1pgf Citations

Synthesis and use of iodinated nonsteroidal antiinflammatory drug analogs as crystallographic probes of the prostaglandin H2 synthase cyclooxygenase active site.

Biochemistry 35 7330-40 (1996)
Related entries: 1cqe, 1pge, 1pgg, 1prh, 1pth

Cited: 82 times
EuropePMC logo PMID: 8652509

Abstract

The cyclooxygenase activity of the membrane protein prostaglandin H2 synthase isoform 1 (PGHS-1) is the target of the nonsteroidal antiinflammatory drugs (NSAIDs). The X-ray crystal structures of PGHS-1 in complex with the NSAIDs flurbiprofen and bromoaspirin have been determined previously [Picot, D., et al. (1994) Nature 367, 243-249; Loll, P. J., et al. (1995) Nat. Struct. Biol. 2, 637-643]. We report here the preparation and characterization of novel potent iodinated analogs of the NSAIDs indomethacin and suprofen, as well as the refined X-ray crystal structures of their complexes with PGHS-1. The PGHS-iodosuprofen complex structure has been refined at 3.5 A to an R-value of 0.189 and shows the suprofen analog to share a common mode of binding with flurbiprofen. The PGHS-iodoindomethacin complex structure has been refined at 4.5 A to an R-value of 0.254. The low resolution of the iodoindomethacin complex structure precludes detailed modeling of drug-enzyme interactions, but the electron-dense iodine atom of the inhibitor has been unambiguously located, allowing for the placement and approximate orientation of the inhibitor in the enzyme's active site. We have modeled two equally likely binding modes for iodoindomethacin, corresponding to the two principal conformers of the inhibitor. Like flurbiprofen, iodosuprofen and iodoindomethacin bind at the end of the long channel which leads into the enzyme active site. Binding at this site presumably blocks access of substrate to Tyr-385, a residue essential for catalysis. No evidence is seen for significant protein conformational differences between the iodoindomethacin and iodosuprofen of flurbiprofen complex structures.

Reviews - 1pgf mentioned but not cited (1)

Articles - 1pgf mentioned but not cited (12)

  1. Super-resolution biomolecular crystallography with low-resolution data. Schröder GF, Levitt M, Brunger AT. Nature 464 1218-1222 (2010)
  2. Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution. Headd JJ, Echols N, Afonine PV, Grosse-Kunstleve RW, Chen VB, Moriarty NW, Richardson DC, Richardson JS, Adams PD. Acta Crystallogr. D Biol. Crystallogr. 68 381-390 (2012)
  3. A new method of identifying the site of tyrosyl radicals in proteins. Svistunenko DA, Cooper CE. Biophys. J. 87 582-595 (2004)
  4. Automated ligand fitting by core-fragment fitting and extension into density. Terwilliger TC, Klei H, Adams PD, Moriarty NW, Cohn JD. Acta Crystallogr. D Biol. Crystallogr. 62 915-922 (2006)
  5. On the use of logarithmic scales for analysis of diffraction data. Urzhumtsev A, Afonine PV, Adams PD. Acta Crystallogr. D Biol. Crystallogr. 65 1283-1291 (2009)
  6. Pharmacophore elucidation and molecular docking studies on 5-phenyl-1-(3-pyridyl)-1h-1,2,4-triazole-3-carboxylic acid derivatives as COX-2 inhibitors. Lindner M, Sippl W, Radwan AA. Sci Pharm 78 195-214 (2010)
  7. Spiroindolone analogues bearing benzofuran moiety as a selective cyclooxygenase COX-1 with TNF-α and IL-6 inhibitors. Altowyan MS, Barakat A, Al-Majid AM, Al-Ghulikah HA. Saudi J Biol Sci 27 1208-1216 (2020)
  8. Three-dimensional structure of human cyclooxygenase (hCOX)-1. Miciaccia M, Belviso BD, Iaselli M, Cingolani G, Ferorelli S, Cappellari M, Loguercio Polosa P, Perrone MG, Caliandro R, Scilimati A. Sci Rep 11 4312 (2021)
  9. A New Look at the Structures of Old Sepsis Actors by Exploratory Data Analysis Tools. Gnoni A, De Nitto E, Scacco S, Santacroce L, Palese LL. Antibiotics (Basel) 8 (2019)
  10. correction Correction. Biophys. J. 87 3614-3616 (2004)
  11. Design, synthesis, molecular modeling and biological evaluation of novel diaryl heterocyclic analogs as potential selective cyclooxygenase-2 (COX-2) inhibitors. Al-Turki DA, Al-Omar MA, Abou-Zeid LA, Shehata IA, Al-Awady MS. Saudi Pharm J 25 59-69 (2017)
  12. Discovery of talmapimod analogues as polypharmacological anti-inflammatory agents. Liu W, Hou C, Li J, Ma X, Zhang Y, Hu M, Huang Y. J Enzyme Inhib Med Chem 35 187-198 (2020)


Reviews citing this publication (18)

  1. Cyclooxygenase-2 inhibitors in tumorigenesis (part I). Taketo MM. J. Natl. Cancer Inst. 90 1529-1536 (1998)
  2. Arachidonic acid oxygenation by COX-1 and COX-2. Mechanisms of catalysis and inhibition. Marnett LJ, Rowlinson SW, Goodwin DC, Kalgutkar AS, Lanzo CA. J. Biol. Chem. 274 22903-22906 (1999)
  3. COX-2: a target for colon cancer prevention. Marnett LJ, DuBois RN. Annu. Rev. Pharmacol. Toxicol. 42 55-80 (2002)
  4. Cyclo-oxygenase isoenzymes. How recent findings affect thinking about nonsteroidal anti-inflammatory drugs. Jouzeau JY, Terlain B, Abid A, Nédélec E, Netter P. Drugs 53 563-582 (1997)
  5. Cyclooxygenase 2 inhibitors: discovery, selectivity and the future. Marnett LJ, Kalgutkar AS. Trends Pharmacol. Sci. 20 465-469 (1999)
  6. The structure of mammalian cyclooxygenases. Garavito RM, Mulichak AM. Annu Rev Biophys Biomol Struct 32 183-206 (2003)
  7. The cyclooxygenase isoforms: structural insights into the conversion of arachidonic acid to prostaglandins. Garavito RM, DeWitt DL. Biochim. Biophys. Acta 1441 278-287 (1999)
  8. The structures of prostaglandin endoperoxide H synthases-1 and -2. Garavito RM, Malkowski MG, DeWitt DL. Prostaglandins Other Lipid Mediat. 68-69 129-152 (2002)
  9. Design of selective inhibitors of cyclooxygenase-2 as nonulcerogenic anti-inflammatory agents. Marnett LJ, Kalgutkar AS. Curr Opin Chem Biol 2 482-490 (1998)
  10. The cardiovascular toxicity of selective and nonselective cyclooxygenase inhibitors: comparisons, contrasts, and aspirin confounding. Konstantinopoulos PA, Lehmann DF. J Clin Pharmacol 45 742-750 (2005)
  11. Diclofenac potassium 12.5mg tablets for mild to moderate pain and fever: a review of its pharmacology, clinical efficacy and safety. Moore N. Clin Drug Investig 27 163-195 (2007)
  12. Nabumetone: therapeutic use and safety profile in the management of osteoarthritis and rheumatoid arthritis. Hedner T, Samulesson O, Währborg P, Wadenvik H, Ung KA, Ekbom A. Drugs 64 2315-43; discussion 2344-5 (2004)
  13. Aspirin resistance in cardiovascular disease: a review. Wong S, Appleberg M, Ward CM, Lewis DR. Eur J Vasc Endovasc Surg 27 456-465 (2004)
  14. Cyclooxygenase 2 selective inhibitors in cancer treatment and prevention. Menter DG. Expert Opin Investig Drugs 11 1749-1764 (2002)
  15. Aspirin, NSAIDs, and COX-2 inhibitors in cardiovascular disease: possible interactions and implications for treatment of rheumatoid arthritis. Kurth T, Hennekens CH, Buring JE, Gaziano JM. Curr Rheumatol Rep 6 351-356 (2004)
  16. COX-2-selective inhibitors: clinical relevance in surgical and acute pain. Rowbotham DJ. Eur J Anaesthesiol Suppl 25 11-20 (2002)
  17. Carbocations in the synthesis of prostaglandins by the cyclooxygenase of PGH synthase? A radical departure! Dean AM, Dean FM. Protein Sci. 8 1087-1098 (1999)
  18. Cardiorenal Safety of OTC Analgesics. White WB, Kloner RA, Angiolillo DJ, Davidson MH. J. Cardiovasc. Pharmacol. Ther. 23 103-118 (2018)

Articles citing this publication (51)

  1. Cyclooxygenase inhibitors and the antiplatelet effects of aspirin. Catella-Lawson F, Reilly MP, Kapoor SC, Cucchiara AJ, DeMarco S, Tournier B, Vyas SN, FitzGerald GA. N. Engl. J. Med. 345 1809-1817 (2001)
  2. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, Gildehaus D, Miyashiro JM, Penning TD, Seibert K, Isakson PC, Stallings WC. Nature 384 644-648 (1996)
  3. Flexibility of the NSAID binding site in the structure of human cyclooxygenase-2. Luong C, Miller A, Barnett J, Chow J, Ramesha C, Browner MF. Nat. Struct. Biol. 3 927-933 (1996)
  4. Inhibition of clinical benefits of aspirin on first myocardial infarction by nonsteroidal antiinflammatory drugs. Kurth T, Glynn RJ, Walker AM, Chan KA, Buring JE, Hennekens CH, Gaziano JM. Circulation 108 1191-1195 (2003)
  5. Biochemically based design of cyclooxygenase-2 (COX-2) inhibitors: facile conversion of nonsteroidal antiinflammatory drugs to potent and highly selective COX-2 inhibitors. Kalgutkar AS, Crews BC, Rowlinson SW, Marnett AB, Kozak KR, Remmel RP, Marnett LJ. Proc. Natl. Acad. Sci. U.S.A. 97 925-930 (2000)
  6. An indomethacin analogue, N-(4-chlorobenzoyl)-melatonin, is a selective inhibitor of aldo-keto reductase 1C3 (type 2 3alpha-HSD, type 5 17beta-HSD, and prostaglandin F synthase), a potential target for the treatment of hormone dependent and hormone independent malignancies. Byrns MC, Steckelbroeck S, Penning TM. Biochem. Pharmacol. 75 484-493 (2008)
  7. Molecular basis for cyclooxygenase inhibition by the non-steroidal anti-inflammatory drug naproxen. Duggan KC, Walters MJ, Musee J, Harp JM, Kiefer JR, Oates JA, Marnett LJ. J. Biol. Chem. 285 34950-34959 (2010)
  8. The 2.0 A resolution crystal structure of prostaglandin H2 synthase-1: structural insights into an unusual peroxidase. Gupta K, Selinsky BS, Kaub CJ, Katz AK, Loll PJ. J. Mol. Biol. 335 503-518 (2004)
  9. Inhibition of prostaglandin E2 synthesis by SC-560 is independent of cyclooxygenase 1 inhibition. Brenneis C, Maier TJ, Schmidt R, Hofacker A, Zulauf L, Jakobsson PJ, Scholich K, Geisslinger G. FASEB J. 20 1352-1360 (2006)
  10. Selective oxygenation of N-arachidonylglycine by cyclooxygenase-2. Prusakiewicz JJ, Kingsley PJ, Kozak KR, Marnett LJ. Biochem. Biophys. Res. Commun. 296 612-617 (2002)
  11. Crystal structure and possible catalytic mechanism of microsomal prostaglandin E synthase type 2 (mPGES-2). Yamada T, Komoto J, Watanabe K, Ohmiya Y, Takusagawa F. J. Mol. Biol. 348 1163-1176 (2005)
  12. A three-step kinetic mechanism for selective inhibition of cyclo-oxygenase-2 by diarylheterocyclic inhibitors. Walker MC, Kurumbail RG, Kiefer JR, Moreland KT, Koboldt CM, Isakson PC, Seibert K, Gierse JK. Biochem. J. 357 709-718 (2001)
  13. Differential binding mode of diverse cyclooxygenase inhibitors. Llorens O, Perez JJ, Palomer A, Mauleon D. J. Mol. Graph. Model. 20 359-371 (2002)
  14. Synthesis of novel curcumin analogues and their evaluation as selective cyclooxygenase-1 (COX-1) inhibitors. Handler N, Jaeger W, Puschacher H, Leisser K, Erker T. Chem. Pharm. Bull. 55 64-71 (2007)
  15. Drug/drug interaction of common NSAIDs with antiplatelet effect of aspirin in human platelets. Saxena A, Balaramnavar VM, Hohlfeld T, Saxena AK. Eur. J. Pharmacol. 721 215-224 (2013)
  16. Dose-dependent inhibition of platelet function by acetaminophen in healthy volunteers. Munsterhjelm E, Munsterhjelm NM, Niemi TT, Ylikorkala O, Neuvonen PJ, Rosenberg PH. Anesthesiology 103 712-717 (2005)
  17. Oxygenation by COX-2 (cyclo-oxygenase-2) of 3-HETE (3-hydroxyeicosatetraenoic acid), a fungal mimetic of arachidonic acid, produces a cascade of novel bioactive 3-hydroxyeicosanoids. Ciccoli R, Sahi S, Singh S, Prakash H, Zafiriou MP, Ishdorj G, Kock JL, Nigam S. Biochem. J. 390 737-747 (2005)
  18. Pharmacological evaluation and docking studies of α,β-unsaturated carbonyl based synthetic compounds as inhibitors of secretory phospholipase A₂, cyclooxygenases, lipoxygenase and proinflammatory cytokines. Bukhari SN, Lauro G, Jantan I, Bifulco G, Amjad MW. Bioorg. Med. Chem. 22 4151-4161 (2014)
  19. Molecular modelling of the differential interaction between several non-steroidal anti-inflammatory drugs and human prostaglandin endoperoxide H synthase-2 (h-PGHS-2). Pouplana R, Lozano JJ, Ruiz J. J. Mol. Graph. Model. 20 329-343 (2002)
  20. Determination of the structural environment of the tyrosyl radical in prostaglandin H2 synthase-1: a high frequency ENDOR/EPR study. Wilson JC, Wu G, Tsai AL, Gerfen GJ. J. Am. Chem. Soc. 127 1618-1619 (2005)
  21. Structural basis for selective inhibition of COX-2 by nimesulide. Fabiola GF, Pattabhi V, Nagarajan K. Bioorg. Med. Chem. 6 2337-2344 (1998)
  22. Role of Tyr348 in Tyr385 radical dynamics and cyclooxygenase inhibitor interactions in prostaglandin H synthase-2. Rogge CE, Ho B, Liu W, Kulmacz RJ, Tsai AL. Biochemistry 45 523-532 (2006)
  23. Chemical and structural diversity in cyclooxygenase protein active sites. Huff RG, Bayram E, Tan H, Knutson ST, Knaggs MH, Richon AB, Santago P, Fetrow JS. Chem. Biodivers. 2 1533-1552 (2005)
  24. The formation of stable fatty acid substrate complexes in prostaglandin H(2) synthase-1. Malkowski MG, Theisen MJ, Scharmen A, Garavito RM. Arch. Biochem. Biophys. 380 39-45 (2000)
  25. Ortho-carbaborane derivatives of indomethacin as cyclooxygenase (COX)-2 selective inhibitors. Scholz M, Blobaum AL, Marnett LJ, Hey-Hawkins E. Bioorg. Med. Chem. 20 4830-4837 (2012)
  26. Synthesis of some new 2-(6-methoxy-2-naphthyl)- 5-aryl-1,3,4-oxadiazoles as possible non-steroidal anti-inflammatory and analgesic agents. Narayana B, Vijaya Raj KK, Ashalatha BV, Kumari NS. Arch. Pharm. (Weinheim) 338 373-377 (2005)
  27. News The cyclooxygenase-2 structure: new drugs for an old target? Garavito RM. Nat. Struct. Biol. 3 897-901 (1996)
  28. A randomized, controlled study on the influence of acetaminophen, diclofenac, or naproxen on aspirin-induced inhibition of platelet aggregation. Galliard-Grigioni KS, Reinhart WH. Eur. J. Pharmacol. 609 96-99 (2009)
  29. Comparative molecular modeling study of the three-dimensional structures of prostaglandin endoperoxide H2 synthase 1 and 2 (COX-1 and COX-2). Filizola M, Perez JJ, Palomer A, Mauleón D. J. Mol. Graph. Model. 15 290-300 (1997)
  30. The structural and electronical factors that contribute affinity for the time-dependent inhibition of PGHS-1 by indomethacin, diclofenac and fenamates. Pouplana R, Pérez C, Sánchez J, Lozano JJ, Puig-Parellada P. J. Comput. Aided Mol. Des. 13 297-313 (1999)
  31. Automated docking and molecular dynamics simulations of nimesulide in the cyclooxygenase active site of human prostaglandin-endoperoxide synthase-2 (COX-2). García-Nieto R, Pérez C, Gago F. J. Comput. Aided Mol. Des. 14 147-160 (2000)
  32. Peroxide-induced radical formation at TYR385 and TYR504 in human PGHS-1. Rogge CE, Liu W, Kulmacz RJ, Tsai AL. J. Inorg. Biochem. 103 912-922 (2009)
  33. Structure-based QSAR study on differential inhibition of human prostaglandin endoperoxide H synthase-2 (COX-2) by nonsteroidal anti-inflammatory drugs. Pouplana R, Lozano JJ, Pérez C, Ruiz J. J. Comput. Aided Mol. Des. 16 683-709 (2002)
  34. Synthesis and biological evaluation of loxoprofen derivatives. Yamakawa N, Suemasu S, Matoyama M, Tanaka K, Katsu T, Miyata K, Okamoto Y, Otsuka M, Mizushima T. Bioorg. Med. Chem. 19 3299-3311 (2011)
  35. Confirmation of reported aspirin use in community studies: utility of serum thromboxane B2 measurement. Zantek ND, Luepker RV, Duval S, Miller K, Oldenburg N, Hirsch AT. Clin. Appl. Thromb. Hemost. 20 385-392 (2014)
  36. Design, syntheses, biological evaluation, and docking studies of 2-substituted 5-methylsulfonyl-1-phenyl-1H-indoles: potent and selective in vitro cyclooxygenase-2 inhibitors. Cruz-López O, Díaz-Mochón JJ, Campos JM, Entrena A, Núñez MT, Labeaga L, Orjales A, Gallo MA, Espinosa A. ChemMedChem 2 88-100 (2007)
  37. Influence of combinations of acetylsalicylic acid, acetaminophen, and diclofenac on platelet aggregation. Galliard-Grigioni KS, Fehr M, Reinhart WH. Eur. J. Pharmacol. 595 65-68 (2008)
  38. Manipulation of kinetic profiles in 2-aryl propionic acid cyclooxygenase inhibitors. Gupta K, Kaub CJ, Carey KN, Casillas EG, Selinsky BS, Loll PJ. Bioorg. Med. Chem. Lett. 14 667-671 (2004)
  39. Pharmacophore modeling for COX-1 and -2 inhibitors with LigandScout in comparison to Discovery Studio. Temml V, Kaserer T, Kutil Z, Landa P, Vanek T, Schuster D. Future Med Chem 6 1869-1881 (2014)
  40. Predicting cyclooxygenase inhibition by three-dimensional pharmacophoric profiling. Part II: Identification of enzyme inhibitors from Prasaplai, a Thai traditional medicine. Waltenberger B, Schuster D, Paramapojn S, Gritsanapan W, Wolber G, Rollinger JM, Stuppner H. Phytomedicine 18 119-133 (2011)
  41. Free energy perturbation approach to the critical assessment of selective cyclooxygenase-2 inhibitors. Park H, Lee S. J. Comput. Aided Mol. Des. 19 17-31 (2005)
  42. Predicting Cyclooxygenase Inhibition by Three-Dimensional Pharmacophoric Profiling. Part I: Model Generation, Validation and Applicability in Ethnopharmacology. Schuster D, Waltenberger B, Kirchmair J, Distinto S, Markt P, Stuppner H, Rollinger JM, Wolber G. Mol Inform 29 75-86 (2010)
  43. Association Between Aspirin Use and Risk of Hepatocellular Carcinoma. Simon TG, Ma Y, Ludvigsson JF, Chong DQ, Giovannucci EL, Fuchs CS, Meyerhardt JA, Corey KE, Chung RT, Zhang X, Chan AT. JAMA Oncol 4 1683-1690 (2018)
  44. Indomethacin Analogues that Enhance Doxorubicin Cytotoxicity in Multidrug Resistant Cells without Cox Inhibitory Activity. Arisawa M, Kasaya Y, Obata T, Sasaki T, Ito M, Abe H, Ito Y, Yamano A, Shuto S. ACS Med Chem Lett 2 353-357 (2011)
  45. Design and synthesis of benzimidazole analogs endowed with oxadiazole as selective COX-2 inhibitor. Rathore A, Rahman MU, Siddiqui AA, Ali A, Shaharyar M. Arch. Pharm. (Weinheim) 347 923-935 (2014)
  46. Insertion and self-diffusion of a monotopic protein, the Aquifex aeolicus sulfide quinone reductase, in supported lipid bilayers. Harb F, Prunetti L, Giudici-Orticoni MT, Guiral M, Tinland B. Eur Phys J E Soft Matter 38 110 (2015)
  47. Computer simulation of the interaction of non-steroidal anti-inflammatory drugs: indoprofen and NS398 with cyclooxygenase. Kothekar V, Sahi S, Srinivasan M. J. Biomol. Struct. Dyn. 16 901-915 (1999)
  48. Conformation and atropisomeric properties of indometacin derivatives. Wakamatsu S, Takahashi Y, Tabata H, Oshitari T, Tani N, Azumaya I, Katsumoto Y, Tanaka T, Hosoi S, Natsugari H, Takahashi H. Chemistry 19 7056-7063 (2013)
  49. Design of novel N-phenylnicotinamides as selective cyclooxygenase-1 inhibitors. Shi L, Li ZL, Yang Y, Zhu ZW, Zhu HL. Bioorg. Med. Chem. Lett. 21 121-124 (2011)
  50. Research strategies for design and development of NSAIDs: clue to balance potency and toxicity of acetanilide compounds. Pal AK, Sen S, Ghosh S, Bera AK, Bhattacharya S, Chakraborty S, Banerjee A. J. Biomol. Struct. Dyn. 19 85-93 (2001)
  51. Supramolecular interactions of nonsteroidal anti-inflammatory drug in nanochannels of molecular containers: a spectroscopic, thermogravimetric and microscopic investigation. Maity B, Chatterjee A, Ahmed SA, Seth D. Chemphyschem 15 3502-3514 (2014)


Related citations provided by authors (2)