazawa I, Sakaki Y. Genomics 54 50-58 (1998)
  275. ERK signaling promotes cell motility by inducing the localization of myosin 1E to lamellipodial tips. Tanimura S, Hashizume J, Arichika N, Watanabe K, Ohyama K, Takeda K, Kohno M. J Cell Biol 214 475-489 (2016)
  276. Identification of DCAP, a drosophila homolog of a glucose transport regulatory complex. Yamazaki H, Nusse R. Mech Dev 119 115-119 (2002)
  277. Mobility of TOAC spin-labelled peptides binding to the Src SH3 domain studied by paramagnetic NMR. Lindfors HE, de Koning PE, Drijfhout JW, Venezia B, Ubbink M. J Biomol NMR 41 157-167 (2008)
  278. Solution structure of the human BTK SH3 domain complexed with a proline-rich peptide from p120cbl. Tzeng SR, Lou YC, Pai MT, Jain ML, Cheng JW. J Biomol NMR 16 303-312 (2000)
  279. The SH2B1 obesity locus is associated with myocardial infarction in diabetic patients and with NO synthase activity in endothelial cells. Prudente S, Morini E, Larmon J, Andreozzi F, Di Pietro N, Nigro A, Gervino EV, Mannino GC, Bacci S, Hauser TH, Bellacchio E, Formoso G, Pellegrini F, Proto V, Menzaghi C, Frittitta L, Pandolfi A, Sesti G, Doria A, Trischitta V. Atherosclerosis 219 667-672 (2011)
  280. The isoform-specific stretch of hSos1 defines a new Grb2-binding domain. Zarich N, Oliva JL, Jorge R, Santos E, Rojas JM. Oncogene 19 5872-5883 (2000)
  281. A conserved proline-rich sequence between the N-terminal signal-anchor and catalytic domains is required for assembly of functional cytochrome P450 2C2. Chen CD, Doray B, Kemper B. Arch Biochem Biophys 350 233-238 (1998)
  282. Characterization of the tyrosine kinase Tnk1 and its binding with phospholipase C-gamma1. Felschow DM, Civin CI, Hoehn GT. Biochem Biophys Res Commun 273 294-301 (2000)
  283. Determination of the solution structure of the SH3 domain of human p56 Lck tyrosine kinase. Hiroaki H, Klaus W, Senn H. J Biomol NMR 8 105-122 (1996)
  284. Intertwined dimeric structure for the SH3 domain of the c-Src tyrosine kinase induced by polyethylene glycol binding. Cámara-Artigas A, Martín-García JM, Morel B, Ruiz-Sanz J, Luque I. FEBS Lett 583 749-753 (2009)
  285. Molecular basis for regulation of Src by the docking protein p130Cas. Nasertorabi F, Tars K, Becherer K, Kodandapani R, Liljas L, Vuori K, Ely KR. J Mol Recognit 19 30-38 (2006)
  286. Solution structure of N-terminal SH3 domain of Vav and the recognition site for Grb2 C-terminal SH3 domain. Ogura K, Nagata K, Horiuchi M, Ebisui E, Hasuda T, Yuzawa S, Nishida M, Hatanaka H, Inagaki F. J Biomol NMR 22 37-46 (2002)
  287. 4-Fluoroprolines: Conformational Analysis and Effects on the Stability and Folding of Peptides and Proteins. Newberry RW, Raines RT. Top Heterocycl Chem 48 1-25 (2017)
  288. Domain Interaction Footprint: a multi-classification approach to predict domain-peptide interactions. Schillinger C, Boisguerin P, Krause G. Bioinformatics 25 1632-1639 (2009)
  289. Rhodium(II) metallopeptide catalyst design enables fine control in selective functionalization of natural SH3 domains. Vohidov F, Coughlin JM, Ball ZT. Angew Chem Int Ed Engl 54 4587-4591 (2015)
  290. Scaffold Protein Ahk1, Which Associates with Hkr1, Sho1, Ste11, and Pbs2, Inhibits Cross Talk Signaling from the Hkr1 Osmosensor to the Kss1 Mitogen-Activated Protein Kinase. Nishimura A, Yamamoto K, Oyama M, Kozuka-Hata H, Saito H, Tatebayashi K. Mol Cell Biol 36 1109-1123 (2016)
  291. Structural invariance of constitutively active and inactive mutants of acanthamoeba myosin IC bound to F-actin in the rigor and ADP-bound states. Carragher BO, Cheng N, Wang ZY, Korn ED, Reilein A, Belnap DM, Hammer JA, Steven AC. Proc Natl Acad Sci U S A 95 15206-15211 (1998)
  292. A proline to glycine mutation in the Lck SH3-domain affects conformational sampling and increases ligand binding affinity. Bauer F, Sticht H. FEBS Lett 581 1555-1560 (2007)
  293. Acquisition of Fyn-selective SH3 domain ligands via a combinatorial library strategy. Li H, Lawrence DS. Chem Biol 12 905-912 (2005)
  294. Assembly and Molecular Architecture of the Phosphoinositide 3-Kinase p85α Homodimer. LoPiccolo J, Kim SJ, Shi Y, Wu B, Wu H, Chait BT, Singer RH, Sali A, Brenowitz M, Bresnick AR, Backer JM. J Biol Chem 290 30390-30405 (2015)
  295. Binding of the cSH3 domain of Grb2 adaptor to two distinct RXXK motifs within Gab1 docker employs differential mechanisms. McDonald CB, Seldeen KL, Deegan BJ, Bhat V, Farooq A. J Mol Recognit 24 585-596 (2011)
  296. CR16, a novel proline-rich protein expressed in rat brain neurons, binds to SH3 domains and is a MAP kinase substrate. Weiler MC, Smith JL, Masters JN. J Mol Neurosci 7 203-215 (1996)
  297. Disrupting the intramolecular interaction between proto-oncogene c-Src SH3 domain and its self-binding peptide PPII with rationally designed peptide ligands. Zhou P, Hou S, Bai Z, Li Z, Wang H, Chen Z, Meng Y. Artif Cells Nanomed Biotechnol 46 1122-1131 (2018)
  298. Evolution of the src-related protein tyrosine kinases. Hughes AL. J Mol Evol 42 247-256 (1996)
  299. Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain. Galea CA, Mobli M, McNeil KA, Mulhern TD, Wallace JC, King GF, Forbes BE, Norton RS. Biochimie 94 608-616 (2012)
  300. Metallofullerenol Gd@C₈₂(OH)₂₂ distracts the proline-rich-motif from putative binding on the SH3 domain. Kang SG, Huynh T, Zhou R. Nanoscale 5 2703-2712 (2013)
  301. Molecular cloning and characterization of patellin1, a novel sec14-related protein, from zucchini (Cucurbita pepo). Peterman TK, Sequeira AS, Samia JA, Lunde EE. J Plant Physiol 163 1150-1158 (2006)
  302. Molecular recognition properties of the C-terminal Sh3 domain of the Cbl associated protein, Cap. Kurakin A, Hoffman NG, Kay BK. J Pept Res 52 331-337 (1998)
  303. Quantifying intramolecular binding in multivalent interactions: a structure-based synergistic study on Grb2-Sos1 complex. Sethi A, Goldstein B, Gnanakaran S. PLoS Comput Biol 7 e1002192 (2011)
  304. Target-assisted iterative screening reveals novel interactors for PSD95, Nedd4, Src, Abl and Crk proteins. Kurakin A, Bredesen D. J Biomol Struct Dyn 19 1015-1029 (2002)
  305. A graph kernel approach for alignment-free domain-peptide interaction prediction with an application to human SH3 domains. Kundu K, Costa F, Backofen R. Bioinformatics 29 i335-43 (2013)
  306. Atomic resolution structures of the c-Src SH3 domain in complex with two high-affinity peptides from classes I and II. Bacarizo J, Camara-Artigas A. Acta Crystallogr D Biol Crystallogr 69 756-766 (2013)
  307. Coevolution of the domains of cytoplasmic tyrosine kinases. Nars M, Vihinen M. Mol Biol Evol 18 312-321 (2001)
  308. Interaction between Btk TH and SH3 domain. Okoh MP, Vihinen M. Biopolymers 63 325-334 (2002)
  309. SH3 domain of Bruton's tyrosine kinase can bind to proline-rich peptides of TH domain of the kinase and p120cbl. Patel HV, Tzeng SR, Liao CY, Chen SH, Cheng JW. Proteins 29 545-552 (1997)
  310. A single PXXP motif in the C-terminal region of srGAP3 mediates binding to multiple SH3 domains. Wuertenberger S, Groemping Y. FEBS Lett 589 1156-1163 (2015)
  311. New approaches to high-throughput structure characterization of SH3 complexes: the example of Myosin-3 and Myosin-5 SH3 domains from S. cerevisiae. Musi V, Birdsall B, Fernandez-Ballester G, Guerrini R, Salvatori S, Serrano L, Pastore A. Protein Sci 15 795-807 (2006)
  312. Probing the chemical basis of binding activity in an SH3 domain by protein signature analysis. Muir TW, Dawson PE, Fitzgerald MC, Kent SB. Chem Biol 3 817-825 (1996)
  313. Sam68 from an immortalised B-cell line associates with a subset of SH3 domains. Finan PM, Hall A, Kellie S. FEBS Lett 389 141-144 (1996)
  314. Solution structure of the first SH3 domain of human vinexin and its interaction with vinculin peptides. Zhang J, Li X, Yao B, Shen W, Sun H, Xu C, Wu J, Shi Y. Biochem Biophys Res Commun 357 931-937 (2007)
  315. A neural strategy for the inference of SH3 domain-peptide interaction specificity. Ferraro E, Via A, Ausiello G, Helmer-Citterich M. BMC Bioinformatics 6 Suppl 4 S13 (2005)
  316. A novel six-transmembrane protein hhole functions as a suppressor in MAPK signaling pathways. Zhou J, Li Y, Liang P, Yuan W, Ye X, Zhu C, Cheng Y, Wang Y, Li G, Wu X, Liu M. Biochem Biophys Res Commun 333 344-352 (2005)
  317. Directed discovery of bivalent peptide ligands to an SH3 domain. Ferguson MR, Fan X, Mukherjee M, Luo J, Khan R, Ferreon JC, Hilser VJ, Shope RE, Fox RO. Protein Sci 13 626-632 (2004)
  318. Enhanced ubiquitination and proteasomal degradation of catalytically deficient human choline acetyltransferase mutants. Morey TM, Albers S, Shilton BH, Rylett RJ. J Neurochem 137 630-646 (2016)
  319. Proteomic analysis of glycine receptor β subunit (GlyRβ)-interacting proteins: evidence for syndapin I regulating synaptic glycine receptors. Del Pino I, Koch D, Schemm R, Qualmann B, Betz H, Paarmann I. J Biol Chem 289 11396-11409 (2014)
  320. Structural investigation of the interaction between the tandem SH3 domains of c-Cbl-associated protein and vinculin. Zhao D, Wang X, Peng J, Wang C, Li F, Sun Q, Zhang Y, Zhang J, Cai G, Zuo X, Wu J, Shi Y, Zhang Z, Gong Q. J Struct Biol 187 194-205 (2014)
  321. The Binding of Syndapin SH3 Domain to Dynamin Proline-rich Domain Involves Short and Long Distance Elements. Luo L, Xue J, Kwan A, Gamsjaeger R, Wielens J, von Kleist L, Cubeddu L, Guo Z, Stow JL, Parker MW, Mackay JP, Robinson PJ. J Biol Chem 291 9411-9424 (2016)
  322. The SH3 domain of a M7 interacts with its C-terminal proline-rich region. Wang Q, Deloia MA, Kang Y, Litchke C, Zhang N, Titus MA, Walters KJ. Protein Sci 16 189-196 (2007)
  323. The murine form of TXK, a novel TEC kinase expressed in thymus maps to chromosome 5. Haire RN, Litman GW. Mamm Genome 6 476-480 (1995)
  324. A disordered encounter complex is central to the yeast Abp1p SH3 domain binding pathway. Gerlach GJ, Carrock R, Stix R, Stollar EJ, Ball KA. PLoS Comput Biol 16 e1007815 (2020)
  325. A novel link between a rab GTPase and Rvs proteins: the yeast amphiphysin homologues. Talarek N, Balguerie A, Aigle M, Durrens P. Cell Biochem Funct 23 253-266 (2005)
  326. A study on the flexibility of enzyme active sites. Weng YZ, Chang DT, Huang YF, Lin CW. BMC Bioinformatics 12 Suppl 1 S32 (2011)
  327. Bruton's tyrosine kinase is not essential for Bcr-Abl-mediated transformation of lymphoid or myeloid cells. MacPartlin M, Smith AM, Druker BJ, Honigberg LA, Deininger MW. Leukemia 22 1354-1360 (2008)
  328. Corticotropin-releasing factor induces phosphorylation of phospholipase C-gamma at tyrosine residues via its receptor 2beta in human epidermoid A-431 cells. Kiang JG, Ding XZ, Gist ID, Jones RR, Tsokos GC. Eur J Pharmacol 363 203-210 (1998)
  329. Cross-reactivity of anti-HIV-1-p17-derivative peptide (P30-52) antibody to Env V3 peptide. Ota A, Tanaka-Taya K, Ueda S. Hybridoma 18 149-157 (1999)
  330. Guanosine triphosphatase-activating protein-associated protein, but not src-associated protein p68 in mitosis, is a part of insulin signaling complexes. Sung CK, Choi WS, Sanchez-Margalet V. Endocrinology 139 2392-2398 (1998)
  331. Identification of a novel splice variant of C3G which shows tissue-specific expression. Shivakrupa, Singh R, Swarup G. DNA Cell Biol 18 701-708 (1999)
  332. Overexpression of c-src and n-src in the developing Xenopus retina differentially impairs axonogenesis. Worley TL, Cornel E, Holt CE. Mol Cell Neurosci 9 276-292 (1997)
  333. The SH3 domain of Caskin1 binds to lysophosphatidic acid suggesting a direct role for the lipid in intracellular signaling. Koprivanacz K, Tőke O, Besztercei B, Juhász T, Radnai L, Merő B, Mihály J, Péter M, Balogh G, Vígh L, Buday L, Liliom K. Cell Signal 32 66-75 (2017)
  334. Allosteric activation of proto-oncogene kinase Src by GPCR-beta-arrestin complexes. Pakharukova N, Masoudi A, Pani B, Staus DP, Lefkowitz RJ. J Biol Chem 295 16773-16784 (2020)
  335. Can a polyproline II helical motif be used in the context of sequence-selective major groove recognition of B-DNA? A molecular modelling investigation. Gresh N. J Biomol Struct Dyn 14 255-273 (1996)
  336. Characterization of a novel weak interaction between MUC1 and Src-SH3 using nuclear magnetic resonance spectroscopy. Gunasekara N, Sykes B, Hugh J. Biochem Biophys Res Commun 421 832-836 (2012)
  337. Cloning and characterization of a novel serine/threonine protein kinase gene expressed predominantly in developing brain. Nara K, Akasako Y, Matsuda Y, Fukazawa Y, Iwashita S, Kataoka M, Nagai Y. Eur J Biochem 268 2642-2651 (2001)
  338. Competitive binding of UBPY and ubiquitin to the STAM2 SH3 domain revealed by NMR. Lange A, Ismail MB, Rivière G, Hologne M, Lacabanne D, Guillière F, Lancelin JM, Krimm I, Walker O. FEBS Lett 586 3379-3384 (2012)
  339. Enriching the viral-host interactomes with interactions mediated by SH3 domains. Carducci M, Licata L, Peluso D, Castagnoli L, Cesareni G. Amino Acids 38 1541-1547 (2010)
  340. Flexible Tethering of ASPP Proteins Facilitates PP-1c Catalysis. Zhou Y, Millott R, Kim HJ, Peng S, Edwards RA, Skene-Arnold T, Hammel M, Lees-Miller SP, Tainer JA, Holmes CFB, Glover JNM. Structure 27 1485-1496.e4 (2019)
  341. Monoclonal antibody specific to a subclass of polyproline-Arg motif provides evidence for the presence of an snRNA-free spliceosomal Sm protein complex in vivo: implications for molecular interactions involving proline-rich sequences of Sm B/B' proteins. Filali M, Qiu J, Awasthi S, Fischer U, Monos D, Kamoun M. J Cell Biochem 74 168-180 (1999)
  342. Structural consensus in ligand-protein docking identifies recognition peptide motifs that bind streptavidin. Shah NK, Rejto PA, Verkhivker GM. Proteins 28 421-433 (1997)
  343. Structure of the c-Src-SH3 domain in complex with a proline-rich motif of NS5A protein from the hepatitis C virus. Bacarizo J, Martínez-Rodríguez S, Cámara-Artigas A. J Struct Biol 189 67-72 (2015)
  344. A dipalmitoyl peptide that binds SH3 domain, disturbs intracellular signal transduction, and inhibits tumor growth in vivo. Lee KY, Hyeok Yoon JH, Kim M, Roh S, Lee YS, Seong BL, Kim K. Biochem Biophys Res Commun 296 434-442 (2002)
  345. A semi-automated method for purification of milligram quantities of proteins on the QIAcube. McGraw J, Tatipelli VK, Feyijinmi O, Traore MC, Eangoor P, Lane S, Stollar EJ. Protein Expr Purif 96 48-53 (2014)
  346. Arginine mimetics using α-guanidino acids: introduction of functional groups and stereochemistry adjacent to recognition guanidiniums in peptides. Balakrishnan S, Scheuermann MJ, Zondlo NJ. Chembiochem 13 259-270 (2012)
  347. Competitively selected protein ligands pay their increase in specificity by a decrease in affinity. Hoffmann S, Funke SA, Wiesehan K, Moedder S, Glück JM, Feuerstein S, Gerdts M, Mötter J, Willbold D. Mol Biosyst 6 126-133 (2010)
  348. Crystal structure of the N-terminal SH3 domain of mouse betaPIX, p21-activated kinase-interacting exchange factor. Li X, Liu X, Sun F, Gao J, Zhou H, Gao GF, Bartlam M, Rao Z. Biochem Biophys Res Commun 339 407-414 (2006)
  349. Exhaustive search of linear information encoding protein-peptide recognition. Kelil A, Kelil A, Dubreuil B, Levy ED, Michnick SW. PLoS Comput Biol 13 e1005499 (2017)
  350. From Binding-Induced Dynamic Effects in SH3 Structures to Evolutionary Conserved Sectors. Zafra Ruano A, Cilia E, Couceiro JR, Ruiz Sanz J, Schymkowitz J, Rousseau F, Luque I, Lenaerts T. PLoS Comput Biol 12 e1004938 (2016)
  351. Interactions between SH2 and SH3 domains. Vihinen M, Smith CI. Biochem Biophys Res Commun 242 351-356 (1998)
  352. Interactions of phosphatidylinositol 3-kinase Src homology 3 domain with its ligand peptide studied by absorption, circular dichroism, and UV resonance raman spectroscopies. Okishio N, Nagai M, Fukuda R, Nagatomo S, Kitagawa T. Biopolymers 57 208-217 (2000)
  353. Mouse CD6: sequence of cDNA and expression of mRNA. Pal A, Romain PL, Singer NG, Fox D, Stavnezer J. Immunol Lett 49 133-137 (1996)
  354. The CSN3 subunit of the COP9 signalosome interacts with the HD region of Sos1 regulating stability of this GEF protein. Zarich N, Anta B, Fernández-Medarde A, Ballester A, de Lucas MP, Cámara AB, Anta B, Oliva JL, Rojas-Cabañeros JM, Santos E. Oncogenesis 8 2 (2019)
  355. The SLE variant Ala71Thr of BLK severely decreases protein abundance and binding to BANK1 through impairment of the SH3 domain function. Díaz-Barreiro A, Bernal-Quirós M, Georg I, Marañón C, Alarcón-Riquelme ME, Castillejo-López C. Genes Immun 17 128-138 (2016)
  356. The impact of either 4-R-hydroxyproline or 4-R-fluoroproline on the conformation and SH3m-cort binding of HPK1 proline-rich peptide. Borgogno A, Ruzza P. Amino Acids 44 607-614 (2013)
  357. Characterisation of the biochemical and cellular roles of native and pathogenic amelogenesis imperfecta mutants of FAM83H. Tachie-Menson T, Gázquez-Gutiérrez A, Fulcher LJ, Macartney TJ, Wood NT, Varghese J, Gourlay R, Soares RF, Sapkota GP. Cell Signal 72 109632 (2020)
  358. Characterization of insulin receptor substrate 3 in rat liver derived cells. Choi WS, Sung CK. Biochem Biophys Res Commun 272 953-958 (2000)
  359. Discovery of novel interacting partners of PSMD9, a proteasomal chaperone: Role of an Atypical and versatile PDZ-domain motif interaction and identification of putative functional modules. Sangith N, Srinivasaraghavan K, Sahu I, Desai A, Medipally S, Somavarappu AK, Verma C, Venkatraman P. FEBS Open Bio 4 571-583 (2014)
  360. EhFP10: A FYVE family GEF interacts with myosin IB to regulate cytoskeletal dynamics during endocytosis in Entamoeba histolytica. Gautam G, Ali MS, Bhattacharya A, Gourinath S. PLoS Pathog 15 e1007573 (2019)
  361. Ligand-regulated peptides: a general approach for modulating protein-peptide interactions with small molecules. Binkowski BF, Miller RA, Belshaw PJ. Chem Biol 12 847-855 (2005)
  362. Machine Learning in Quantitative Protein-peptide Affinity Prediction: Implications for Therapeutic Peptide Design. Li Z, Miao Q, Yan F, Meng Y, Zhou P. Curr Drug Metab 20 170-176 (2019)
  363. Reexamination of the recognition preference of the specificity pocket of the Abl SH3 domain. Santamaria F, Wu Z, Boulègue C, Pál G, Lu W. J Mol Recognit 16 131-138 (2003)
  364. The SH3 domain of HS1 protein recognizes lysine-rich polyproline motifs. Siligardi G, Ruzza P, Hussain R, Cesaro L, Brunati AM, Pinna LA, Donella-Deana A. Amino Acids 42 1361-1370 (2012)
  365. Association between SNP rs10569304 on the second expressed region of hole gene and the congenital heart disease. Zhang Y, Xu L, Qiu J, Li Z, Li L, Ren G, Dong A, Li B, Ge M, Meng S, Wang J. J Huazhong Univ Sci Technolog Med Sci 30 430-436 (2010)
  366. Binding properties of SH3 peptide ligands identified from phage-displayed random peptide libraries. Hoffman NG, Sparks AB, Carter JM, Kay BK. Mol Divers 2 5-12 (1996)
  367. Cloning and characterization of AASPs: novel axon-associated SH3 binding-like proteins. Dearborn RE, Szaro BG, Lnenicka GA. J Neurobiol 38 581-594 (1999)
  368. Crystal structure of the PEG-bound SH3 domain of myosin IB from Entamoeba histolytica reveals its mode of ligand recognition. Gautam G, Rehman SAA, Pandey P, Gourinath S. Acta Crystallogr D Struct Biol 73 672-682 (2017)
  369. Inhibition of D-serine accumulation in the Xenopus oocyte by expression of the rat ortholog of human 3'-phosphoadenosine 5'-phosphosulfate transporter gene isolated from the neocortex as D-serine modulator-1. Shimazu D, Yamamoto N, Umino A, Ishii S, Sakurai S, Nishikawa T. J Neurochem 96 30-42 (2006)
  370. Inhibition of N1-Src kinase by a specific SH3 peptide ligand reveals a role for N1-Src in neurite elongation by L1-CAM. Keenan S, Wetherill SJ, Ugbode CI, Chawla S, Brackenbury WJ, Evans GJ. Sci Rep 7 43106 (2017)
  371. Long disordered regions of the C-terminal domain of Abelson tyrosine kinase have specific and additive functions in regulation and axon localization. Cheong HSJ, VanBerkum MFA. PLoS One 12 e0189338 (2017)
  372. Modeling ErbB2-p130Cas interaction to design new potential anticancer agents. Costamagna A, Rossi Sebastiano M, Natalini D, Simoni M, Valabrega G, Defilippi P, Visentin S, Ermondi G, Turco E, Caron G, Cabodi S. Sci Rep 9 3089 (2019)
  373. Modeling and predicting interactions between the human amphiphysin SH3 domains and their peptide ligands based on amino acid information. Cai J, Ou R, Xu YS, Yang L, Lin Z, Shu M. J Pept Sci 16 627-632 (2010)
  374. Molecular basis for the interaction between human choline kinase alpha and the SH3 domain of the c-Src tyrosine kinase. Kall SL, Whitlatch K, Smithgall TE, Lavie A. Sci Rep 9 17121 (2019)
  375. Pervanadate induces Mammalian Ste20 Kinase 3 (MST3) tyrosine phosphorylation but not activation. Kan WC, Lu TL, Ling P, Lee TH, Cho CY, Huang CY, Jeng WY, Weng YP, Chiang CY, Wu JB, Lu TJ. J Inorg Biochem 160 33-39 (2016)
  376. Targeting Molecular Recognition: Exploring the Dual Role of Functional Pseudoprolines in the Design of SH3 Ligands This work was supported by the Swiss National Science Foundation. Tuchscherer G, Grell D, Tatsu Y, Durieux P, Fernandez-Carneado J, Hengst B, Kardinal C, Feller S. Angew Chem Int Ed Engl 40 2844-2848 (2001)
  377. Targeting the RT loop of Src SH3 in Platelets Prevents Thrombosis without Compromising Hemostasis. Mao J, Zhu K, Long Z, Zhang H, Xiao B, Xi W, Wang Y, Huang J, Liu J, Shi X, Jiang H, Lu T, Wen Y, Zhang N, Meng Q, Zhou H, Ruan Z, Wang J, Luo C, Xi X. Adv Sci (Weinh) 9 e2103228 (2022)
  378. The SH3 domains of the protein kinases ITK and LCK compete for adjacent sites on T cell-specific adapter protein. Andersen TCB, Kristiansen PE, Huszenicza Z, Johansson MU, Gopalakrishnan RP, Kjelstrup H, Boyken S, Sundvold-Gjerstad V, Granum S, Sørli M, Backe PH, Fulton DB, Karlsson BG, Andreotti AH, Spurkland A. J Biol Chem 294 15480-15494 (2019)
  379. Why ligand cross-reactivity is high within peptide recognition domain families? A case study on human c-Src SH3 domain. He P, Wu W, Wang HD, Liao KL, Zhang W, Lv FL, Yang K. J Theor Biol 340 30-37 (2014)
  380. Actin-based motility of the intracellular pathogen Listeria monocytogenes: assessing the inhibitory specificity of ABM-1 peptide analogues. Purich DL, Southwick FS. Mol Cell Biol Res Commun 1 176-181 (1999)
  381. Analysis of the CD2 and spliceosomal Sm B/B' polyproline-arginine motifs defined by a monoclonal antibody using a phage-displayed random peptide library. Monos D, Heliopoulos J, Argyris E, Cordopatis P, Zompra A, Kamoun M. J Mol Recognit 19 535-541 (2006)
  382. Anti-P30-52 monoclonal antibody cross-reacted to Env V3 and inhibited the viral multiplication of HIV-1-infected MT-4 cells. Ota A, Bautista AN, Yadav ML, Ueda S. Hybridoma 18 139-147 (1999)
  383. Directed Evolution of a Highly Specific FN3 Monobody to the SH3 Domain of Human Lyn Tyrosine Kinase. Huang R, Fang P, Hao Z, Kay BK. PLoS One 11 e0145872 (2016)
  384. Escape from R-peptide deletion in a γ-retrovirus. Schneider IC, Eckhardt M, Brynza J, Collins MK, Cichutek K, Buchholz CJ. Virology 418 85-92 (2011)
  385. Fission yeast paxillin contains two Cdc15 binding motifs for robust recruitment to the cytokinetic ring. Snider CE, Bhattacharjee R, Igarashi MG, Gould KL. Mol Biol Cell 33 br4 (2022)
  386. Fusion protein containing SH3 domain of c-Abl induces hepatocarcinoma cells to apoptosis. Yin JK, Liang YM, He XL, Lu JG, Zhang L, Bao GQ, Ma QJ. Hepatol Res 37 454-463 (2007)
  387. Involvement of Local, Rapid Conformational Dynamics in Binding of Flexible Recognition Motifs. Bukowski GS, Horness RE, Thielges MC. J Phys Chem B 123 8387-8396 (2019)
  388. Solution NMR Structure of the SH3 Domain of Human Caskin1 Validates the Lack of a Typical Peptide Binding Groove and Supports a Role in Lipid Mediator Binding. Tőke O, Koprivanacz K, Radnai L, Merő B, Juhász T, Liliom K, Buday L. Cells 10 (2021)
  389. Structural insights into the recognition of β3 integrin cytoplasmic tail by the SH3 domain of Src kinase. Katyal P, Puthenveetil R, Vinogradova O. Protein Sci 22 1358-1365 (2013)
  390. Letter X-ray crystal structure of Escherichia coli HspQ, a protein involved in the retardation of replication initiation. Abe Y, Shioi S, Kita S, Nakata H, Maenaka K, Kohda D, Katayama T, Ueda T. FEBS Lett 591 3805-3816 (2017)
  391. A novel Pyk2-derived peptide inhibits invadopodia-mediated breast cancer metastasis. Twafra S, Sokolik CG, Sneh T, Srikanth KD, Meirson T, Genna A, Chill JH, Gil-Henn H. Oncogene (2022)
  392. Amyloid fibril formation kinetics of low-pH denatured bovine PI3K-SH3 monitored by three different NMR techniques. Gardon L, Becker N, Rähse N, Hölbling C, Apostolidis A, Schulz CM, Bochinsky K, Gremer L, Heise H, Lakomek NA. Front Mol Biosci 10 1254721 (2023)
  393. An allosteric switch between the activation loop and a c-terminal palindromic phospho-motif controls c-Src function. Cuesta-Hernández HN, Contreras J, Soriano-Maldonado P, Sánchez-Wandelmer J, Yeung W, Martín-Hurtado A, Muñoz IG, Kannan N, Llimargas M, Muñoz J, Plaza-Menacho I. Nat Commun 14 6548 (2023)
  394. Letter Back to front. Metzger DW, Van Cleave VH. Nature 373 394 (1995)
  395. Crystal Structure of the SH3 Domain of ASAP1 in Complex with the Proline Rich Motif (PRM) of MICAL1 Reveals a Unique SH3/PRM Interaction Mode. Jia X, Lin L, Xu S, Li L, Wei Z, Yu C, Niu F. Int J Mol Sci 24 1414 (2023)
  396. Crystal structure of the SH3 domain of growth factor receptor-bound protein 2. Bolgov A, Korban S, Luzik D, Zhemkov V, Kim M, Rogacheva O, Bezprozvanny I. Acta Crystallogr F Struct Biol Commun 76 263-270 (2020)
  397. Essential motions and energetic contributions of individual residues in a peptide bound to an SH3 domain. Kolafa J, Perram JW, Bywater RP. Biophys J 79 646-655 (2000)
  398. Expression, purification and crystallization of a human protein SH3BGRL at atomic resolution. Yin L, Zhu DY, Yang N, Huang QH, Zhang Y, Wang DC. Acta Crystallogr Sect F Struct Biol Cryst Commun 61 384-386 (2005)
  399. Module walking using an SH3-like cell-wall-binding domain leads to a new GH184 family of muramidases. Moroz OV, Blagova E, Lebedev AA, Skov LK, Pache RA, Schnorr KM, Kiemer L, Friis EP, Nymand-Grarup S, Ming L, Ye L, Klausen M, Cohn MT, Schmidt EGW, Davies GJ, Wilson KS. Acta Crystallogr D Struct Biol 79 706-720 (2023)
  400. Regulation of SH3PX1 by dNedd4-long at the Drosophila neuromuscular junction. Wasserman SS, Shteiman-Kotler A, Harris K, Iliadi KG, Persaud A, Zhong Y, Zhang Y, Fang X, Boulianne GL, Stewart B, Rotin D. J Biol Chem 294 1739-1752 (2019)
  401. SH3 domain regulation of RhoGAP activity: Crosstalk between p120RasGAP and DLC1 RhoGAP. Chau JE, Vish KJ, Boggon TJ, Stiegler AL. Nat Commun 13 4788 (2022)
  402. Synthesis and evaluation of a (3R,6S,9S)-2-oxo-1-azabicyclo[4.3.0]nonane scaffold as a mimic of Xaa-trans-Pro in poly-L-proline type II helix conformation. Aillard B, Kilburn JD, Blaydes JP, Tizzard GJ, Findlow S, Werner JM, Bloodworth S. Org Biomol Chem 13 4562-4569 (2015)
  403. Targeting the SH3 domain of human osteoclast-stimulating factor with rationally designed peptoid inhibitors. Han S, Liu Q, Wang F, Yuan Z. J Pept Sci 22 533-539 (2016)


Related citations provided by authors (2)

  1. Structural basis for the binding of proline-rich peptides to SH3 domains.. Yu H, Chen JK, Feng S, Dalgarno DC, Brauer AW, Schreiber SL Cell 76 933-45 (1994)
  2. Solution structure of the SH3 domain of Src and identification of its ligand-binding site.. Yu H, Rosen MK, Shin TB, Seidel-Dugan C, Brugge JS, Schreiber SL Science 258 1665-8 (1992)