1pnj Citations

Solution structure and ligand-binding site of the SH3 domain of the p85 alpha subunit of phosphatidylinositol 3-kinase.

Abstract

SH3 domains are found in proteins associated with receptor tyrosine kinase signal transduction complexes. The solution structure of the SH3 domain of the 85 kd regulatory subunit of phosphatidylinositol 3-kinase is shown to be a compact beta barrel consisting of five beta strands arranged in two beta sheets of three and two strands. The structure is similar to that of chicken brain alpha spectrin but represents a distinct class of SH3 domain, with an insertion between the second and third beta strands that may influence binding specificity. 1H chemical shift changes induced by complex formation with a synthetic peptide derived from the SH3-binding protein dynamin, together with amino acid sequence comparisons, suggest that the ligand-binding site consists of a hydrophobic surface flanked by two charged loops.

Reviews - 1pnj mentioned but not cited (1)

  1. Somatic mutations in PI3Kalpha: structural basis for enzyme activation and drug design. Gabelli SB, Mandelker D, Schmidt-Kittler O, Vogelstein B, Amzel LM. Biochim. Biophys. Acta 1804 533-540 (2010)

Articles - 1pnj mentioned but not cited (5)

  1. Short amino acid stretches can mediate amyloid formation in globular proteins: the Src homology 3 (SH3) case. Ventura S, Zurdo J, Narayanan S, Parreño M, Mangues R, Reif B, Chiti F, Giannoni E, Dobson CM, Aviles FX, Serrano L. Proc. Natl. Acad. Sci. U.S.A. 101 7258-7263 (2004)
  2. FOLD-RATE: prediction of protein folding rates from amino acid sequence. Gromiha MM, Thangakani AM, Selvaraj S. Nucleic Acids Res 34 W70-4 (2006)
  3. Detecting hidden sequence propensity for amyloid fibril formation. Yoon S, Welsh WJ. Protein Sci 13 2149-2160 (2004)
  4. Nanobodies and chemical cross-links advance the structural and functional analysis of PI3Kα. Hart JR, Liu X, Pan C, Liang A, Ueno L, Xu Y, Quezada A, Zou X, Yang S, Zhou Q, Schoonooghe S, Hassanzadeh-Ghassabeh G, Xia T, Shui W, Yang D, Vogt PK, Wang MW. Proc Natl Acad Sci U S A 119 e2210769119 (2022)
  5. ProteinCT: An implementation of the protein circuit topology framework. Moes D, Banijamali E, Sheikhhassani V, Scalvini B, Woodard J, Mashaghi A. MethodsX 9 101861 (2022)


Reviews citing this publication (24)

  1. Phosphoinositide kinases. Fruman DA, Meyers RE, Cantley LC. Annu. Rev. Biochem. 67 481-507 (1998)
  2. The structure and function of proline-rich regions in proteins. Williamson MP. Biochem. J. 297 ( Pt 2) 249-260 (1994)
  3. Structure and function of phosphoinositide 3-kinases. Wymann MP, Pirola L. Biochim. Biophys. Acta 1436 127-150 (1998)
  4. The PH domain: a common piece in the structural patchwork of signalling proteins. Musacchio A, Gibson T, Rice P, Thompson J, Saraste M. Trends Biochem. Sci. 18 343-348 (1993)
  5. ZO-1, DlgA and PSD-95/SAP90: homologous proteins in tight, septate and synaptic cell junctions. Woods DF, Bryant PJ. Mech. Dev. 44 85-89 (1993)
  6. SH3 domains and drug design: ligands, structure, and biological function. Dalgarno DC, Botfield MC, Rickles RJ. Biopolymers 43 383-400 (1997)
  7. Structure and function of the SH3 domain. Musacchio A, Wilmanns M, Saraste M. Prog. Biophys. Mol. Biol. 61 283-297 (1994)
  8. Structure, regulation and function of phosphoinositide 3-kinases. Fry MJ. Biochim. Biophys. Acta 1226 237-268 (1994)
  9. Amyloidogenesis of natively unfolded proteins. Uversky VN. Curr Alzheimer Res 5 260-287 (2008)
  10. Genetic regulation of leishmanial and mycobacterial infections: the Lsh/Ity/Bcg gene story continues. Blackwell JM, Barton CH, White JK, Roach TI, Shaw MA, Whitehead SH, Mock BA, Searle S, Williams H, Baker AM. Immunol. Lett. 43 99-107 (1994)
  11. Structural insight into substrate specificity and regulatory mechanisms of phosphoinositide 3-kinases. Djordjevic S, Driscoll PC. Trends Biochem. Sci. 27 426-432 (2002)
  12. Tec family of protein-tyrosine kinases: an overview of their structure and function. Mano H. Cytokine Growth Factor Rev. 10 267-280 (1999)
  13. SH3 domains. Molecular 'Velcro'. Morton CJ, Campbell ID. Curr. Biol. 4 615-617 (1994)
  14. Role of PI 3-kinase in mitogenesis. Varticovski L, Harrison-Findik D, Keeler ML, Susa M. Biochim. Biophys. Acta 1226 1-11 (1994)
  15. Dynamin, endocytosis and intracellular signalling (review). McClure SJ, Robinson PJ. Mol. Membr. Biol. 13 189-215 (1996)
  16. SH2 and SH3 domains as targets for anti-proliferative agents. Vidal M, Gigoux V, Garbay C. Crit. Rev. Oncol. Hematol. 40 175-186 (2001)
  17. The GRB family of SH2 domain proteins. Margolis B. Prog. Biophys. Mol. Biol. 62 223-244 (1994)
  18. New insights into protein-tyrosine kinase receptor signaling complexes. Fry MJ, Panayotou G, Booker GW, Waterfield MD. Protein Sci. 2 1785-1797 (1993)
  19. Src inhibitors: genomics to therapeutics. Sawyer T, Boyce B, Dalgarno D, Iuliucci J. Expert Opin Investig Drugs 10 1327-1344 (2001)
  20. Rasputin a decade on and more promiscuous than ever? A review of G3BPs. Alam U, Kennedy D. Biochim Biophys Acta Mol Cell Res 1866 360-370 (2019)
  21. Involvement of crk adapter proteins in regulation of lymphoid cell functions. Gelkop S, Babichev Y, Kalifa R, Tamir A, Isakov N. Immunol. Res. 28 79-91 (2003)
  22. The multi-functional RNA-binding protein G3BP1 and its potential implication in neurodegenerative disease. Sidibé H, Dubinski A, Vande Velde C. J Neurochem 157 944-962 (2021)
  23. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)
  24. Role(s) of G3BPs in Human Pathogenesis. Mukhopadhyay C, Zhou P. J Pharmacol Exp Ther 387 100-110 (2023)

Articles citing this publication (89)

  1. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M. Nature 416 507-511 (2002)
  2. Amyloid fibril formation by an SH3 domain. Guijarro JI, Sunde M, Jones JA, Campbell ID, Dobson CM. Proc. Natl. Acad. Sci. U.S.A. 95 4224-4228 (1998)
  3. SH2 and SH3 domains. Pawson T, Schlessingert J. Curr. Biol. 3 434-442 (1993)
  4. A novel signaling molecule, p130, forms stable complexes in vivo with v-Crk and v-Src in a tyrosine phosphorylation-dependent manner. Sakai R, Iwamatsu A, Hirano N, Ogawa S, Tanaka T, Mano H, Yazaki Y, Hirai H. EMBO J. 13 3748-3756 (1994)
  5. The GTPase dynamin binds to and is activated by a subset of SH3 domains. Gout I, Dhand R, Hiles ID, Fry MJ, Panayotou G, Das P, Truong O, Totty NF, Hsuan J, Booker GW. Cell 75 25-36 (1993)
  6. Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. Jiménez JL, Guijarro JI, Orlova E, Zurdo J, Dobson CM, Sunde M, Saibil HR. EMBO J. 18 815-821 (1999)
  7. Regulation of the p85/p110 phosphatidylinositol 3'-kinase: stabilization and inhibition of the p110alpha catalytic subunit by the p85 regulatory subunit. Yu J, Zhang Y, McIlroy J, Rordorf-Nikolic T, Orr GA, Backer JM. Mol. Cell. Biol. 18 1379-1387 (1998)
  8. Diaphanous-related formins bridge Rho GTPase and Src tyrosine kinase signaling. Tominaga T, Sahai E, Chardin P, McCormick F, Courtneidge SA, Alberts AS. Mol. Cell 5 13-25 (2000)
  9. Cloning and characterization of hdlg: the human homologue of the Drosophila discs large tumor suppressor binds to protein 4.1. Lue RA, Marfatia SM, Branton D, Chishti AH. Proc. Natl. Acad. Sci. U.S.A. 91 9818-9822 (1994)
  10. High-resolution crystal structures of tyrosine kinase SH3 domains complexed with proline-rich peptides. Musacchio A, Saraste M, Wilmanns M. Nat. Struct. Biol. 1 546-551 (1994)
  11. Structure of an intermediate state in protein folding and aggregation. Neudecker P, Robustelli P, Cavalli A, Walsh P, Lundström P, Zarrine-Afsar A, Sharpe S, Vendruscolo M, Kay LE. Science 336 362-366 (2012)
  12. Proline-rich sequences that bind to Src homology 3 domains with individual specificities. Alexandropoulos K, Cheng G, Baltimore D. Proc. Natl. Acad. Sci. U.S.A. 92 3110-3114 (1995)
  13. Structure of the regulatory domains of the Src-family tyrosine kinase Lck. Eck MJ, Atwell SK, Shoelson SE, Harrison SC. Nature 368 764-769 (1994)
  14. Specific interactions outside the proline-rich core of two classes of Src homology 3 ligands. Feng S, Kasahara C, Rickles RJ, Schreiber SL. Proc. Natl. Acad. Sci. U.S.A. 92 12408-12415 (1995)
  15. Dependence on solution conditions of aggregation and amyloid formation by an SH3 domain. Zurdo J, Guijarro JI, Jiménez JL, Saibil HR, Dobson CM. J. Mol. Biol. 311 325-340 (2001)
  16. A Ras-GTPase-activating protein SH3-domain-binding protein. Parker F, Maurier F, Delumeau I, Duchesne M, Faucher D, Debussche L, Dugue A, Schweighoffer F, Tocque B. Mol. Cell. Biol. 16 2561-2569 (1996)
  17. The appendage domain of alpha-adaptin is a high affinity binding site for dynamin. Wang LH, Südhof TC, Anderson RG. J. Biol. Chem. 270 10079-10083 (1995)
  18. Direct characterization of amyloidogenic oligomers by single-molecule fluorescence. Orte A, Birkett NR, Clarke RW, Devlin GL, Dobson CM, Klenerman D. Proc. Natl. Acad. Sci. U.S.A. 105 14424-14429 (2008)
  19. Ultrastructural organization of amyloid fibrils by atomic force microscopy. Chamberlain AK, MacPhee CE, Zurdo J, Morozova-Roche LA, Hill HA, Dobson CM, Davis JJ. Biophys. J. 79 3282-3293 (2000)
  20. Mutational analysis of the Src SH3 domain: the same residues of the ligand binding surface are important for intra- and intermolecular interactions. Erpel T, Superti-Furga G, Courtneidge SA. EMBO J. 14 963-975 (1995)
  21. DNM1, a dynamin-related gene, participates in endosomal trafficking in yeast. Gammie AE, Kurihara LJ, Vallee RB, Rose MD. J. Cell Biol. 130 553-566 (1995)
  22. The Drosophila tumor suppressor gene, dlg, is involved in structural plasticity at a glutamatergic synapse. Guan B, Hartmann B, Kho YH, Gorczyca M, Budnik V. Curr. Biol. 6 695-706 (1996)
  23. Interaction between PAK and nck: a template for Nck targets and role of PAK autophosphorylation. Zhao ZS, Manser E, Lim L. Mol. Cell. Biol. 20 3906-3917 (2000)
  24. A binding site for SH3 domains targets dynamin to coated pits. Shpetner HS, Herskovits JS, Vallee RB. J. Biol. Chem. 271 13-16 (1996)
  25. Microtubules and Src homology 3 domains stimulate the dynamin GTPase via its C-terminal domain. Herskovits JS, Shpetner HS, Burgess CC, Vallee RB. Proc. Natl. Acad. Sci. U.S.A. 90 11468-11472 (1993)
  26. Pleiotropic contributions of phospholipase C-gamma1 (PLC-gamma1) to T-cell antigen receptor-mediated signaling: reconstitution studies of a PLC-gamma1-deficient Jurkat T-cell line. Irvin BJ, Williams BL, Nilson AE, Maynor HO, Abraham RT. Mol. Cell. Biol. 20 9149-9161 (2000)
  27. Characterization of fus1 of Schizosaccharomyces pombe: a developmentally controlled function needed for conjugation. Petersen J, Weilguny D, Egel R, Nielsen O. Mol. Cell. Biol. 15 3697-3707 (1995)
  28. The phosphoinositide 3-kinase pathway in human cancer: genetic alterations and therapeutic implications. Arcaro A, Guerreiro AS. Curr. Genomics 8 271-306 (2007)
  29. Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optical spectroscopy. Guijarro JI, Morton CJ, Plaxco KW, Campbell ID, Dobson CM. J. Mol. Biol. 276 657-667 (1998)
  30. The SH3 domain of Eps8 exists as a novel intertwined dimer. Kishan KV, Scita G, Wong WT, Di Fiore PP, Newcomer ME. Nat. Struct. Biol. 4 739-743 (1997)
  31. NH2-terminal sequence of macrophage-expressed natural resistance-associated macrophage protein (Nramp) encodes a proline/serine-rich putative Src homology 3-binding domain. Barton CH, White JK, Roach TI, Blackwell JM. J. Exp. Med. 179 1683-1687 (1994)
  32. Critical residues in an SH3 domain from Sem-5 suggest a mechanism for proline-rich peptide recognition. Lim WA, Richards FM. Nat. Struct. Biol. 1 221-225 (1994)
  33. The SH3 domain of Src tyrosyl protein kinase interacts with the N-terminal splice region of the PDE4A cAMP-specific phosphodiesterase RPDE-6 (RNPDE4A5). O'Connell JC, McCallum JF, McPhee I, Wakefield J, Houslay ES, Wishart W, Bolger G, Frame M, Houslay MD. Biochem. J. 318 ( Pt 1) 255-261 (1996)
  34. Solution structure and peptide binding of the SH3 domain from human Fyn. Morton CJ, Pugh DJ, Brown EL, Kahmann JD, Renzoni DA, Campbell ID. Structure 4 705-714 (1996)
  35. Affinity and specificity requirements for the first Src homology 3 domain of the Crk proteins. Knudsen BS, Zheng J, Feller SM, Mayer JP, Burrell SK, Cowburn D, Hanafusa H. EMBO J. 14 2191-2198 (1995)
  36. Mechanism of constitutive phosphoinositide 3-kinase activation by oncogenic mutants of the p85 regulatory subunit. Shekar SC, Wu H, Fu Z, Yip SC, Nagajyothi, Cahill SM, Girvin ME, Backer JM. J Biol Chem 280 27850-27855 (2005)
  37. NMR structure of the N-terminal SH3 domain of GRB2 and its complex with a proline-rich peptide from Sos. Goudreau N, Cornille F, Duchesne M, Parker F, Tocqué B, Garbay C, Roques BP. Nat. Struct. Biol. 1 898-907 (1994)
  38. Solution structure of pleckstrin homology domain of dynamin by heteronuclear NMR spectroscopy. Fushman D, Cahill S, Lemmon MA, Schlessinger J, Cowburn D. Proc. Natl. Acad. Sci. U.S.A. 92 816-820 (1995)
  39. Protein aggregation and amyloid fibril formation by an SH3 domain probed by limited proteolysis. Polverino de Laureto P, Taddei N, Frare E, Capanni C, Costantini S, Zurdo J, Chiti F, Dobson CM, Fontana A. J. Mol. Biol. 334 129-141 (2003)
  40. Binding of the Grb2 SH2 domain to phosphotyrosine motifs does not change the affinity of its SH3 domains for Sos proline-rich motifs. Cussac D, Frech M, Chardin P. EMBO J. 13 4011-4021 (1994)
  41. Probing the mechanism of amyloidogenesis through a tandem repeat of the PI3-SH3 domain suggests a generic model for protein aggregation and fibril formation. Bader R, Bamford R, Zurdo J, Luisi BF, Dobson CM. J. Mol. Biol. 356 189-208 (2006)
  42. Mutagenesis of human profilin locates its poly(L-proline)-binding site to a hydrophobic patch of aromatic amino acids. Björkegren C, Rozycki M, Schutt CE, Lindberg U, Karlsson R. FEBS Lett. 333 123-126 (1993)
  43. Structure of the N-terminal SH3 domain of GRB2 complexed with a peptide from the guanine nucleotide releasing factor Sos. Terasawa H, Kohda D, Hatanaka H, Tsuchiya S, Ogura K, Nagata K, Ishii S, Mandiyan V, Ullrich A, Schlessinger J. Nat. Struct. Biol. 1 891-897 (1994)
  44. Protein folding rates estimated from contact predictions. Punta M, Rost B. J. Mol. Biol. 348 507-512 (2005)
  45. Regulation of Class IA PI 3-kinases: C2 domain-iSH2 domain contacts inhibit p85/p110alpha and are disrupted in oncogenic p85 mutants. Wu H, Shekar SC, Flinn RJ, El-Sibai M, Jaiswal BS, Sen KI, Janakiraman V, Seshagiri S, Gerfen GJ, Girvin ME, Backer JM. Proc. Natl. Acad. Sci. U.S.A. 106 20258-20263 (2009)
  46. Solution structure and ligand-binding site of the carboxy-terminal SH3 domain of GRB2. Kohda D, Terasawa H, Ichikawa S, Ogura K, Hatanaka H, Mandiyan V, Ullrich A, Schlessinger J, Inagaki F. Structure 2 1029-1040 (1994)
  47. Deletion within the Src homology domain 3 of Bruton's tyrosine kinase resulting in X-linked agammaglobulinemia (XLA). Zhu Q, Zhang M, Rawlings DJ, Vihinen M, Hagemann T, Saffran DC, Kwan SP, Nilsson L, Smith CI, Witte ON, Chen SH, Ochs HD. J. Exp. Med. 180 461-470 (1994)
  48. Grb2 SH3 binding to peptides from Sos: evaluation of a general model for SH3-ligand interactions. Simon JA, Schreiber SL. Chem. Biol. 2 53-60 (1995)
  49. Induction of early-response genes KC and JE by mycobacterial lipoarabinomannans: regulation of KC expression in murine macrophages by Lsh/Ity/Bcg (candidate Nramp). Roach TI, Chatterjee D, Blackwell JM. Infect. Immun. 62 1176-1184 (1994)
  50. Physical and functional interactions between SH2 and SH3 domains of the Src family protein tyrosine kinase p59fyn. Panchamoorthy G, Fukazawa T, Stolz L, Payne G, Reedquist K, Shoelson S, Songyang Z, Cantley L, Walsh C, Band H. Mol. Cell. Biol. 14 6372-6385 (1994)
  51. Solution structure of the Grb2 N-terminal SH3 domain complexed with a ten-residue peptide derived from SOS: direct refinement against NOEs, J-couplings and 1H and 13C chemical shifts. Wittekind M, Mapelli C, Lee V, Goldfarb V, Friedrichs MS, Meyers CA, Mueller L. J. Mol. Biol. 267 933-952 (1997)
  52. Ligand-induced EpoR internalization is mediated by JAK2 and p85 and is impaired by mutations responsible for primary familial and congenital polycythemia. Sulahian R, Cleaver O, Huang LJ. Blood 113 5287-5297 (2009)
  53. Partial unfolding of diverse SH3 domains on a wide timescale. Wales TE, Engen JR. J. Mol. Biol. 357 1592-1604 (2006)
  54. Elucidation of the poly-L-proline binding site in Acanthamoeba profilin I by NMR spectroscopy. Archer SJ, Vinson VK, Pollard TD, Torchia DA. FEBS Lett. 337 145-151 (1994)
  55. High-resolution MAS NMR analysis of PI3-SH3 amyloid fibrils: backbone conformation and implications for protofilament assembly and structure . Bayro MJ, Maly T, Birkett NR, Macphee CE, Dobson CM, Griffin RG. Biochemistry 49 7474-7484 (2010)
  56. Specificity of p47phox SH3 domain interactions in NADPH oxidase assembly and activation. de Mendez I, Homayounpour N, Leto TL. Mol. Cell. Biol. 17 2177-2185 (1997)
  57. The crystal structure of human CskSH3: structural diversity near the RT-Src and n-Src loop. Borchert TV, Mathieu M, Zeelen JP, Courtneidge SA, Wierenga RK. FEBS Lett. 341 79-85 (1994)
  58. Solution structure of GAP SH3 domain by 1H NMR and spatial arrangement of essential Ras signaling-involved sequence. Yang YS, Garbay C, Duchesne M, Cornille F, Jullian N, Fromage N, Tocque B, Roques BP. EMBO J. 13 1270-1279 (1994)
  59. Stability and peptide binding affinity of an SH3 domain from the Caenorhabditis elegans signaling protein Sem-5. Lim WA, Fox RO, Richards FM. Protein Sci. 3 1261-1266 (1994)
  60. Thermal unfolding of small proteins with SH3 domain folding pattern. Knapp S, Mattson PT, Christova P, Berndt KD, Karshikoff A, Vihinen M, Smith CI, Ladenstein R. Proteins 31 309-319 (1998)
  61. The tryptophan switch: changing ligand-binding specificity from type I to type II in SH3 domains. Fernandez-Ballester G, Blanes-Mira C, Serrano L. J. Mol. Biol. 335 619-629 (2004)
  62. Identification and characterization of a novel SH3-domain binding protein, Sab, which preferentially associates with Bruton's tyrosine kinase (BtK). Matsushita M, Yamadori T, Kato S, Takemoto Y, Inazawa J, Baba Y, Hashimoto S, Sekine S, Arai S, Kunikata T, Kurimoto M, Kishimoto T, Tsukada S. Biochem. Biophys. Res. Commun. 245 337-343 (1998)
  63. Solution structure of a trefoil-motif-containing cell growth factor, porcine spasmolytic protein. Carr MD, Bauer CJ, Gradwell MJ, Feeney J. Proc. Natl. Acad. Sci. U.S.A. 91 2206-2210 (1994)
  64. Complete nucleotide sequence, expression, and chromosomal localisation of human mixed-lineage kinase 2. Dorow DS, Devereux L, Tu GF, Price G, Nicholl JK, Sutherland GR, Simpson RJ. Eur. J. Biochem. 234 492-500 (1995)
  65. Ligand-induced changes in dynamics in the RT loop of the C-terminal SH3 domain of Sem-5 indicate cooperative conformational coupling. Ferreon JC, Hilser VJ. Protein Sci. 12 982-996 (2003)
  66. Combinatorial Domain Hunting: An effective approach for the identification of soluble protein domains adaptable to high-throughput applications. Reich S, Puckey LH, Cheetham CL, Harris R, Ali AA, Bhattacharyya U, Maclagan K, Powell KA, Prodromou C, Pearl LH, Driscoll PC, Savva R. Protein Sci. 15 2356-2365 (2006)
  67. SH3 in muscles: solution structure of the SH3 domain from nebulin. Politou AS, Millevoi S, Gautel M, Kolmerer B, Pastore A. J. Mol. Biol. 276 189-202 (1998)
  68. Solution structure of Escherichia coli FeoA and its potential role in bacterial ferrous iron transport. Lau CK, Ishida H, Liu Z, Vogel HJ. J. Bacteriol. 195 46-55 (2013)
  69. Experimental mapping of soluble protein domains using a hierarchical approach. Pedelacq JD, Nguyen HB, Cabantous S, Mark BL, Listwan P, Bell C, Friedland N, Lockard M, Faille A, Mourey L, Terwilliger TC, Waldo GS. Nucleic Acids Res. 39 e125 (2011)
  70. Selective insulin-induced activation of class I(A) phosphoinositide 3-kinase in PIKfyve immune complexes from 3T3-L1 adipocytes. Sbrissa D, Ikonomov O, Shisheva A. Mol. Cell. Endocrinol. 181 35-46 (2001)
  71. Phosphatidylinositol 3-kinase p85{alpha} subunit-dependent interaction with BCR/ABL-related fusion tyrosine kinases: molecular mechanisms and biological consequences. Ren SY, Bolton E, Mohi MG, Morrione A, Neel BG, Skorski T. Mol. Cell. Biol. 25 8001-8008 (2005)
  72. Stability and folding of the SH3 domain of Bruton's tyrosine kinase. Chen YJ, Lin SC, Tzeng SR, Patel HV, Lyu PC, Cheng JW. Proteins 26 465-471 (1996)
  73. Two-dimensional electrophoretic analysis of mixed lineage kinase 2 N-terminal domain binding proteins. Rasmussen RK, Ji H, Eddes JS, Moritz RL, Reid GE, Simpson RJ, Dorow DS. Electrophoresis 19 809-817 (1998)
  74. Determination of the solution structure of the SH3 domain of human p56 Lck tyrosine kinase. Hiroaki H, Klaus W, Senn H. J. Biomol. NMR 8 105-122 (1996)
  75. Influence of the Bcg locus on macrophage response to the dimorphic fungus Candida albicans. Puliti M, Radzioch D, Mazzolla R, Barluzzi R, Bistoni F, Blasi E. Infect. Immun. 63 4170-4173 (1995)
  76. Homology modeling of the Abl-SH3 domain. Pisabarro MT, Ortiz AR, Serrano L, Wade RC. Proteins 20 203-215 (1994)
  77. Revealing a concealed intermediate that forms after the rate-limiting step of refolding of the SH3 domain of PI3 kinase. Wani AH, Udgaonkar JB. J. Mol. Biol. 387 348-362 (2009)
  78. Comment Cell biology. Dynamin in synaptic dynamics. Vallee RB, Shpetner HS. Nature 365 107-108 (1993)
  79. ORF-selector ESPRIT: a second generation library screen for soluble protein expression employing precise open reading frame selection. An Y, Yumerefendi H, Mas PJ, Chesneau A, Hart DJ. J. Struct. Biol. 175 189-197 (2011)
  80. Association of functional polymorphisms of SLC11A1 with risk of esophageal cancer in the South African Colored population. Zaahl MG, Warnich L, Victor TC, Kotze MJ. Cancer Genet. Cytogenet. 159 48-52 (2005)
  81. SH3 domain of Bruton's tyrosine kinase can bind to proline-rich peptides of TH domain of the kinase and p120cbl. Patel HV, Tzeng SR, Liao CY, Chen SH, Cheng JW. Proteins 29 545-552 (1997)
  82. pH-Dependent self-association of the Src homology 2 (SH2) domain of the Src homologous and collagen-like (SHC) protein. Réty S, Fütterer K, Grucza RA, Munoz CM, Frazier WA, Waksman G. Protein Sci. 5 405-413 (1996)
  83. News Signalling an interest. Yu H, Schreiber SL. Nat. Struct. Biol. 1 417-420 (1994)
  84. Interactions of phosphatidylinositol 3-kinase Src homology 3 domain with its ligand peptide studied by absorption, circular dichroism, and UV resonance raman spectroscopies. Okishio N, Nagai M, Fukuda R, Nagatomo S, Kitagawa T. Biopolymers 57 208-217 (2000)
  85. PRR14 is a novel activator of the PI3K pathway promoting lung carcinogenesis. Yang M, Lewinska M, Fan X, Zhu J, Yuan ZM. Oncogene 35 5527-5538 (2016)
  86. Identifying protein domains by global analysis of soluble fragment data. Bulloch EM, Kingston RL. Anal. Biochem. 465 53-62 (2014)
  87. Cryo-EM structures of PI3Kα reveal conformational changes during inhibition and activation. Liu X, Yang S, Hart JR, Xu Y, Zou X, Zhang H, Zhou Q, Xia T, Zhang Y, Yang D, Wang MW, Vogt PK. Proc Natl Acad Sci U S A 118 e2109327118 (2021)
  88. Binding-induced folding under unfolding conditions: Switching between induced fit and conformational selection mechanisms. Sen S, Udgaonkar JB. J. Biol. Chem. 294 16942-16952 (2019)
  89. NMR assignments of PI3-SH3 domain aided by protonless NMR spectroscopy. Hsu ST. Biomol NMR Assign 8 291-295 (2014)