1pid Citations

A model of insulin fibrils derived from the x-ray crystal structure of a monomeric insulin (despentapeptide insulin).

Abstract

The crystal structure of despentapeptide insulin, a monomeric insulin, has been refined at 1.3 A spacing and subsequently used to predict and model the organization in the insulin fibril. The model makes use of the contacts in the densely packed despentapeptide insulin crystal, and takes into account other experimental evidence, including binding studies with Congo red. The dimensions of this model fibril correspond well with those measured experimentally, and the monomer-monomer contacts within the fibril are in accordance with the known physical chemistry of insulin fibrils. Using this model, it may be possible to predict mutations in insulin that might alleviate problems associated with fibril formation during insulin therapy.

Articles - 1pid mentioned but not cited (4)

  1. Chiral mutagenesis of insulin. Foldability and function are inversely regulated by a stereospecific switch in the B chain. Nakagawa SH, Zhao M, Hua QX, Hu SQ, Wan ZL, Jia W, Weiss MA. Biochemistry 44 4984-4999 (2005)
  2. Design of an active ultrastable single-chain insulin analog: synthesis, structure, and therapeutic implications. Hua QX, Nakagawa SH, Jia W, Huang K, Phillips NB, Hu SQ, Weiss MA. J. Biol. Chem. 283 14703-14716 (2008)
  3. A divergent INS protein in Caenorhabditis elegans structurally resembles human insulin and activates the human insulin receptor. Hua QX, Nakagawa SH, Wilken J, Ramos RR, Jia W, Bass J, Weiss MA. Genes Dev. 17 826-831 (2003)
  4. Insulin fibrillation and protein design: topological resistance of single-chain analogs to thermal degradation with application to a pump reservoir. Phillips NB, Whittaker J, Ismail-Beigi F, Weiss MA. J Diabetes Sci Technol 6 277-288 (2012)


Reviews citing this publication (3)

  1. Effects of PEG conjugation on insulin properties. Hinds KD, Kim SW. Adv. Drug Deliv. Rev. 54 505-530 (2002)
  2. Insulin: a small protein with a long journey. Hua Q. Protein Cell 1 537-551 (2010)
  3. Molecular variants and derivatives of insulin for improved glycemic control in diabetes. Bhatnagar S, Srivastava D, Jayadev MS, Dubey AK. Prog. Biophys. Mol. Biol. 91 199-228 (2006)

Articles citing this publication (38)

  1. Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy. Bouchard M, Zurdo J, Nettleton EJ, Dobson CM, Robinson CV. Protein Sci 9 1960-1967 (2000)
  2. Characterization of the oligomeric states of insulin in self-assembly and amyloid fibril formation by mass spectrometry. Nettleton EJ, Tito P, Sunde M, Bouchard M, Dobson CM, Robinson CV. Biophys. J. 79 1053-1065 (2000)
  3. Molecular basis for insulin fibril assembly. Ivanova MI, Sievers SA, Sawaya MR, Wall JS, Eisenberg D. Proc. Natl. Acad. Sci. U.S.A. 106 18990-18995 (2009)
  4. Inhibition of insulin amyloid formation by small stress molecules. Arora A, Ha C, Park CB. FEBS Lett. 564 121-125 (2004)
  5. Studies of the structure of insulin fibrils by Fourier transform infrared (FTIR) spectroscopy and electron microscopy. Nielsen L, Frokjaer S, Carpenter JF, Brange J. J Pharm Sci 90 29-37 (2001)
  6. Stimulation of insulin fibrillation by urea-induced intermediates. Ahmad A, Millett IS, Doniach S, Uversky VN, Fink AL. J. Biol. Chem. 279 14999-15013 (2004)
  7. Ectoine and hydroxyectoine inhibit aggregation and neurotoxicity of Alzheimer's beta-amyloid. Kanapathipillai M, Lentzen G, Sierks M, Park CB. FEBS Lett. 579 4775-4780 (2005)
  8. Insulin assembly damps conformational fluctuations: Raman analysis of amide I linewidths in native states and fibrils. Dong J, Wan Z, Popov M, Carey PR, Weiss MA. J. Mol. Biol. 330 431-442 (2003)
  9. Multiple ligand binding sites on A beta(1-40) fibrils. LeVine H. Amyloid 12 5-14 (2005)
  10. Inhibition of insulin fibrillogenesis with targeted peptides. Gibson TJ, Murphy RM. Protein Sci. 15 1133-1141 (2006)
  11. A comparison of the dynamic behavior of monomeric and dimeric insulin shows structural rearrangements in the active monomer. Zoete V, Meuwly M, Karplus M. J. Mol. Biol. 342 913-929 (2004)
  12. Insulin amyloid fibrillation at above 100 degrees C: new insights into protein folding under extreme temperatures. Arora A, Ha C, Park CB. Protein Sci. 13 2429-2436 (2004)
  13. A cavity-forming mutation in insulin induces segmental unfolding of a surrounding alpha-helix. Xu B, Hua QX, Nakagawa SH, Jia W, Chu YC, Katsoyannis PG, Weiss MA. Protein Sci. 11 104-116 (2002)
  14. 4,4(')-Dianilino-1,1(')-binaphthyl-5,5(')-disulfonate: report on non-beta-sheet conformers of Alzheimer's peptide beta(1-40). LeVine H. Arch. Biochem. Biophys. 404 106-115 (2002)
  15. Early events in insulin fibrillization studied by time-lapse atomic force microscopy. Podestà A, Tiana G, Milani P, Manno M. Biophys. J. 90 589-597 (2006)
  16. Enhancing the activity of a protein by stereospecific unfolding: conformational life cycle of insulin and its evolutionary origins. Hua QX, Xu B, Huang K, Hu SQ, Nakagawa S, Jia W, Wang S, Whittaker J, Katsoyannis PG, Weiss MA. J. Biol. Chem. 284 14586-14596 (2009)
  17. Use of a small peptide fragment as an inhibitor of insulin fibrillation process: a study by high and low resolution spectroscopy. Banerjee V, Kar RK, Datta A, Parthasarathi K, Chatterjee S, Das KP, Bhunia A. PLoS ONE 8 e72318 (2013)
  18. Controlling the aggregation and rate of release in order to improve insulin formulation: molecular dynamics study of full-length insulin amyloid oligomer models. Berhanu WM, Masunov AE. J Mol Model 18 1129-1142 (2012)
  19. The mechanism of enhanced insulin amyloid fibril formation by NaCl is better explained by a conformational change model. Muzaffar M, Ahmad A. PLoS ONE 6 e27906 (2011)
  20. Primary steps of pH-dependent insulin aggregation kinetics are governed by conformational flexibility. Haas J, Vöhringer-Martinez E, Bögehold A, Matthes D, Hensen U, Pelah A, Abel B, Grubmüller H. Chembiochem 10 1816-1822 (2009)
  21. Molecular modeling of the misfolded insulin subunit and amyloid fibril. Choi JH, May BC, Wille H, Cohen FE. Biophys. J. 97 3187-3195 (2009)
  22. Amino acid sequence determinants in self-assembly of insulin chiral amyloid superstructures: role of C-terminus of B-chain in association of fibrils. Babenko V, Dzwolak W. FEBS Lett. 587 625-630 (2013)
  23. Histidine residues underlie Congo red binding to A beta analogs. Inouye H, Nguyen JT, Fraser PE, Shinchuk LM, Packard AB, Kirschner DA. Amyloid 7 179-188 (2000)
  24. Formation kinetics of insulin-based amyloid gels and the effect of added metalloporphyrins. Pasternack RF, Gibbs EJ, Sibley S, Woodard L, Hutchinson P, Genereux J, Kristian K. Biophys. J. 90 1033-1042 (2006)
  25. A sensitive chemiluminescent enzyme immunoassay for the bioanalysis of carboxyl-terminal B-chain analogues of human insulin. Cao Y, Smith WC, Bowsher RR. J Pharm Biomed Anal 26 53-61 (2001)
  26. Amyloid insulin interaction with erythrocytes. Murali J, Koteeswari D, Rifkind JM, Jayakumar R. Biochem. Cell Biol. 81 51-59 (2003)
  27. Lability landscape and protease resistance of human insulin amyloid: a new insight into its molecular properties. Malisauskas M, Weise C, Yanamandra K, Wolf-Watz M, Morozova-Roche L. J. Mol. Biol. 396 60-74 (2010)
  28. Formation of platinum-coated templates of insulin nanowires used in reducing 4-nitrophenol. Batzli KM, Love BJ. Mater Sci Eng C Mater Biol Appl 48 103-111 (2015)
  29. Structural stability and aggregation behavior of the VEALYL peptide derived from human insulin: a molecular dynamics simulation study. Lin YF, Zhao JH, Liu HL, Liu KT, Chen JT, Tsai WB, Ho Y. Biopolymers 94 269-278 (2010)
  30. Identification of amino acid residues participating in intermolecular salt bridges between self-associating proteins. Winters MS, Day RA. Anal. Biochem. 309 48-59 (2002)
  31. The effect of exposing a critical hydrophobic patch on amyloidogenicity and fibril structure of insulin. Li Y, Huang L, Yang X, Wang C, Sun Y, Gong H, Liu Y, Zheng L, Huang K. Biochem. Biophys. Res. Commun. 440 56-61 (2013)
  32. Amyloid fibril formation from crude protein mixtures. Rao SP, Meade SJ, Joyce NI, Healy JP, Sutton KH, Larsen NG, Gerrard JA. Biotechnol. Prog. 27 1768-1776 (2011)
  33. Comparative study of the hydrophobic interaction effect of pH and ionic strength on aggregation/emulsification of Congo red and amyloid fibrillation of insulin. Kasai T, Wada T, Iijima T, Minami Y, Sakaguchi T, Koga R, Shiratori T, Otsuka Y, Shimada Y, Okayama Y, Goto S. BBA Adv 2 100036 (2022)
  34. Competitive inhibition reaction mechanisms for the two-step model of protein aggregation. Whidden M, Ho A, Ivanova MI, Schnell S. Biophys. Chem. 193-194 9-19 (2014)
  35. Destabilization of Human Insulin Fibrils by Peptides of Fruit Bromelain Derived From Ananas comosus (Pineapple). Das S, Bhattacharyya D. J. Cell. Biochem. 118 4881-4896 (2017)
  36. Fibrillation of human insulin B-chain by pulsed hydrogen-deuterium exchange mass spectrometry. Renawala HK, Topp EM. Biophys J 121 4505-4516 (2022)
  37. Heat-stability study of various insulin types in tropical temperature conditions: New insights towards improving diabetes care. Kaufmann B, Boulle P, Berthou F, Fournier M, Beran D, Ciglenecki I, Townsend M, Schmidt G, Shah M, Cristofani S, Cavailler P, Foti M, Scapozza L. PLoS One 16 e0245372 (2021)
  38. Structure and function of anhydride-modified forms of human insulin: In silico, in vitro and in vivo studies. Chinisaz M, Ebrahim-Habibi A, Dehpour AR, Yaghmaei P, Parivar K, Moosavi-Movahedi AA. Eur J Pharm Sci 96 342-350 (2017)


Related citations provided by authors (1)

  1. Molecular Replacement Studies on Crystal Forms of Despentapeptide Insulin. Bi R-C, Cutfield SM, Dodson EJ, Dodson GG, Giordano F, Reynolds CD, Tolley SP Acta Crystallogr., B 39 90- (1983)