1pau Citations

The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis.

Abstract

Cysteine proteases related to mammalian interleukin-1 beta converting enzyme (ICE) and to its Caenorhabditis elegans homologue, CED-3, play a critical role in the biochemical events that culminate in apoptosis. We have determined the three-dimensional structure of a complex of the human CED-3 homologue CPP32/apopain with a potent tetrapeptide-aldehyde inhibitor. The protein resembles ICE in overall structure, but its S4 subsite is strikingly different in size and chemical composition. These differences account for the variation in specificity between the ICE- and CED-3-related proteases and enable the design of specific inhibitors that can probe the physiological functions of the proteins and disease states with which they are associated.

Reviews - 1pau mentioned but not cited (3)

  1. Small Molecule Active Site Directed Tools for Studying Human Caspases. Poreba M, Szalek A, Kasperkiewicz P, Rut W, Salvesen GS, Drag M. Chem Rev 115 12546-12629 (2015)
  2. Mechanisms of Proteolytic Enzymes and Their Inhibition in QM/MM Studies. Elsässer B, Goettig P. Int J Mol Sci 22 3232 (2021)
  3. Target-Based Small Molecule Drug Discovery for Colorectal Cancer: A Review of Molecular Pathways and In Silico Studies. Moshawih S, Lim AF, Ardianto C, Goh KW, Kifli N, Goh HP, Jarrar Q, Ming LC. Biomolecules 12 878 (2022)

Articles - 1pau mentioned but not cited (14)

  1. Dissection study on the severe acute respiratory syndrome 3C-like protease reveals the critical role of the extra domain in dimerization of the enzyme: defining the extra domain as a new target for design of highly specific protease inhibitors. Shi J, Wei Z, Song J. J Biol Chem 279 24765-24773 (2004)
  2. Role of loop bundle hydrogen bonds in the maturation and activity of (Pro)caspase-3. Feeney B, Pop C, Swartz P, Mattos C, Clark AC. Biochemistry 45 13249-13263 (2006)
  3. Benchmarking of different molecular docking methods for protein-peptide docking. Agrawal P, Singh H, Srivastava HK, Singh S, Kishore G, Raghava GPS. BMC Bioinformatics 19 426 (2019)
  4. Implication of Caspase-3 as a Common Therapeutic Target for Multineurodegenerative Disorders and Its Inhibition Using Nonpeptidyl Natural Compounds. Khan S, Ahmad K, Alshammari EM, Adnan M, Baig MH, Lohani M, Somvanshi P, Haque S. Biomed Res Int 2015 379817 (2015)
  5. A small molecule compound berberine as an orally active therapeutic candidate against COVID-19 and SARS: A computational and mechanistic study. Wang ZZ, Li K, Maskey AR, Huang W, Toutov AA, Yang N, Srivastava K, Geliebter J, Tiwari R, Miao M, Li XM. FASEB J 35 e21360 (2021)
  6. Caenorhabditis elegans caspase homolog CSP-2 inhibits CED-3 autoactivation and apoptosis in germ cells. Geng X, Zhou QH, Kage-Nakadai E, Shi Y, Yan N, Mitani S, Xue D. Cell Death Differ 16 1385-1394 (2009)
  7. A novel method for evaluation and screening of caspase inhibitory peptides by the amino acid positional fitness score. Yoshimori A, Takasawa R, Tanuma S. BMC Pharmacol 4 7 (2004)
  8. Specificity of a protein-protein interface: local dynamics direct substrate recognition of effector caspases. Fuchs JE, von Grafenstein S, Huber RG, Wallnoefer HG, Liedl KR. Proteins 82 546-555 (2014)
  9. Structural and functional definition of the specificity of a novel caspase-3 inhibitor, Ac-DNLD-CHO. Yoshimori A, Sakai J, Sunaga S, Kobayashi T, Takahashi S, Okita N, Takasawa R, Tanuma S. BMC Pharmacol 7 8 (2007)
  10. Molecular dynamics studies of caspase-3. Sulpizi M, Rothlisberger U, Carloni P. Biophys J 84 2207-2215 (2003)
  11. Using parallelized incremental meta-docking can solve the conformational sampling issue when docking large ligands to proteins. Devaurs D, Antunes DA, Hall-Swan S, Mitchell N, Moll M, Lizée G, Kavraki LE. BMC Mol Cell Biol 20 42 (2019)
  12. Molecular evidence of Zn chelation of the procaspase activating compound B-PAC-1 in B cell lymphoma. Sarkar A, Balakrishnan K, Chen J, Patel V, Neelapu SS, McMurray JS, Gandhi V. Oncotarget 7 3461-3476 (2016)
  13. Pharmacophore modeling and docking studies on some nonpeptide-based caspase-3 inhibitors. Sharma S, Basu A, Agrawal RK. Biomed Res Int 2013 306081 (2013)
  14. A new definition and properties of the similarity value between two protein structures. Saberi Fathi SM. J Biol Phys 42 621-636 (2016)


Reviews citing this publication (54)

  1. Caspases: the executioners of apoptosis. Cohen GM. Biochem J 326 ( Pt 1) 1-16 (1997)
  2. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Earnshaw WC, Martins LM, Kaufmann SH. Annu Rev Biochem 68 383-424 (1999)
  3. Caspases: killer proteases. Nicholson DW, Thornberry NA. Trends Biochem Sci 22 299-306 (1997)
  4. Molecular mechanisms of caspase regulation during apoptosis. Riedl SJ, Shi Y. Nat Rev Mol Cell Biol 5 897-907 (2004)
  5. Mechanisms of caspase activation and inhibition during apoptosis. Shi Y. Mol Cell 9 459-470 (2002)
  6. Apoptosis signaling. Strasser A, O'Connor L, Dixit VM. Annu Rev Biochem 69 217-245 (2000)
  7. Cytochrome C-mediated apoptosis. Jiang X, Wang X. Annu Rev Biochem 73 87-106 (2004)
  8. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM. Prog Neurobiol 65 135-172 (2001)
  9. A decade of caspases. Degterev A, Boyce M, Yuan J. Oncogene 22 8543-8567 (2003)
  10. The machinery of programmed cell death. Zimmermann KC, Bonzon C, Green DR. Pharmacol Ther 92 57-70 (2001)
  11. The protein structures that shape caspase activity, specificity, activation and inhibition. Fuentes-Prior P, Salvesen GS. Biochem J 384 201-232 (2004)
  12. Proteases for cell suicide: functions and regulation of caspases. Chang HY, Yang X. Microbiol Mol Biol Rev 64 821-846 (2000)
  13. Caspases: pharmacological manipulation of cell death. Lavrik IN, Golks A, Krammer PH. J Clin Invest 115 2665-2672 (2005)
  14. Caspases: key players in programmed cell death. Grütter MG. Curr Opin Struct Biol 10 649-655 (2000)
  15. Caspases: key mediators of apoptosis. Thornberry NA. Chem Biol 5 R97-103 (1998)
  16. The role of caspases in development, immunity, and apoptotic signal transduction: lessons from knockout mice. Los M, Wesselborg S, Schulze-Osthoff K. Immunity 10 629-639 (1999)
  17. The Apaf-1 apoptosome: a large caspase-activating complex. Cain K, Bratton SB, Cohen GM. Biochimie 84 203-214 (2002)
  18. The central effectors of cell death in the immune system. Rathmell JC, Thompson CB. Annu Rev Immunol 17 781-828 (1999)
  19. Apoptosis-regulating proteins as targets for drug discovery. Reed JC. Trends Mol Med 7 314-319 (2001)
  20. To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways. Liou AK, Clark RS, Henshall DC, Yin XM, Chen J. Prog Neurobiol 69 103-142 (2003)
  21. Caspases - an update. Chowdhury I, Tharakan B, Bhat GK. Comp Biochem Physiol B Biochem Mol Biol 151 10-27 (2008)
  22. Insights into programmed cell death through structural biology. Fesik SW. Cell 103 273-282 (2000)
  23. In stent restenosis: bane of the stent era. Mitra AK, Agrawal DK. J Clin Pathol 59 232-239 (2006)
  24. Involvement of cellular proteolytic machinery in apoptosis. Zhivotovsky B, Burgess DH, Vanags DM, Orrenius S. Biochem Biophys Res Commun 230 481-488 (1997)
  25. Neuroprotection by the inhibition of apoptosis. Robertson GS, Crocker SJ, Nicholson DW, Schulz JB. Brain Pathol 10 283-292 (2000)
  26. The kiss of death: promises and failures of death receptors and ligands in cancer therapy. Daniel PT, Wieder T, Sturm I, Schulze-Osthoff K. Leukemia 15 1022-1032 (2001)
  27. Mechanisms of apoptosis through structural biology. Yan N, Shi Y. Annu Rev Cell Dev Biol 21 35-56 (2005)
  28. The role of the bcl-2/ced-9 gene family in cancer and general implications of defects in cell death control for tumourigenesis and resistance to chemotherapy. Strasser A, Huang DC, Vaux DL. Biochim Biophys Acta 1333 F151-78 (1997)
  29. The domains of apoptosis: a genomics perspective. Reed JC, Doctor KS, Godzik A. Sci STKE 2004 re9 (2004)
  30. Reprieval from execution: the molecular basis of caspase inhibition. Stennicke HR, Ryan CA, Salvesen GS. Trends Biochem Sci 27 94-101 (2002)
  31. Predicting functional divergence in protein evolution by site-specific rate shifts. Gaucher EA, Gu X, Miyamoto MM, Benner SA. Trends Biochem Sci 27 315-321 (2002)
  32. Targeting apoptotic caspases in cancer. Boice A, Bouchier-Hayes L. Biochim Biophys Acta Mol Cell Res 1867 118688 (2020)
  33. Caspase inhibitors in prevention of apoptosis. Rudel T. Herz 24 236-241 (1999)
  34. Drug discovery opportunities from apoptosis research. Reed JC, Tomaselli KJ. Curr Opin Biotechnol 11 586-592 (2000)
  35. Proteolytic regulation of apoptosis. Kidd VJ, Lahti JM, Teitz T. Semin Cell Dev Biol 11 191-201 (2000)
  36. Structure and zymogen activation of caspases. Donepudi M, Grütter MG. Biophys Chem 101-102 145-153 (2002)
  37. Cell suicide and caspases. Rupinder SK, Gurpreet AK, Manjeet S. Vascul Pharmacol 46 383-393 (2007)
  38. Transcriptional regulation of the BCL-X gene by NF-kappaB is an element of hypoxic responses in the rat brain. Glasgow JN, Qiu J, Rassin D, Grafe M, Wood T, Perez-Pol JR. Neurochem Res 26 647-659 (2001)
  39. Chemical-induced apoptosis: formation of the Apaf-1 apoptosome. Cain K. Drug Metab Rev 35 337-363 (2003)
  40. Apoptosis in zebrafish development. Yamashita M. Comp Biochem Physiol B Biochem Mol Biol 136 731-742 (2003)
  41. Lymphocyte survival--the struggle against death. Arch RH, Thompson CB. Annu Rev Cell Dev Biol 15 113-140 (1999)
  42. Proteolytic signaling by TNFalpha: caspase activation and IkappaB degradation. Hu X. Cytokine 21 286-294 (2003)
  43. Apoptosis: the sculptor of development. Doseff AI. Stem Cells Dev 13 473-483 (2004)
  44. Recent insights into angiogenesis, apoptosis, invasion, and metastasis in colorectal carcinoma. Boedefeld WM, Bland KI, Heslin MJ. Ann Surg Oncol 10 839-851 (2003)
  45. Apoptosis and caspases. Stegh AH, Peter ME. Cardiol Clin 19 13-29 (2001)
  46. Caspase 8: igniting the death machine. Salvesen GS. Structure 7 R225-9 (1999)
  47. The regulation of apoptotic cell death. Amarante-Mendes GP, Green DR. Braz J Med Biol Res 32 1053-1061 (1999)
  48. Involvement of mitochondria in apoptosis. Roucou X, Antonsson B, Martinou JC. Cardiol Clin 19 45-55 (2001)
  49. Anti-viral strategies of cytotoxic T lymphocytes are manifested through a variety of granule-bound pathways of apoptosis induction. Edwards KM, Davis JE, Browne KA, Sutton VR, Trapani JA. Immunol Cell Biol 77 76-89 (1999)
  50. Pathways of apoptosis and the modulation of cell death in cancer. Fisher DE. Hematol Oncol Clin North Am 15 931-56, ix (2001)
  51. One path to cell death in the nervous system. Glasgow J, Perez-Polo R. Neurochem Res 25 1373-1383 (2000)
  52. Activation of apoptosis and its inhibition. Miller DK. Ann N Y Acad Sci 886 132-157 (1999)
  53. Peptides in apoptosis research. Salgado J, García-Sáez AJ, Malet G, Mingarro I, Pérez-Payá E. J Pept Sci 8 543-560 (2002)
  54. Production of active mammalian and viral proteases in bacterial expression systems. Babé LM, Linnevers CJ, Schmidt BF. Biotechnol Genet Eng Rev 17 213-252 (2000)

Articles citing this publication (137)

  1. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC. EMBO J 16 6914-6925 (1997)
  2. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y. J Biol Chem 277 34287-34294 (2002)
  3. Substrate specificities of caspase family proteases. Talanian RV, Quinlan C, Trautz S, Hackett MC, Mankovich JA, Banach D, Ghayur T, Brady KD, Wong WW. J Biol Chem 272 9677-9682 (1997)
  4. Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-beta precursor protein and amyloidogenic A beta peptide formation. Gervais FG, Xu D, Robertson GS, Vaillancourt JP, Zhu Y, Huang J, LeBlanc A, Smith D, Rigby M, Shearman MS, Clarke EE, Zheng H, Van Der Ploeg LH, Ruffolo SC, Thornberry NA, Xanthoudakis S, Zamboni RJ, Roy S, Nicholson DW. Cell 97 395-406 (1999)
  5. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y. Nature 406 855-862 (2000)
  6. Structural basis for the inhibition of caspase-3 by XIAP. Riedl SJ, Renatus M, Schwarzenbacher R, Zhou Q, Sun C, Fesik SW, Liddington RC, Salvesen GS. Cell 104 791-800 (2001)
  7. Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Wang J, Wang J, Zheng L, Lobito A, Chan FK, Dale J, Sneller M, Yao X, Puck JM, Straus SE, Lenardo MJ. Cell 98 47-58 (1999)
  8. Structural basis of caspase-7 inhibition by XIAP. Chai J, Shiozaki E, Srinivasula SM, Wu Q, Datta P, Alnemri ES, Shi Y. Cell 104 769-780 (2001)
  9. Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. Hirata H, Takahashi A, Kobayashi S, Yonehara S, Sawai H, Okazaki T, Yamamoto K, Sasada M. J Exp Med 187 587-600 (1998)
  10. Dimer formation drives the activation of the cell death protease caspase 9. Renatus M, Stennicke HR, Scott FL, Liddington RC, Salvesen GS. Proc Natl Acad Sci U S A 98 14250-14255 (2001)
  11. The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling. Mancini M, Nicholson DW, Roy S, Thornberry NA, Peterson EP, Casciola-Rosen LA, Rosen A. J Cell Biol 140 1485-1495 (1998)
  12. NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Sun C, Cai M, Gunasekera AH, Meadows RP, Wang H, Chen J, Zhang H, Wu W, Xu N, Ng SC, Fesik SW. Nature 401 818-822 (1999)
  13. Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8. Stennicke HR, Renatus M, Meldal M, Salvesen GS. Biochem J 350 Pt 2 563-568 (2000)
  14. Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis. Xanthoudakis S, Roy S, Rasper D, Hennessey T, Aubin Y, Cassady R, Tawa P, Ruel R, Rosen A, Nicholson DW. EMBO J 18 2049-2056 (1999)
  15. Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine. Mitchell DA, Marletta MA. Nat Chem Biol 1 154-158 (2005)
  16. News Caspases: opening the boxes and interpreting the arrows. Salvesen GS. Cell Death Differ 9 3-5 (2002)
  17. Mechanism of the maturation process of SARS-CoV 3CL protease. Hsu MF, Kuo CJ, Chang KT, Chang HC, Chou CC, Ko TP, Shr HL, Chang GG, Wang AH, Liang PH. J Biol Chem 280 31257-31266 (2005)
  18. Discovery of an allosteric site in the caspases. Hardy JA, Lam J, Nguyen JT, O'Brien T, Wells JA. Proc Natl Acad Sci U S A 101 12461-12466 (2004)
  19. Crystal structure of a procaspase-7 zymogen: mechanisms of activation and substrate binding. Chai J, Wu Q, Shiozaki E, Srinivasula SM, Alnemri ES, Shi Y. Cell 107 399-407 (2001)
  20. Inhibition of CPP32-like proteases rescues axotomized retinal ganglion cells from secondary cell death in vivo. Kermer P, Klöcker N, Labes M, Bähr M. J Neurosci 18 4656-4662 (1998)
  21. Identification of a Drosophila melanogaster ICE/CED-3-related protease, drICE. Fraser AG, Evan GI. EMBO J 16 2805-2813 (1997)
  22. Structural basis for the activation of human procaspase-7. Riedl SJ, Fuentes-Prior P, Renatus M, Kairies N, Krapp S, Huber R, Salvesen GS, Bode W. Proc Natl Acad Sci U S A 98 14790-14795 (2001)
  23. The structures of caspases-1, -3, -7 and -8 reveal the basis for substrate and inhibitor selectivity. Wei Y, Fox T, Chambers SP, Sintchak J, Coll JT, Golec JM, Swenson L, Wilson KP, Charifson PS. Chem Biol 7 423-432 (2000)
  24. Caspase-3 in the central nervous system: beyond apoptosis. D'Amelio M, Sheng M, Cecconi F. Trends Neurosci 35 700-709 (2012)
  25. Maintenance of caspase-3 proenzyme dormancy by an intrinsic "safety catch" regulatory tripeptide. Roy S, Bayly CI, Gareau Y, Houtzager VM, Kargman S, Keen SL, Rowland K, Seiden IM, Thornberry NA, Nicholson DW. Proc Natl Acad Sci U S A 98 6132-6137 (2001)
  26. Activation of CPP32 during apoptosis of neurons and astrocytes. Keane RW, Srinivasan A, Foster LM, Testa MP, Ord T, Nonner D, Wang HG, Reed JC, Bredesen DE, Kayalar C. J Neurosci Res 48 168-180 (1997)
  27. Potent and selective nonpeptide inhibitors of caspases 3 and 7 inhibit apoptosis and maintain cell functionality. Lee D, Long SA, Adams JL, Chan G, Vaidya KS, Francis TA, Kikly K, Winkler JD, Sung CM, Debouck C, Richardson S, Levy MA, DeWolf WE, Keller PM, Tomaszek T, Head MS, Ryan MD, Haltiwanger RC, Liang PH, Janson CA, McDevitt PJ, Johanson K, Concha NO, Chan W, Abdel-Meguid SS, Badger AM, Lark MW, Nadeau DP, Suva LJ, Gowen M, Nuttall ME. J Biol Chem 275 16007-16014 (2000)
  28. The atomic-resolution structure of human caspase-8, a key activator of apoptosis. Watt W, Koeplinger KA, Mildner AM, Heinrikson RL, Tomasselli AG, Watenpaugh KD. Structure 7 1135-1143 (1999)
  29. Targeted cell killing by reconstituted caspases. Chelur DS, Chalfie M. Proc Natl Acad Sci U S A 104 2283-2288 (2007)
  30. The three-dimensional structure of caspase-8: an initiator enzyme in apoptosis. Blanchard H, Kodandapani L, Mittl PR, Marco SD, Krebs JF, Wu JC, Tomaselli KJ, Grütter MG. Structure 7 1125-1133 (1999)
  31. In vivo calpain/caspase cross-talk during 3-nitropropionic acid-induced striatal degeneration: implication of a calpain-mediated cleavage of active caspase-3. Bizat N, Hermel JM, Humbert S, Jacquard C, Créminon C, Escartin C, Saudou F, Krajewski S, Hantraye P, Brouillet E. J Biol Chem 278 43245-43253 (2003)
  32. Activation of pro-caspase-7 by serine proteases includes a non-canonical specificity. Zhou Q, Salvesen GS. Biochem J 324 ( Pt 2) 361-364 (1997)
  33. Prediction of the tertiary structure of a caspase-9/inhibitor complex. Chou KC, Tomasselli AG, Heinrikson RL. FEBS Lett 470 249-256 (2000)
  34. Characterization of zebrafish caspase-3 and induction of apoptosis through ceramide generation in fish fathead minnow tailbud cells and zebrafish embryo. Yabu T, Kishi S, Okazaki T, Yamashita M. Biochem J 360 39-47 (2001)
  35. Induction of an apoptotic program in cell-free extracts by 2-chloro-2'-deoxyadenosine 5'-triphosphate and cytochrome c. Leoni LM, Chao Q, Cottam HB, Genini D, Rosenbach M, Carrera CJ, Budihardjo I, Wang X, Carson DA. Proc Natl Acad Sci U S A 95 9567-9571 (1998)
  36. Mutational analysis of the Caenorhabditis elegans cell-death gene ced-3. Shaham S, Reddien PW, Davies B, Horvitz HR. Genetics 153 1655-1671 (1999)
  37. Prediction of the tertiary structure and substrate binding site of caspase-8. Chou KC, Jones D, Heinrikson RL. FEBS Lett 419 49-54 (1997)
  38. Crystal structure of caspase-2, apical initiator of the intrinsic apoptotic pathway. Schweizer A, Briand C, Grutter MG. J Biol Chem 278 42441-42447 (2003)
  39. Functional divergence in the caspase gene family and altered functional constraints: statistical analysis and prediction. Wang Y, Gu X. Genetics 158 1311-1320 (2001)
  40. Caspase-1 (interleukin-1beta-converting enzyme) is inhibited by the human serpin analogue proteinase inhibitor 9. Annand RR, Dahlen JR, Sprecher CA, De Dreu P, Foster DC, Mankovich JA, Talanian RV, Kisiel W, Giegel DA. Biochem J 342 Pt 3 655-665 (1999)
  41. In vivo imaging of S-TRAIL-mediated tumor regression and apoptosis. Shah K, Tung CH, Breakefield XO, Weissleder R. Mol Ther 11 926-931 (2005)
  42. T-cell receptor ligation by peptide/MHC induces activation of a caspase in immature thymocytes: the molecular basis of negative selection. Clayton LK, Ghendler Y, Mizoguchi E, Patch RJ, Ocain TD, Orth K, Bhan AK, Dixit VM, Reinherz EL. EMBO J 16 2282-2293 (1997)
  43. A cloning method for caspase substrates that uses the yeast two-hybrid system: cloning of the antiapoptotic gene gelsolin. Kamada S, Kusano H, Fujita H, Ohtsu M, Koya RC, Kuzumaki N, Tsujimoto Y. Proc Natl Acad Sci U S A 95 8532-8537 (1998)
  44. Crystal structure of baculovirus P35: role of a novel reactive site loop in apoptotic caspase inhibition. Fisher AJ, Cruz Wd, Zoog SJ, Schneider CL, Friesen PD. EMBO J 18 2031-2039 (1999)
  45. Catalytic activity of caspase-3 is required for its degradation: stabilization of the active complex by synthetic inhibitors. Tawa P, Hell K, Giroux A, Grimm E, Han Y, Nicholson DW, Xanthoudakis S. Cell Death Differ 11 439-447 (2004)
  46. Ataxin-2 associates with rough endoplasmic reticulum. van de Loo S, Eich F, Nonis D, Auburger G, Nowock J. Exp Neurol 215 110-118 (2009)
  47. 3D structure modeling of cytochrome P450 2C19 and its implication for personalized drug design. Wang JF, Wei DQ, Li L, Zheng SY, Li YX, Chou KC. Biochem Biophys Res Commun 355 513-519 (2007)
  48. An uncleavable procaspase-3 mutant has a lower catalytic efficiency but an active site similar to that of mature caspase-3. Bose K, Pop C, Feeney B, Clark AC. Biochemistry 42 12298-12310 (2003)
  49. MX1013, a dipeptide caspase inhibitor with potent in vivo antiapoptotic activity. Yang W, Guastella J, Huang JC, Wang Y, Zhang L, Xue D, Tran M, Woodward R, Kasibhatla S, Tseng B, Drewe J, Cai SX. Br J Pharmacol 140 402-412 (2003)
  50. Individual expression of poliovirus 2Apro and 3Cpro induces activation of caspase-3 and PARP cleavage in HeLa cells. Calandria C, Irurzun A, Barco A, Carrasco L. Virus Res 104 39-49 (2004)
  51. Enzyme-responsive PARACEST MRI contrast agents: a new biomedical imaging approach for studies of the proteasome. Yoo B, Raam MS, Rosenblum RM, Pagel MD. Contrast Media Mol Imaging 2 189-198 (2007)
  52. The three-dimensional structure of human granzyme B compared to caspase-3, key mediators of cell death with cleavage specificity for aspartic acid in P1. Rotonda J, Garcia-Calvo M, Bull HG, Geissler WM, McKeever BM, Willoughby CA, Thornberry NA, Becker JW. Chem Biol 8 357-368 (2001)
  53. In vivo imaging of early stage apoptosis by measuring real-time caspase-3/7 activation. Scabini M, Stellari F, Cappella P, Cappella P, Rizzitano S, Texido G, Pesenti E. Apoptosis 16 198-207 (2011)
  54. Interaction with substrate sensitises caspase-3 to inactivation by hydrogen peroxide. Hampton MB, Stamenkovic I, Winterbourn CC. FEBS Lett 517 229-232 (2002)
  55. Intracellular antibody-caspase-mediated cell killing: an approach for application in cancer therapy. Tse E, Rabbitts TH. Proc Natl Acad Sci U S A 97 12266-12271 (2000)
  56. Insights from modeling the 3D structure of H5N1 influenza virus neuraminidase and its binding interactions with ligands. Wei DQ, Du QS, Sun H, Chou KC. Biochem Biophys Res Commun 344 1048-1055 (2006)
  57. Corticotropin-releasing factor (CRF) rapidly suppresses apoptosis by acting upstream of the activation of caspases. Radulovic M, Hippel C, Spiess J. J Neurochem 84 1074-1085 (2003)
  58. Structural and kinetic analysis of caspase-3 reveals role for s5 binding site in substrate recognition. Fang B, Boross PI, Tozser J, Weber IT. J Mol Biol 360 654-666 (2006)
  59. A serine protease is involved in the initiation of DNA damage-induced apoptosis. de Bruin EC, Meersma D, de Wilde J, den Otter I, Schipper EM, Medema JP, Peltenburg LT. Cell Death Differ 10 1204-1212 (2003)
  60. Caspase-8 specificity probed at subsite S(4): crystal structure of the caspase-8-Z-DEVD-cho complex. Blanchard H, Donepudi M, Tschopp M, Kodandapani L, Wu JC, Grütter MG. J Mol Biol 302 9-16 (2000)
  61. Caspase-3 and apoptosis in experimental chronic renal scarring. Yang B, El Nahas AM, Thomas GL, Haylor JL, Watson PF, Wagner B, Johnson TS. Kidney Int 60 1765-1776 (2001)
  62. Extended substrate recognition in caspase-3 revealed by high resolution X-ray structure analysis. Ganesan R, Mittl PR, Jelakovic S, Grütter MG. J Mol Biol 359 1378-1388 (2006)
  63. Nuclear entry of active caspase-3 is facilitated by its p3-recognition-based specific cleavage activity. Luo M, Lu Z, Sun H, Yuan K, Zhang Q, Meng S, Wang F, Guo H, Ju X, Liu Y, Ye T, Lu Z, Zhai Z. Cell Res 20 211-222 (2010)
  64. Confinement of caspase-12 proteolytic activity to autoprocessing. Roy S, Sharom JR, Houde C, Loisel TP, Vaillancourt JP, Shao W, Saleh M, Nicholson DW. Proc Natl Acad Sci U S A 105 4133-4138 (2008)
  65. Highly conserved caspase and Bcl-2 homologues from the sea anemone Aiptasia pallida: lower metazoans as models for the study of apoptosis evolution. Dunn SR, Phillips WS, Spatafora JW, Green DR, Weis VM. J Mol Evol 63 95-107 (2006)
  66. Isolation of AmphiCASP-3/7, an ancestral caspase from amphioxus (Branchiostoma floridae). Evolutionary considerations for vertebrate caspases. Bayascas JR, Yuste VJ, Benito E, Garcia-Fernàndez J, Comella JX. Cell Death Differ 9 1078-1089 (2002)
  67. A biochemical analysis of the activation of the Drosophila caspase DRONC. Dorstyn L, Kumar S. Cell Death Differ 15 461-470 (2008)
  68. A-kinase-anchoring protein 95 functions as a potential carrier for the nuclear translocation of active caspase 3 through an enzyme-substrate-like association. Kamada S, Kikkawa U, Tsujimoto Y, Hunter T. Mol Cell Biol 25 9469-9477 (2005)
  69. Dissecting an allosteric switch in caspase-7 using chemical and mutational probes. Hardy JA, Wells JA. J Biol Chem 284 26063-26069 (2009)
  70. Crystal structure of the apoptotic suppressor CrmA in its cleaved form. Renatus M, Zhou Q, Stennicke HR, Snipas SJ, Turk D, Bankston LA, Liddington RC, Salvesen GS. Structure 8 789-797 (2000)
  71. Folate receptor-mediated intracellular delivery of recombinant caspase-3 for inducing apoptosis. Chul Cho K, Hoon Jeong J, Jung Chung H, Joe CO, Wan Kim S, Gwan Park T. J Control Release 108 121-131 (2005)
  72. Molecular cloning and characterization of a novel caspase-3 variant that attenuates apoptosis induced by proteasome inhibition. Huang Y, Shin NH, Sun Y, Wang KK. Biochem Biophys Res Commun 283 762-769 (2001)
  73. Metalloporphyrins inactivate caspase-3 and -8. Blumenthal SB, Kiemer AK, Tiegs G, Seyfried S, Höltje M, Brandt B, Höltje HD, Zahler S, Vollmar AM. FASEB J 19 1272-1279 (2005)
  74. Development-dependent disappearance of caspase-3 in skeletal muscle is post-transcriptionally regulated. Ruest LB, Khalyfa A, Wang E. J Cell Biochem 86 21-28 (2002)
  75. Nitrite-mediated S-nitrosylation of caspase-3 prevents hypoxia-induced endothelial barrier dysfunction. Lai YC, Pan KT, Chang GF, Hsu CH, Khoo KH, Hung CH, Jiang YJ, Ho FM, Meng TC. Circ Res 109 1375-1386 (2011)
  76. Reassembly of active caspase-3 is facilitated by the propeptide. Feeney B, Clark AC. J Biol Chem 280 39772-39785 (2005)
  77. The short prodomain influences caspase-3 activation in HeLa cells. Meergans T, Hildebrandt AK, Horak D, Haenisch C, Wendel A. Biochem J 349 135-140 (2000)
  78. Distinct Roles of Catalytic Cysteine and Histidine in the Protease and Ligase Mechanisms of Human Legumain As Revealed by DFT-Based QM/MM Simulations. Elsässer B, Zauner FB, Messner J, Soh WT, Dall E, Brandstetter H. ACS Catal 7 5585-5593 (2017)
  79. Inhibition of CED-3 zymogen activation and apoptosis in Caenorhabditis elegans by caspase homolog CSP-3. Geng X, Shi Y, Nakagawa A, Yoshina S, Mitani S, Shi Y, Xue D. Nat Struct Mol Biol 15 1094-1101 (2008)
  80. Conformational restrictions in the active site of unliganded human caspase-3. Ni CZ, Li C, Wu JC, Spada AP, Ely KR. J Mol Recognit 16 121-124 (2003)
  81. Primary hepatocyte apoptosis is unlikely to relate to caspase-3 activity under sustained endogenous oxidative stress. Ishihara Y, Shiba D, Shimamoto N. Free Radic Res 39 163-173 (2005)
  82. Caspase-3 inhibits growth in Saccharomyces cerevisiae without causing cell death. Wright ME, Han DK, Carter L, Fields S, Schwartz SM, Hockenbery DM. FEBS Lett 446 9-14 (1999)
  83. Conformationally constrained inhibitors of caspase-1 (interleukin-1 beta converting enzyme) and of the human CED-3 homologue caspase-3 (CPP32, apopain). Karanewsky DS, Bai X, Linton SD, Krebs JF, Wu J, Pham B, Tomaselli KJ. Bioorg Med Chem Lett 8 2757-2762 (1998)
  84. Recombinant caspase-3 expressed in Pichia pastoris is fully activated and kinetically indistinguishable from the native enzyme. Sun J, Bottomley SP, Kumar S, Bird PI. Biochem Biophys Res Commun 238 920-924 (1997)
  85. Effect of nilvadipine on the cerebral ischemia-induced impairment of spatial memory and hippocampal apoptosis in rats. Iwasaki K, Mishima K, Egashira N, Al-Khatib IH, Ishibashi D, Irie K, Kobayashi H, Egawa T, Fujiwara M. J Pharmacol Sci 93 188-196 (2003)
  86. Substrate-driven mapping of the degradome by comparison of sequence logos. Fuchs JE, von Grafenstein S, Huber RG, Kramer C, Liedl KR. PLoS Comput Biol 9 e1003353 (2013)
  87. Homologous p35 proteins of baculoviruses show distinctive anti-apoptotic activities which correlate with the apoptosis-inducing activity of each virus. Morishima N, Okano K, Shibata T, Maeda S. FEBS Lett 427 144-148 (1998)
  88. Intracellular aggregate formation of dentatorubral-pallidoluysian atrophy (DRPLA) protein with the extended polyglutamine. Miyashita T, Nagao K, Ohmi K, Yanagisawa H, Okamura-Oho Y, Yamada M. Biochem Biophys Res Commun 249 96-102 (1998)
  89. The structure-function relationship in the clostripain family of peptidases. Labrou NE, Rigden DJ. Eur J Biochem 271 983-992 (2004)
  90. Identification of alternative splicing of spinocerebellar ataxia type 2 gene. Affaitati A, de Cristofaro T, Feliciello A, Varrone S. Gene 267 89-93 (2001)
  91. Ionic interactions near the loop L4 are important for maintaining the active-site environment and the dimer stability of (pro)caspase 3. Feeney B, Pop C, Tripathy A, Clark AC. Biochem J 384 515-525 (2004)
  92. Reaction mechanism of caspases: insights from QM/MM Car-Parrinello simulations. Sulpizi M, Laio A, VandeVondele J, Cattaneo A, Rothlisberger U, Carloni P. Proteins 52 212-224 (2003)
  93. Specific inhibition of caspase-3 by a competitive DARPin: molecular mimicry between native and designed inhibitors. Schroeder T, Barandun J, Flütsch A, Briand C, Mittl PR, Grütter MG. Structure 21 277-289 (2013)
  94. Design and synthesis of photochemically controllable caspase-3. Endo M, Nakayama K, Kaida Y, Majima T. Angew Chem Int Ed Engl 43 5643-5645 (2004)
  95. Novel pyrazinone mono-amides as potent and reversible caspase-3 inhibitors. Han Y, Giroux A, Colucci J, Bayly CI, Mckay DJ, Roy S, Xanthoudakis S, Vaillancourt J, Rasper DM, Tam J, Tawa P, Nicholson DW, Zamboni RJ. Bioorg Med Chem Lett 15 1173-1180 (2005)
  96. 17beta-estradiol induces apoptosis in the preosteoclastic FLG 29.1 cell line. Zecchi-Orlandini S, Formigli L, Tani A, Benvenuti S, Fiorelli G, Papucci L, Capaccioli S, Orlandini GE, Brandi ML. Biochem Biophys Res Commun 255 680-685 (1999)
  97. Dipeptidyl aspartyl fluoromethylketones as potent caspase inhibitors: SAR of the N-protecting group. Cai SX, Guan L, Jia S, Wang Y, Yang W, Tseng B, Drewe J. Bioorg Med Chem Lett 14 5295-5300 (2004)
  98. Caspase 8: an efficient method for large-scale autoactivation of recombinant procaspase 8 by matrix adsorption and characterization of the active enzyme. Koeplinger KA, Mildner AM, Leone JW, Wheeler JS, Heinrikson RL, Tomasselli AG. Protein Expr Purif 18 378-387 (2000)
  99. Fanconi anemia complementation group A cells are hypersensitive to chromium(VI)-induced toxicity. Vilcheck SK, O'Brien TJ, Pritchard DE, Ha L, Ceryak S, Fornsaglio JL, Patierno SR. Environ Health Perspect 110 Suppl 5 773-777 (2002)
  100. The structure of procaspase 6 is similar to that of active mature caspase 6. Kang BH, Ko E, Kwon OK, Choi KY. Biochem J 364 629-634 (2002)
  101. Molecular mechanism of apoptosis: prediction of three-dimensional structure of caspase-6 and its interactions by homology modeling. Sattar R, Ali SA, Abbasi A. Biochem Biophys Res Commun 308 497-504 (2003)
  102. Caspase-3-mediated cleavage of Akt: involvement of non-consensus sites and influence of phosphorylation. Jahani-Asl A, Basak A, Tsang BK. FEBS Lett 581 2883-2888 (2007)
  103. 2-Chlorodeoxyadenosine alone and in combination with cyclophosphamide and mitoxantrone induce apoptosis in B chronic lymphocytic leukemia cells in vivo. Rogalińska M, Błoński JZ, Hanausek M, Walaszek Z, Robak T, Kiliańska ZM. Cancer Detect Prev 28 433-442 (2004)
  104. Intracellular delivery of functional proteins via decoration with transporter peptides. Siprashvili Z, Reuter JA, Khavari PA. Mol Ther 9 721-728 (2004)
  105. Rare human Caspase-6-R65W and Caspase-6-G66R variants identify a novel regulatory region of Caspase-6 activity. Tubeleviciute-Aydin A, Zhou L, Sharma G, Soni IV, Savinov SN, Hardy JA, LeBlanc AC. Sci Rep 8 4428 (2018)
  106. Salmonella typhimurium induces apoptosis in human monocyte-derived macrophages. Zhou X, Mantis N, Zhang XR, Potoka DA, Watkins SC, Ford HR. Microbiol Immunol 44 987-995 (2000)
  107. Solid phase synthesis of selective caspase-3 peptide inhibitors. Grimm EL, Roy B, Aspiotis R, Bayly CI, Nicholson DW, Rasper DM, Renaud J, Roy S, Tam J, Tawa P, Vaillancourt JP, Xanthoudakis S, Zamboni RJ. Bioorg Med Chem 12 845-851 (2004)
  108. Thermodynamic, enzymatic and structural effects of removing a salt bridge at the base of loop 4 in (pro)caspase-3. Walters J, Swartz P, Mattos C, Clark AC. Arch Biochem Biophys 508 31-38 (2011)
  109. Activation of caspase 3 during shear stress-induced neutrophil apoptosis on biomaterials. Shive MS, Brodbeck WG, Anderson JM. J Biomed Mater Res 62 163-168 (2002)
  110. Crystal structure of a conserved hypothetical protein from Escherichia coli. Shin DH, Yokota H, Kim R, Kim SH. J Struct Funct Genomics 2 53-66 (2002)
  111. Homogeneous detection of caspase-3 using intrinsic fluorescence resonance energy transfer (iFRET). Kang HJ, Kim JH, Chung SJ. Biosens Bioelectron 67 413-418 (2015)
  112. Inhibition of caspase-9 by stabilized peptides targeting the dimerization interface. Huber KL, Ghosh S, Hardy JA. Biopolymers 98 451-465 (2012)
  113. Apoptosis-inducing effect of recombinant Caspase-3 expressed by constructed eukaryotic vector on gastric cancer cell line SGC7901. Fu YG, Qu YJ, Wu KC, Zhai HH, Liu ZG, Fan DM. World J Gastroenterol 9 1935-1939 (2003)
  114. Dipeptidyl aspartyl fluoromethylketones as potent caspase inhibitors: peptidomimetic replacement of the P2 alpha-amino acid by a alpha-hydroxy acid. Wang Y, Guan L, Jia S, Tseng B, Drewe J, Cai SX. Bioorg Med Chem Lett 15 1379-1383 (2005)
  115. Efficient synthesis, biological evaluation, and docking study of isatin based derivatives as caspase inhibitors. Firoozpour L, Gao L, Moghimi S, Pasalar P, Davoodi J, Wang MW, Rezaei Z, Dadgar A, Yahyavi H, Amanlou M, Foroumadi A. J Enzyme Inhib Med Chem 35 1674-1684 (2020)
  116. In silico identification and crystal structure validation of caspase-3 inhibitors without a P1 aspartic acid moiety. Ganesan R, Jelakovic S, Mittl PR, Caflisch A, Grütter MG. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 842-850 (2011)
  117. Synthesis of novel caspase inhibitors for characterization of the active caspase proteome in vitro and in vivo. Henzing AJ, Dodson H, Reid JM, Kaufmann SH, Baxter RL, Earnshaw WC. J Med Chem 49 7636-7645 (2006)
  118. Human caspase-3 inhibition by Z-tLeu-Asp-H: tLeu(P2) counterbalances Asp(P4) and Glu(P3) specific inhibitor truncation. Colantonio P, Leboffe L, Bolli A, Marino M, Ascenzi P, Luisi G. Biochem Biophys Res Commun 377 757-762 (2008)
  119. A facile method to prepare large quantities of active caspase-3 overexpressed by auto-induction in the C41(DE3) strain. Hwang D, Kim SA, Yang EG, Song HK, Chung HS. Protein Expr Purif 126 104-108 (2016)
  120. Caspase-3 induced apoptosis in transgenic zebrafish. Chakraborty C, Saha G, Sarkar B, Pal S, Chatterjee TK, Sadhu AK. Biotechnol Lett 28 189-196 (2006)
  121. Genomic drug discovery for apoptosis regulation using a new computer screening amino acid complement wave method. Tanuma S, Yoshimori A, Takasawa R. Biol Pharm Bull 27 968-973 (2004)
  122. Molecular insight into the role of the leucine residue on the L2 loop in the catalytic activity of caspases 3 and 7. Kang HJ, Lee YM, Jeong MS, Kim M, Bae KH, Kim SJ, Chung SJ. Biosci Rep 32 305-313 (2012)
  123. Ac-tLeu-Asp-H is the minimal and highly effective human caspase-3 inhibitor: biological and in silico studies. Ferrucci A, Leboffe L, Agamennone M, Di Pizio A, Fiocchetti M, Marino M, Ascenzi P, Luisi G. Amino Acids 47 153-162 (2015)
  124. Biochemical characterization of a Caspase-3 far-red fluorescent probe for non-invasive optical imaging of neuronal apoptosis. Jolivel V, Arthaud S, Botia B, Portal C, Delest B, Clavé G, Leprince J, Romieu A, Renard PY, Touzani O, Ligeret H, Noack P, Massonneau M, Fournier A, Vaudry H, Vaudry D. J Mol Neurosci 54 451-462 (2014)
  125. Effects of n-3 fatty acids on growth and survival of J774 macrophages. Fyfe DJ, Abbey M. Prostaglandins Leukot Essent Fatty Acids 62 201-207 (2000)
  126. Human T cell leukemia cell death by apoptosis-inducing nucleosides from CD57(+) HLA-DR(bright) natural suppressor cell line. Mori T, Li X, Mori E, Guo M. Jpn J Cancer Res 91 629-637 (2000)
  127. Molecular dynamics simulations of structural changes during procaspase 3 activation. Piana S, Rothlisberger U. Proteins 55 932-941 (2004)
  128. Regulation of caspase activation in apoptosis: implications for transformation and drug resistance. Slee EA, Martin SJ. Cytotechnology 27 309-320 (1998)
  129. Establishment of a high-throughput screening system for caspase-3 inhibitors. Park SY, Park SH, Lee IS, Kong JY. Arch Pharm Res 23 246-251 (2000)
  130. Expression of tumour necrosis factor-related apoptosis-inducing ligand and caspase-3 in relation to grade of inflammation and stage of fibrosis in chronic hepatitis C. Piekarska A, Kubiak R, Omulecka A, Szymczak W, Piekarski J. Histopathology 51 597-604 (2007)
  131. Human malignant cell death by apoptosis-inducing nucleosides from the decidua derived CD57(+)HLA-DR(bright) natural suppressor cell line. Mori T, Guo M, Li X, Mori E. J Reprod Immunol 53 289-303 (2002)
  132. Cytotoxic and Genotoxic Activities of Alkaloids from the Bulbs of Griffinia gardneriana and Habranthus itaobinus (Amaryllidaceae). Cole ER, de Andrade JP, Filho JFA, Schmitt EFP, Alves-Araújo A, Bastida J, Endringer DC, de S Borges W, Lacerda V. Anticancer Agents Med Chem 19 707-717 (2019)
  133. Database search strategies used to isolate cell death proteins. Gururajan R, Kidd VJ. Methods 17 275-286 (1999)
  134. Design, synthesis, and in vitro evaluation of aza-peptide aldehydes and ketones as novel and selective protease inhibitors. Corrigan TS, Lotti Diaz LM, Border SE, Ratigan SC, Kasper KQ, Sojka D, Fajtova P, Caffrey CR, Salvesen GS, McElroy CA, Hadad CM, Doğan Ekici Ö. J Enzyme Inhib Med Chem 35 1387-1402 (2020)
  135. Structure-based combinatorial library design: discovery of non-peptidic inhibitors of caspases 3 and 8. Head MS, Ryan MD, Lee D, Feng Y, Janson CA, Concha NO, Keller PM, deWolf WE. J Comput Aided Mol Des 15 1105-1117 (2001)
  136. Human prostate cancer cell death by novel anticancer compounds, apoptosis-inducing nucleosides from CD57+ HLA-DR(bright) natural suppressor cell line. Guo M, Sato E, Jin A, Li X, Mori E, Xu Y, Mori T. Prostate 51 166-174 (2002)
  137. XCP1 cleaves Pathogenesis-related protein 1 into CAPE9 for systemic immunity in Arabidopsis. Chen YL, Lin FW, Cheng KT, Chang CH, Hung SC, Efferth T, Chen YR. Nat Commun 14 4697 (2023)


Related citations provided by authors (1)

  1. Identification and Inhibition of the Ice/Ced-3 Protease Necessary for Mammalian Apoptosis. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, Munday NA, Raju SM, Smulson ME, Yamin TT, Yu VL, Miller DK Nature 376 37- (1995)