1pcq Citations

Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics.

EMBO J 22 4877-87 (2003)
Cited: 100 times
EuropePMC logo PMID: 14517228

Abstract

Productive cis folding by the chaperonin GroEL is triggered by the binding of ATP but not ADP, along with cochaperonin GroES, to the same ring as non-native polypeptide, ejecting polypeptide into an encapsulated hydrophilic chamber. We examined the specific contribution of the gamma-phosphate of ATP to this activation process using complexes of ADP and aluminium or beryllium fluoride. These ATP analogues supported productive cis folding of the substrate protein, rhodanese, even when added to already-formed, folding-inactive cis ADP ternary complexes, essentially introducing the gamma-phosphate of ATP in an independent step. Aluminium fluoride was observed to stabilize the association of GroES with GroEL, with a substantial release of free energy (-46 kcal/mol). To understand the basis of such activation and stabilization, a crystal structure of GroEL-GroES-ADP.AlF3 was determined at 2.8 A. A trigonal AlF3 metal complex was observed in the gamma-phosphate position of the nucleotide pocket of the cis ring. Surprisingly, when this structure was compared with that of the previously determined GroEL-GroES-ADP complex, no other differences were observed. We discuss the likely basis of the ability of gamma-phosphate binding to convert preformed GroEL-GroES-ADP-polypeptide complexes into the folding-active state.

Reviews - 1pcq mentioned but not cited (4)

  1. Structural frameworks for considering microbial protein- and nucleic acid-dependent motor ATPases. Thomsen ND, Berger JM. Mol Microbiol 69 1071-1090 (2008)
  2. The future of the Protein Data Bank. Berman HM, Kleywegt GJ, Nakamura H, Markley JL. Biopolymers 99 218-222 (2013)
  3. Structural and Kinetic Views of Molecular Chaperones in Multidomain Protein Folding. Kawagoe S, Ishimori K, Saio T. Int J Mol Sci 23 2485 (2022)
  4. The role of heat shock proteins in preventing amyloid toxicity. Törner R, Kupreichyk T, Hoyer W, Boisbouvier J. Front Mol Biosci 9 1045616 (2022)

Articles - 1pcq mentioned but not cited (22)

  1. Optimized fragmentation schemes and data analysis strategies for proteome-wide cross-link identification. Liu F, Lössl P, Scheltema R, Viner R, Heck AJR. Nat Commun 8 15473 (2017)
  2. The Structural Biology Center 19ID undulator beamline: facility specifications and protein crystallographic results. Rosenbaum G, Alkire RW, Evans G, Rotella FJ, Lazarski K, Zhang RG, Ginell SL, Duke N, Naday I, Lazarz J, Molitsky MJ, Keefe L, Gonczy J, Rock L, Sanishvili R, Walsh MA, Westbrook E, Joachimiak A. J Synchrotron Radiat 13 30-45 (2006)
  3. An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes. Li H, Nguyen HH, Ogorzalek Loo RR, Campuzano IDG, Loo JA. Nat Chem 10 139-148 (2018)
  4. Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics. Chaudhry C, Farr GW, Todd MJ, Rye HS, Brunger AT, Adams PD, Horwich AL, Sigler PB. EMBO J 22 4877-4887 (2003)
  5. Dimerisation-dependent GTPase reaction of MnmE: how potassium acts as GTPase-activating element. Scrima A, Wittinghofer A. EMBO J 25 2940-2951 (2006)
  6. Single particle tomography in EMAN2. Galaz-Montoya JG, Flanagan J, Schmid MF, Ludtke SJ. J Struct Biol 190 279-290 (2015)
  7. A role for confined water in chaperonin function. England JL, Lucent D, Pande VS. J Am Chem Soc 130 11838-11839 (2008)
  8. GroEL/GroES cycling: ATP binds to an open ring before substrate protein favoring protein binding and production of the native state. Tyagi NK, Fenton WA, Horwich AL. Proc Natl Acad Sci U S A 106 20264-20269 (2009)
  9. Calculation of local water densities in biological systems: a comparison of molecular dynamics simulations and the 3D-RISM-KH molecular theory of solvation. Stumpe MC, Blinov N, Wishart D, Kovalenko A, Pande VS. J Phys Chem B 115 319-328 (2011)
  10. Conformational sampling and nucleotide-dependent transitions of the GroEL subunit probed by unbiased molecular dynamics simulations. Skjaerven L, Grant B, Muga A, Teigen K, McCammon JA, Reuter N, Martinez A. PLoS Comput Biol 7 e1002004 (2011)
  11. ArtiaX: An electron tomography toolbox for the interactive handling of sub-tomograms in UCSF ChimeraX. Ermel UH, Arghittu SM, Frangakis AS. Protein Sci 31 e4472 (2022)
  12. Molecular characterization of the Corynebacterium pseudotuberculosis hsp60-hsp10 operon, and evaluation of the immune response and protective efficacy induced by hsp60 DNA vaccination in mice. Costa MP, McCulloch JA, Almeida SS, Dorella FA, Fonseca CT, Oliveira DM, Teixeira MF, Laskowska E, Lipinska B, Meyer R, Portela RW, Oliveira SC, Miyoshi A, Azevedo V. BMC Res Notes 4 243 (2011)
  13. Structure-based validation can drastically underestimate error rate in proteome-wide cross-linking mass spectrometry studies. Yugandhar K, Wang TY, Wierbowski SD, Shayhidin EE, Yu H. Nat Methods 17 985-988 (2020)
  14. Variability of Protein Structure Models from Electron Microscopy. Monroe L, Terashi G, Kihara D. Structure 25 592-602.e2 (2017)
  15. Novel cryo-EM structure of an ADP-bound GroEL-GroES complex. Kudryavtseva SS, Pichkur EB, Yaroshevich IA, Mamchur AA, Panina IS, Moiseenko AV, Sokolova OS, Muronetz VI, Stanishneva-Konovalova TB. Sci Rep 11 18241 (2021)
  16. Structural basis for the structural dynamics of human mitochondrial chaperonin mHsp60. Wang JC, Chen L. Sci Rep 11 14809 (2021)
  17. Functional Differences between E. coli and ESKAPE Pathogen GroES/GroEL. Sivinski J, Ambrose AJ, Panfilenko I, Zerio CJ, Machulis JM, Mollasalehi N, Kaneko LK, Stevens M, Ray AM, Park Y, Wu C, Hoang QQ, Johnson SM, Chapman E. mBio 12 e02167-20 (2021)
  18. Functional understanding of solvent structure in GroEL cavity through dipole field analysis. Weber JK, Pande VS. J Chem Phys 138 165101 (2013)
  19. Structure and conformational cycle of a bacteriophage-encoded chaperonin. Bracher A, Paul SS, Wang H, Wischnewski N, Hartl FU, Hayer-Hartl M. PLoS One 15 e0230090 (2020)
  20. Cryo-EM structures of GroEL:ES2 with RuBisCO visualize molecular contacts of encapsulated substrates in a double-cage chaperonin. Kim H, Park J, Lim S, Jun SH, Jung M, Roh SH. iScience 25 103704 (2022)
  21. Crystal structure of P. falciparum Cpn60 bound to ATP reveals an open dynamic conformation before substrate binding. Nguyen B, Ma R, Tang WK, Shi D, Tolia NH. Sci Rep 11 5930 (2021)
  22. Epitope determination of immunogenic proteins of Neisseria gonorrhoeae. Connor DO, Danckert L, Hoppe S, Bier FF, von Nickisch-Rosenegk M. PLoS One 12 e0180962 (2017)


Reviews citing this publication (16)

  1. Two families of chaperonin: physiology and mechanism. Horwich AL, Fenton WA, Chapman E, Farr GW. Annu Rev Cell Dev Biol 23 115-145 (2007)
  2. Chaperonin-mediated protein folding: using a central cavity to kinetically assist polypeptide chain folding. Horwich AL, Fenton WA. Q Rev Biophys 42 83-116 (2009)
  3. GroEL-mediated protein folding: making the impossible, possible. Lin Z, Rye HS. Crit Rev Biochem Mol Biol 41 211-239 (2006)
  4. Allosteric regulation of chaperonins. Horovitz A, Willison KR. Curr Opin Struct Biol 15 646-651 (2005)
  5. Structure and allostery of the chaperonin GroEL. Saibil HR, Fenton WA, Clare DK, Horwich AL. J Mol Biol 425 1476-1487 (2013)
  6. Hsp60 chaperonopathies and chaperonotherapy: targets and agents. Cappello F, Marino Gammazza A, Palumbo Piccionello A, Campanella C, Pace A, Conway de Macario E, Macario AJ. Expert Opin Ther Targets 18 185-208 (2014)
  7. The GroEL/GroES cis cavity as a passive anti-aggregation device. Horwich AL, Apetri AC, Fenton WA. FEBS Lett 583 2654-2662 (2009)
  8. ATP-driven molecular chaperone machines. Clare DK, Saibil HR. Biopolymers 99 846-859 (2013)
  9. Generic nature of the condensed states of proteins. Fuxreiter M, Vendruscolo M. Nat Cell Biol 23 587-594 (2021)
  10. Dynamics, flexibility, and allostery in molecular chaperonins. Skjærven L, Cuellar J, Martinez A, Valpuesta JM. FEBS Lett 589 2522-2532 (2015)
  11. Reconciling theories of chaperonin accelerated folding with experimental evidence. Jewett AI, Shea JE. Cell Mol Life Sci 67 255-276 (2010)
  12. Chaperone-client interactions: Non-specificity engenders multifunctionality. Koldewey P, Horowitz S, Bardwell JCA. J Biol Chem 292 12010-12017 (2017)
  13. Chaperonin GroEL meets the substrate protein as a "load" of the rings. Taguchi H. J Biochem 137 543-549 (2005)
  14. An overview of molecular stress response mechanisms in Escherichia coli contributing to survival of Shiga toxin-producing Escherichia coli during raw milk cheese production. Peng S, Tasara T, Hummerjohann J, Stephan R. J Food Prot 74 849-864 (2011)
  15. Chaperonin GroEL uses asymmetric and symmetric reaction cycles in response to the concentration of non-native substrate proteins. Iizuka R, Funatsu T. Biophys Physicobiol 13 63-69 (2016)
  16. Inside the chaperonin toolbox: theoretical and computational models for chaperonin mechanism. Lucent D, England J, Pande V. Phys Biol 6 015003 (2009)

Articles citing this publication (58)

  1. The newly discovered Q motif of DEAD-box RNA helicases regulates RNA-binding and helicase activity. Cordin O, Tanner NK, Doère M, Linder P, Banroques J. EMBO J 23 2478-2487 (2004)
  2. ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin. Clare DK, Vasishtan D, Stagg S, Quispe J, Farr GW, Topf M, Horwich AL, Saibil HR. Cell 149 113-123 (2012)
  3. Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes. Ranson NA, Clare DK, Farr GW, Houldershaw D, Horwich AL, Saibil HR. Nat Struct Mol Biol 13 147-152 (2006)
  4. Exploring the structural dynamics of the E.coli chaperonin GroEL using translation-libration-screw crystallographic refinement of intermediate states. Chaudhry C, Horwich AL, Brunger AT, Adams PD. J Mol Biol 342 229-245 (2004)
  5. Single-molecule spectroscopy of protein folding in a chaperonin cage. Hofmann H, Hillger F, Pfeil SH, Hoffmann A, Streich D, Haenni D, Nettels D, Lipman EA, Schuler B. Proc Natl Acad Sci U S A 107 11793-11798 (2010)
  6. Chaperonin chamber accelerates protein folding through passive action of preventing aggregation. Apetri AC, Horwich AL. Proc Natl Acad Sci U S A 105 17351-17355 (2008)
  7. Chaperonin complex with a newly folded protein encapsulated in the folding chamber. Clare DK, Bakkes PJ, van Heerikhuizen H, van der Vies SM, Saibil HR. Nature 457 107-110 (2009)
  8. Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformational changes of GroEL. Yokokawa M, Wada C, Ando T, Sakai N, Yagi A, Yoshimura SH, Takeyasu K. EMBO J 25 4567-4576 (2006)
  9. Substrate polypeptide presents a load on the apical domains of the chaperonin GroEL. Motojima F, Chaudhry C, Fenton WA, Farr GW, Horwich AL. Proc Natl Acad Sci U S A 101 15005-15012 (2004)
  10. GroEL mediates protein folding with a two successive timer mechanism. Ueno T, Taguchi H, Tadakuma H, Yoshida M, Funatsu T. Mol Cell 14 423-434 (2004)
  11. Energetic cost of building a virus. Mahmoudabadi G, Milo R, Phillips R. Proc Natl Acad Sci U S A 114 E4324-E4333 (2017)
  12. Symmetry-restrained flexible fitting for symmetric EM maps. Chan KY, Gumbart J, McGreevy R, Watermeyer JM, Sewell BT, Schulten K. Structure 19 1211-1218 (2011)
  13. The 13 angstroms structure of a chaperonin GroEL-protein substrate complex by cryo-electron microscopy. Falke S, Tama F, Brooks CL, Gogol EP, Fisher MT. J Mol Biol 348 219-230 (2005)
  14. Crystal structure of wild-type chaperonin GroEL. Bartolucci C, Lamba D, Grazulis S, Manakova E, Heumann H. J Mol Biol 354 940-951 (2005)
  15. Real-space refinement with DireX: from global fitting to side-chain improvements. Wang Z, Schröder GF. Biopolymers 97 687-697 (2012)
  16. Cryo-EM structure of a group II chaperonin in the prehydrolysis ATP-bound state leading to lid closure. Zhang J, Ma B, DiMaio F, Douglas NR, Joachimiak LA, Baker D, Frydman J, Levitt M, Chiu W. Structure 19 633-639 (2011)
  17. Topographic studies of the GroEL-GroES chaperonin complex by chemical cross-linking using diformyl ethynylbenzene: the power of high resolution electron transfer dissociation for determination of both peptide sequences and their attachment sites. Trnka MJ, Burlingame AL. Mol Cell Proteomics 9 2306-2317 (2010)
  18. NMR study of nucleotide-induced changes in the nucleotide binding domain of Thermus thermophilus Hsp70 chaperone DnaK: implications for the allosteric mechanism. Revington M, Holder TM, Zuiderweg ER. J Biol Chem 279 33958-33967 (2004)
  19. Crystal structure of the native chaperonin complex from Thermus thermophilus revealed unexpected asymmetry at the cis-cavity. Shimamura T, Koike-Takeshita A, Yokoyama K, Masui R, Murai N, Yoshida M, Taguchi H, Iwata S. Structure 12 1471-1480 (2004)
  20. Crystal structure of a symmetric football-shaped GroEL:GroES2-ATP14 complex determined at 3.8Å reveals rearrangement between two GroEL rings. Koike-Takeshita A, Arakawa T, Taguchi H, Shimamura T. J Mol Biol 426 3634-3641 (2014)
  21. Denatured proteins facilitate the formation of the football-shaped GroEL-(GroES)2 complex. Sameshima T, Iizuka R, Ueno T, Funatsu T. Biochem J 427 247-254 (2010)
  22. Folding trajectories of human dihydrofolate reductase inside the GroEL GroES chaperonin cavity and free in solution. Horst R, Fenton WA, Englander SW, Wüthrich K, Horwich AL. Proc Natl Acad Sci U S A 104 20788-20792 (2007)
  23. Mechanism of nucleotide sensing in group II chaperonins. Pereira JH, Ralston CY, Douglas NR, Kumar R, Lopez T, McAndrew RP, Knee KM, King JA, Frydman J, Adams PD. EMBO J 31 731-740 (2012)
  24. Characterization of archaeal group II chaperonin-ADP-metal fluoride complexes: implications that group II chaperonins operate as a "two-stroke engine". Iizuka R, Yoshida T, Ishii N, Zako T, Takahashi K, Maki K, Inobe T, Kuwajima K, Yohda M. J Biol Chem 280 40375-40383 (2005)
  25. Single-molecule study on the decay process of the football-shaped GroEL-GroES complex using zero-mode waveguides. Sameshima T, Iizuka R, Ueno T, Wada J, Aoki M, Shimamoto N, Ohdomari I, Tanii T, Funatsu T. J Biol Chem 285 23159-23164 (2010)
  26. Polypeptide in the chaperonin cage partly protrudes out and then folds inside or escapes outside. Motojima F, Yoshida M. EMBO J 29 4008-4019 (2010)
  27. Requirement for binding multiple ATPs to convert a GroEL ring to the folding-active state. Chapman E, Farr GW, Fenton WA, Johnson SM, Horwich AL. Proc Natl Acad Sci U S A 105 19205-19210 (2008)
  28. Evolution of cation binding in the active sites of P-loop nucleoside triphosphatases in relation to the basic catalytic mechanism. Shalaeva DN, Cherepanov DA, Galperin MY, Golovin AV, Mulkidjanian AY. Elife 7 e37373 (2018)
  29. No evidence for a forced-unfolding mechanism during ATP/GroES binding to substrate-bound GroEL: no observable protection of metastable Rubisco intermediate or GroEL-bound Rubisco from tritium exchange. Park ES, Fenton WA, Horwich AL. FEBS Lett 579 1183-1186 (2005)
  30. Nucleotide-induced conformational changes of tetradecameric GroEL mapped by H/D exchange monitored by FT-ICR mass spectrometry. Zhang Q, Chen J, Kuwajima K, Zhang HM, Xian F, Young NL, Marshall AG. Sci Rep 3 1247 (2013)
  31. A mobile loop order-disorder transition modulates the speed of chaperonin cycling. Shewmaker F, Kerner MJ, Hayer-Hartl M, Klein G, Georgopoulos C, Landry SJ. Protein Sci 13 2139-2148 (2004)
  32. Asymmetry of the GroEL-GroES complex under physiological conditions as revealed by small-angle x-ray scattering. Inobe T, Takahashi K, Maki K, Enoki S, Kamagata K, Kadooka A, Arai M, Kuwajima K. Biophys J 94 1392-1402 (2008)
  33. Chaperonin-mediated protein folding. Horwich AL. J Biol Chem 288 23622-23632 (2013)
  34. Characterisation of a GroEL single-ring mutant that supports growth of Escherichia coli and has GroES-dependent ATPase activity. Kovács E, Sun Z, Liu H, Scott DJ, Karsisiotis AI, Clarke AR, Burston SG, Lund PA. J Mol Biol 396 1271-1283 (2010)
  35. A small molecule inhibitor selective for a variant ATP-binding site of the chaperonin GroEL. Chapman E, Farr GW, Furtak K, Horwich AL. Bioorg Med Chem Lett 19 811-813 (2009)
  36. Probing the sequence of conformationally induced polarity changes in the molecular chaperonin GroEL with fluorescence spectroscopy. Kim SY, Semyonov AN, Twieg RJ, Horwich AL, Frydman J, Moerner WE. J Phys Chem B 109 24517-24525 (2005)
  37. Purification of the recombinant human serotonin N-acetyltransferase (EC 2.3.1.87): further characterization of and comparison with AANAT from other species. Ferry G, Ubeaud C, Dauly C, Mozo J, Guillard S, Berger S, Jimenez S, Scoul C, Leclerc G, Yous S, Delagrange P, Boutin JA. Protein Expr Purif 38 84-98 (2004)
  38. Disulfide formation as a probe of folding in GroEL-GroES reveals correct formation of long-range bonds and editing of incorrect short-range ones. Park ES, Fenton WA, Horwich AL. Proc Natl Acad Sci U S A 104 2145-2150 (2007)
  39. Temperature Regulates Stability, Ligand Binding (Mg2+ and ATP), and Stoichiometry of GroEL-GroES Complexes. Walker TE, Shirzadeh M, Sun HM, McCabe JW, Roth A, Moghadamchargari Z, Clemmer DE, Laganowsky A, Rye H, Russell DH. J Am Chem Soc 144 2667-2678 (2022)
  40. Chaperonins from an Antarctic archaeon are predominantly monomeric: crystal structure of an open state monomer. Pilak O, Harrop SJ, Siddiqui KS, Chong K, De Francisci D, Burg D, Williams TJ, Cavicchioli R, Curmi PM. Environ Microbiol 13 2232-2249 (2011)
  41. Hetero-oligomeric CPN60 resembles highly symmetric group-I chaperonin structure revealed by Cryo-EM. Zhao Q, Zhang X, Sommer F, Ta N, Wang N, Schroda M, Cong Y, Liu C. Plant J 98 798-812 (2019)
  42. Multi-scale simulations provide supporting evidence for the hypothesis of intramolecular protein translocation in GroEL/GroES complexes. Coluzza I, De Simone A, Fraternali F, Frenkel D. PLoS Comput Biol 4 e1000006 (2008)
  43. Productive folding of a tethered protein in the chaperonin GroEL-GroES cage. Motojima F, Yoshida M. Biochem Biophys Res Commun 466 72-75 (2015)
  44. The H/D-exchange kinetics of the Escherichia coli co-chaperonin GroES studied by 2D NMR and DMSO-quenched exchange methods. Chandak MS, Nakamura T, Makabe K, Takenaka T, Mukaiyama A, Chaudhuri TK, Kato K, Kuwajima K. J Mol Biol 425 2541-2560 (2013)
  45. Characterization and expression analysis of the groESL operon of Bartonella bacilliformis. Callison JA, Battisti JM, Sappington KN, Smitherman LS, Minnick MF. Gene 359 53-62 (2005)
  46. Translocation boost protein-folding efficiency of double-barreled chaperonins. Coluzza I, van der Vies SM, Frenkel D. Biophys J 90 3375-3381 (2006)
  47. A dynamic model of long-range conformational adaptations triggered by nucleotide binding in GroEL-GroES. Skjaerven L, Muga A, Reuter N, Martinez A. Proteins 80 2333-2346 (2012)
  48. Autolytic Mycobacterium leprae Hsp65 fragments may act as biological markers for autoimmune diseases. Parada CA, Portaro F, Marengo EB, Klitzke CF, Vicente EJ, Faria M, Sant'Anna OA, Fernandes BL. Microb Pathog 51 268-276 (2011)
  49. SEC-seq: association of molecular signatures with antibody secretion in thousands of single human plasma cells. Cheng RY, de Rutte J, Ito CEK, Ott AR, Bosler L, Kuo WY, Liang J, Hall BE, Rawlings DJ, Di Carlo D, James RG. Nat Commun 14 3567 (2023)
  50. Retardation of Folding Rates of Substrate Proteins in the Nanocage of GroEL. Koculi E, Thirumalai D. Biochemistry 60 460-464 (2021)
  51. Electron paramagnetic resonance and fluorescence studies of the conformation of aspartate aminotransferase bound to GroEL. Berezov A, McNeill MJ, Iriarte A, Martinez-Carrion M. Protein J 24 465-478 (2005)
  52. Histidine-Rich C-Terminal Tail of Mycobacterial GroEL1 and Its Copper Complex─The Impact of Point Mutations. Rola A, Palacios O, Capdevila M, Valensin D, Gumienna-Kontecka E, Potocki S. Inorg Chem 62 6893-6908 (2023)
  53. The Functional Differences between the GroEL Chaperonin of Escherichia coli and the HtpB Chaperonin of Legionella pneumophila Can Be Mapped to Specific Amino Acid Residues. Valenzuela-Valderas KN, Moreno-Hagelsieb G, Rohde JR, Garduño RA. Biomolecules 12 59 (2021)
  54. Biography of Arthur L. Horwich. Davis TH. Proc Natl Acad Sci U S A 101 15002-15004 (2004)
  55. Comparative analysis of the protein folding activities of two chaperonin subunits of Thermococcus strain KS-1: the effects of beryllium fluoride. Yoshida T, Iizuka R, Itami K, Yasunaga T, Sakuraba H, Ohshima T, Yohda M, Maruyama T. Extremophiles 11 225-235 (2007)
  56. Formation of the chaperonin complex studied by 2D NMR spectroscopy. Takenaka T, Nakamura T, Yanaka S, Yagi-Utsumi M, Chandak MS, Takahashi K, Paul S, Makabe K, Arai M, Kato K, Kuwajima K. PLoS One 12 e0187022 (2017)
  57. From Microstates to Macrostates in the Conformational Dynamics of GroEL: A Single-Molecule Förster Resonance Energy Transfer Study. Liebermann DG, Jungwirth J, Riven I, Barak Y, Levy D, Horovitz A, Haran G. J Phys Chem Lett 14 6513-6521 (2023)
  58. Structural basis of substrate progression through the bacterial chaperonin cycle. Gardner S, Darrow MC, Lukoyanova N, Thalassinos K, Saibil HR. Proc Natl Acad Sci U S A 120 e2308933120 (2023)