1pdf Citations

Three-dimensional structure of bacteriophage T4 baseplate.

Nat. Struct. Biol. 10 688-93 (2003)
Related entries: 1pdj, 1pdi, 1pdp, 1pdm, 1pdl

Cited: 76 times
EuropePMC logo PMID: 12923574

Abstract

The baseplate of bacteriophage T4 is a multiprotein molecular machine that controls host cell recognition, attachment, tail sheath contraction and viral DNA ejection. We report here the three-dimensional structure of the baseplate-tail tube complex determined to a resolution of 12 A by cryoelectron microscopy. The baseplate has a six-fold symmetric, dome-like structure approximately 520 A in diameter and approximately 270 A long, assembled around a central hub. A 940 A-long and 96 A-diameter tail tube, coaxial with the hub, is connected to the top of the baseplate. At the center of the dome is a needle-like structure that was previously identified as a cell puncturing device. We have identified the locations of six proteins with known atomic structures, and established the position and shape of several other baseplate proteins. The baseplate structure suggests a mechanism of baseplate triggering and structural transition during the initial stages of T4 infection.

Articles - 1pdf mentioned but not cited (1)

  1. Tyrosine glycosylation of Rho by Yersinia toxin impairs blastomere cell behaviour in zebrafish embryos. Jank T, Eckerle S, Steinemann M, Trillhaase C, Schimpl M, Wiese S, van Aalten DM, Driever W, Aktories K. Nat Commun 6 7807 (2015)


Reviews citing this publication (19)

  1. A view to a kill: the bacterial type VI secretion system. Ho BT, Dong TG, Mekalanos JJ. Cell Host Microbe 15 9-21 (2014)
  2. Structure and function of bacteriophage T4. Yap ML, Rossmann MG. Future Microbiol 9 1319-1327 (2014)
  3. Architecture and assembly of the Type VI secretion system. Zoued A, Brunet YR, Durand E, Aschtgen MS, Logger L, Douzi B, Journet L, Cambillau C, Cascales E. Biochim. Biophys. Acta 1843 1664-1673 (2014)
  4. Molecular architecture of tailed double-stranded DNA phages. Fokine A, Rossmann MG. Bacteriophage 4 e28281 (2014)
  5. Structure of viruses: a short history. Rossmann MG. Q. Rev. Biophys. 46 133-180 (2013)
  6. Structural biology of type VI secretion systems. Cascales E, Cambillau C. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 367 1102-1111 (2012)
  7. Structural aspects of the interaction of dairy phages with their host bacteria. Mahony J, van Sinderen D. Viruses 4 1410-1424 (2012)
  8. A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Veesler D, Cambillau C. Microbiol. Mol. Biol. Rev. 75 423-33 (2011)
  9. Bacteriophage assembly. Aksyuk AA, Rossmann MG. Viruses 3 172-203 (2011)
  10. Tubules and donuts: a type VI secretion story. Bönemann G, Pietrosiuk A, Mogk A. Mol. Microbiol. 76 815-821 (2010)
  11. Morphogenesis of the T4 tail and tail fibers. Leiman PG, Arisaka F, van Raaij MJ, Kostyuchenko VA, Aksyuk AA, Kanamaru S, Rossmann MG. Virol. J. 7 355 (2010)
  12. DNA packaging and delivery machines in tailed bacteriophages. Johnson JE, Chiu W. Curr. Opin. Struct. Biol. 17 237-243 (2007)
  13. Structural systems biology: modelling protein interactions. Aloy P, Russell RB. Nat. Rev. Mol. Cell Biol. 7 188-197 (2006)
  14. Combining X-ray crystallography and electron microscopy. Rossmann MG, Morais MC, Leiman PG, Zhang W. Structure 13 355-362 (2005)
  15. Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Adir N. Photosyn. Res. 85 15-32 (2005)
  16. Large macromolecular complexes in the Protein Data Bank: a status report. Dutta S, Berman HM. Structure 13 381-388 (2005)
  17. The bacteriophage T4 DNA injection machine. Rossmann MG, Mesyanzhinov VV, Arisaka F, Leiman PG. Curr. Opin. Struct. Biol. 14 171-180 (2004)
  18. A structural perspective on protein-protein interactions. Russell RB, Alber F, Aloy P, Davis FP, Korkin D, Pichaud M, Topf M, Sali A. Curr. Opin. Struct. Biol. 14 313-324 (2004)
  19. Molecular architecture of bacteriophage T4. Mesyanzhinov VV, Leiman PG, Kostyuchenko VA, Kurochkina LP, Miroshnikov KA, Sykilinda NN, Shneider MM. Biochemistry Mosc. 69 1190-1202 (2004)

Articles citing this publication (56)

  1. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Leiman PG, Basler M, Ramagopal UA, Bonanno JB, Sauder JM, Pukatzki S, Burley SK, Almo SC, Mekalanos JJ. Proc. Natl. Acad. Sci. U.S.A. 106 4154-4159 (2009)
  2. Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW. PLoS Biol. 3 e144 (2005)
  3. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I. BMC Genomics 10 104 (2009)
  4. Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host. Leiman PG, Chipman PR, Kostyuchenko VA, Mesyanzhinov VV, Rossmann MG. Cell 118 419-429 (2004)
  5. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Shneider MM, Buth SA, Ho BT, Basler M, Mekalanos JJ, Leiman PG. Nature 500 350-353 (2013)
  6. Structural changes of bacteriophage phi29 upon DNA packaging and release. Xiang Y, Morais MC, Battisti AJ, Grimes S, Jardine PJ, Anderson DL, Rossmann MG. EMBO J. 25 5229-5239 (2006)
  7. The tail structure of bacteriophage T4 and its mechanism of contraction. Kostyuchenko VA, Chipman PR, Leiman PG, Arisaka F, Mesyanzhinov VV, Rossmann MG. Nat. Struct. Mol. Biol. 12 810-813 (2005)
  8. Structural characterization of components of protein assemblies by comparative modeling and electron cryo-microscopy. Topf M, Baker ML, John B, Chiu W, Sali A. J. Struct. Biol. 149 191-203 (2005)
  9. Structure of the phage TP901-1 1.8 MDa baseplate suggests an alternative host adhesion mechanism. Veesler D, Spinelli S, Mahony J, Lichière J, Blangy S, Bricogne G, Legrand P, Ortiz-Lombardia M, Campanacci V, van Sinderen D, Cambillau C. Proc. Natl. Acad. Sci. U.S.A. 109 8954-8958 (2012)
  10. Structure of the bacteriophage T4 long tail fiber receptor-binding tip. Bartual SG, Otero JM, Garcia-Doval C, Llamas-Saiz AL, Kahn R, Fox GC, van Raaij MJ. Proc. Natl. Acad. Sci. U.S.A. 107 20287-20292 (2010)
  11. Three-dimensional structure of the bacteriophage P22 tail machine. Tang L, Marion WR, Cingolani G, Prevelige PE, Johnson JE. EMBO J. 24 2087-2095 (2005)
  12. Structure and molecular assignment of lactococcal phage TP901-1 baseplate. Bebeacua C, Bron P, Lai L, Vegge CS, Brøndsted L, Spinelli S, Campanacci V, Veesler D, van Heel M, Cambillau C. J. Biol. Chem. 285 39079-39086 (2010)
  13. Phage pierces the host cell membrane with the iron-loaded spike. Browning C, Shneider MM, Bowman VD, Schwarzer D, Leiman PG. Structure 20 326-339 (2012)
  14. Structure-function analysis of HsiF, a gp25-like component of the type VI secretion system, in Pseudomonas aeruginosa. Lossi NS, Dajani R, Freemont P, Filloux A. Microbiology (Reading, Engl.) 157 3292-3305 (2011)
  15. Visualizing a complete Siphoviridae member by single-particle electron microscopy: the structure of lactococcal phage TP901-1. Bebeacua C, Lai L, Vegge CS, Brøndsted L, van Heel M, Veesler D, Cambillau C. J. Virol. 87 1061-1068 (2013)
  16. A multivalent adsorption apparatus explains the broad host range of phage phi92: a comprehensive genomic and structural analysis. Schwarzer D, Buettner FF, Browning C, Nazarov S, Rabsch W, Bethe A, Oberbeck A, Bowman VD, Stummeyer K, Mühlenhoff M, Leiman PG, Gerardy-Schahn R. J. Virol. 86 10384-10398 (2012)
  17. Comparative genomics of the T4-Like Escherichia coli phage JS98: implications for the evolution of T4 phages. Chibani-Chennoufi S, Canchaya C, Bruttin A, Brüssow H. J. Bacteriol. 186 8276-8286 (2004)
  18. The structure of gene product 6 of bacteriophage T4, the hinge-pin of the baseplate. Aksyuk AA, Leiman PG, Shneider MM, Mesyanzhinov VV, Rossmann MG. Structure 17 800-808 (2009)
  19. The molecular architecture of the bacteriophage T4 neck. Fokine A, Zhang Z, Kanamaru S, Bowman VD, Aksyuk AA, Arisaka F, Rao VB, Rossmann MG. J. Mol. Biol. 425 1731-1744 (2013)
  20. Reconstruction of novel cyanobacterial siphovirus genomes from Mediterranean metagenomic fosmids. Mizuno CM, Rodriguez-Valera F, Garcia-Heredia I, Martin-Cuadrado AB, Ghai R. Appl. Environ. Microbiol. 79 688-695 (2013)
  21. The baseplate wedges of bacteriophage T4 spontaneously assemble into hubless baseplate-like structure in vitro. Yap ML, Mio K, Leiman PG, Kanamaru S, Arisaka F. J. Mol. Biol. 395 349-360 (2010)
  22. The host-range, genomics and proteomics of Escherichia coli O157:H7 bacteriophage rV5. Kropinski AM, Waddell T, Meng J, Franklin K, Ackermann HW, Ahmed R, Mazzocco A, Yates J, Lingohr EJ, Johnson RP. Virol. J. 10 76 (2013)
  23. Assembly of bacteriophage into functional materials. Yang SH, Chung WJ, McFarland S, Lee SW. Chem Rec 13 43-59 (2013)
  24. Viral infection modulation and neutralization by camelid nanobodies. Desmyter A, Farenc C, Mahony J, Spinelli S, Bebeacua C, Blangy S, Veesler D, van Sinderen D, Cambillau C. Proc. Natl. Acad. Sci. U.S.A. 110 E1371-9 (2013)
  25. Comparative genomics of Bacillus thuringiensis phage 0305phi8-36: defining patterns of descent in a novel ancient phage lineage. Hardies SC, Thomas JA, Serwer P. Virol. J. 4 97 (2007)
  26. Remarkable Mechanisms in Microbes to Resist Phage Infections. Dy RL, Richter C, Salmond GP, Fineran PC. Annu Rev Virol 1 307-331 (2014)
  27. Structural remodeling of bacteriophage T4 and host membranes during infection initiation. Hu B, Margolin W, Molineux IJ, Liu J. Proc. Natl. Acad. Sci. U.S.A. 112 E4919-28 (2015)
  28. Listeria phage A511, a model for the contractile tail machineries of SPO1-related bacteriophages. Habann M, Leiman PG, Vandersteegen K, Van den Bossche A, Lavigne R, Shneider MM, Bielmann R, Eugster MR, Loessner MJ, Klumpp J. Mol. Microbiol. 92 84-99 (2014)
  29. Chaperone-protein interactions that mediate assembly of the bacteriophage lambda tail to the correct length. Xu J, Hendrix RW, Duda RL. J. Mol. Biol. 426 1004-1018 (2014)
  30. Phages have adapted the same protein fold to fulfill multiple functions in virion assembly. Cardarelli L, Pell LG, Neudecker P, Pirani N, Liu A, Baker LA, Rubinstein JL, Maxwell KL, Davidson AR. Proc. Natl. Acad. Sci. U.S.A. 107 14384-14389 (2010)
  31. A novel thermophilic lysozyme from bacteriophage phiIN93. Matsushita I, Yanase H. Biochem. Biophys. Res. Commun. 377 89-92 (2008)
  32. The Type VI Secretion TssEFGK-VgrG Phage-Like Baseplate Is Recruited to the TssJLM Membrane Complex via Multiple Contacts and Serves As Assembly Platform for Tail Tube/Sheath Polymerization. Brunet YR, Zoued A, Boyer F, Douzi B, Cascales E. PLoS Genet. 11 e1005545 (2015)
  33. Proteome of the large Pseudomonas myovirus 201 phi 2-1: delineation of proteolytically processed virion proteins. Thomas JA, Weintraub ST, Hakala K, Serwer P, Hardies SC. Mol. Cell Proteomics 9 940-951 (2010)
  34. The archetype Pseudomonas aeruginosa proteins TssB and TagJ form a novel subcomplex in the bacterial type VI secretion system. Lossi NS, Manoli E, Simpson P, Jones C, Hui K, Dajani R, Coulthurst SJ, Freemont P, Filloux A. Mol. Microbiol. 86 437-456 (2012)
  35. A proteomic approach to the identification of the major virion structural proteins of the marine cyanomyovirus S-PM2. Clokie MR, Thalassinos K, Boulanger P, Slade SE, Stoilova-McPhie S, Cane M, Scrivens JH, Mann NH. Microbiology (Reading, Engl.) 154 1775-1782 (2008)
  36. Structural and functional studies of gpX of Escherichia coli phage P2 reveal a widespread role for LysM domains in the baseplates of contractile-tailed phages. Maxwell KL, Fatehi Hassanabad M, Chang T, Paul VD, Pirani N, Bona D, Edwards AM, Davidson AR. J. Bacteriol. 195 5461-5468 (2013)
  37. Tail tip proteins related to bacteriophage λ gpL coordinate an iron-sulfur cluster. Tam W, Pell LG, Bona D, Tsai A, Dai XX, Edwards AM, Hendrix RW, Maxwell KL, Davidson AR. J. Mol. Biol. 425 2450-2462 (2013)
  38. Assembly and infection process of bacteriophage T4. Arisaka F. Chaos 15 047502 (2005)
  39. The Atomic Structure of the Phage Tuc2009 Baseplate Tripod Suggests that Host Recognition Involves Two Different Carbohydrate Binding Modules. Legrand P, Collins B, Blangy S, Murphy J, Spinelli S, Gutierrez C, Richet N, Kellenberger C, Desmyter A, Mahony J, van Sinderen D, Cambillau C. MBio 7 e01781-15 (2016)
  40. Unified data resource for cryo-EM. Lawson CL. Meth. Enzymol. 483 73-90 (2010)
  41. Mutations in the N terminus of the oX174 DNA pilot protein H confer defects in both assembly and host cell attachment. Young LN, Hockenberry AM, Fane BA. J. Virol. 88 1787-1794 (2014)
  42. Role of bacteriophage T4 baseplate in regulating assembly and infection. Yap ML, Klose T, Arisaka F, Speir JA, Veesler D, Fokine A, Rossmann MG. Proc. Natl. Acad. Sci. U.S.A. 113 2654-2659 (2016)
  43. Structure, stability, and biological activity of bacteriophage T4 gene product 9 probed with mutagenesis and monoclonal antibodies. Kurochkina LP, Vishnevskiy AY, Zhemaeva LV, Sykilinda NN, Strelkov SV, Mesyanzhinov VV. J. Struct. Biol. 154 122-129 (2006)
  44. TssA forms a gp6-like ring attached to the type VI secretion sheath. Planamente S, Salih O, Manoli E, Albesa-Jové D, Freemont PS, Filloux A. EMBO J. 35 1613-1627 (2016)
  45. Structure of the 3.3MDa, in vitro assembled, hubless bacteriophage T4 baseplate. Yap ML, Klose T, Plevka P, Aksyuk A, Zhang X, Arisaka F, Rossmann MG. J. Struct. Biol. 187 95-102 (2014)
  46. Signal transduction at a protein synapse. Steven AC. Cell 118 403-404 (2004)
  47. Comment A four-dimensional structure of T4 infection. Fane BA. Nat. Struct. Mol. Biol. 12 739-740 (2005)
  48. Functional role of the N-terminal domain of bacteriophage T4 gene product 11. Vishnevskiy AY, Kurochkina LP, Sykilinda NN, Solov'eva NV, Shneider MM, Leiman PG, Mesyanzhinov VV. Biochemistry Mosc. 70 1111-1118 (2005)
  49. Congresses Biomacromolecular interactions, assemblies and machines: a structural view. Heinz DW, Weiss MS, Wendt KU. Chembiochem 7 203-208 (2006)
  50. ORF334 in Vibrio phage KVP40 plays the role of gp27 in T4 phage to form a heterohexameric complex. Nemoto M, Mio K, Kanamaru S, Arisaka F. J. Bacteriol. 190 3606-3612 (2008)
  51. Role of the C-terminus in folding and oligomerization of bacteriophage T4 gene product 9. Kurochkina LP, Vishnevskiy AY, Mesyanzhinov VV. Biochemistry Mosc. 73 995-999 (2008)
  52. A tail of two phages: genomic and functional analysis of Listeria monocytogenes phages vB_LmoS_188 and vB_LmoS_293 reveal the receptor-binding proteins involved in host specificity. Casey A, Jordan K, Neve H, Coffey A, McAuliffe O. Front Microbiol 6 1107 (2015)
  53. Structure of the host-recognition device of Staphylococcus aureus phage ϕ11. Koç C, Xia G, Kühner P, Spinelli S, Roussel A, Cambillau C, Stehle T. Sci Rep 6 27581 (2016)
  54. Structure and genome release of Twort-like Myoviridae phage with a double-layered baseplate. Nováček J, Šiborová M, Benešík M, Pantůček R, Doškař J, Plevka P. Proc. Natl. Acad. Sci. U.S.A. 113 9351-9356 (2016)
  55. Baseplate assembly of phage Mu: Defining the conserved core components of contractile-tailed phages and related bacterial systems. Büttner CR, Wu Y, Maxwell KL, Davidson AR. Proc. Natl. Acad. Sci. U.S.A. 113 10174-10179 (2016)
  56. Evolved distal tail carbohydrate binding modules of Lactobacillus phage J-1: a novel type of anti-receptor widespread among lactic acid bacteria phages. Dieterle ME, Spinelli S, Sadovskaya I, Piuri M, Cambillau C. Mol. Microbiol. 104 608-620 (2017)


Related citations provided by authors (1)

  1. Structure of bacteriophage T4 gene product 11, the interface between the baseplate and short tail fibers. Leiman PG, Kostyuchenko VA, Shneider MM, Kurochkina LP, Mesyanzhinov VV, Rossmann MG J. Mol. Biol. 301 975-985 (2000)