1p50 Citations

The putative catalytic bases have, at most, an accessory role in the mechanism of arginine kinase.

Abstract

Arginine kinase is a member of the phosphagen kinase family that includes creatine kinase and likely shares a common reaction mechanism in catalyzing the buffering of cellular ATP energy levels. Abstraction of a proton from the substrate guanidinium by a catalytic base has long been thought to be an early mechanistic step. The structure of arginine kinase as a transition state analog complex (Zhou, G., Somasundaram, T., Blanc, E., Parthasarathy, G., Ellington, W. R., and Chapman, M. S. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 8449-8454) showed that Glu-225 and Glu-314 were the only potential catalytic residues contacting the phosphorylated nitrogen. In the present study, these residues were changed to Asp, Gln, and Val or Ala in several single and multisite mutant enzymes. These mutations had little impact on the substrate binding constants. The effect upon activity varied with reductions in kcat between 3000-fold and less than 2-fold. The retention of significant activity in some mutants contrasts with published studies of homologues and suggests that acid-base catalysis by these residues may enhance the rate but is not absolutely essential. Crystal structures of mutant enzymes E314D at 1.9 A and E225Q at 2.8 A resolution showed that the precise alignment of substrates is subtly distorted. Thus, pre-ordering of substrates might be just as important as acid-base chemistry, electrostatics, or other potential effects in the modest impact of these residues upon catalysis.

Reviews - 1p50 mentioned but not cited (1)

Articles - 1p50 mentioned but not cited (6)

  1. Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Soler Artigas M, Loth DW, Wain LV, Gharib SA, Obeidat M, Tang W, Zhai G, Zhao JH, Smith AV, Huffman JE, Albrecht E, Jackson CM, Evans DM, Cadby G, Fornage M, Manichaikul A, Lopez LM, Johnson T, Aldrich MC, Aspelund T, Barroso I, Campbell H, Cassano PA, Couper DJ, Eiriksdottir G, Franceschini N, Garcia M, Gieger C, Gislason GK, Grkovic I, Hammond CJ, Hancock DB, Harris TB, Ramasamy A, Heckbert SR, Heliövaara M, Homuth G, Hysi PG, James AL, Jankovic S, Joubert BR, Karrasch S, Klopp N, Koch B, Kritchevsky SB, Launer LJ, Liu Y, Loehr LR, Lohman K, Loos RJ, Lumley T, Al Balushi KA, Ang WQ, Barr RG, Beilby J, Blakey JD, Boban M, Boraska V, Brisman J, Britton JR, Brusselle GG, Cooper C, Curjuric I, Dahgam S, Deary IJ, Ebrahim S, Eijgelsheim M, Francks C, Gaysina D, Granell R, Gu X, Hankinson JL, Hardy R, Harris SE, Henderson J, Henry A, Hingorani AD, Hofman A, Holt PG, Hui J, Hunter ML, Imboden M, Jameson KA, Kerr SM, Kolcic I, Kronenberg F, Liu JZ, Marchini J, McKeever T, Morris AD, Olin AC, Porteous DJ, Postma DS, Rich SS, Ring SM, Rivadeneira F, Rochat T, Sayer AA, Sayers I, Sly PD, Smith GD, Sood A, Starr JM, Uitterlinden AG, Vonk JM, Wannamethee SG, Whincup PH, Wijmenga C, Williams OD, Wong A, Mangino M, Marciante KD, McArdle WL, Meibohm B, Morrison AC, North KE, Omenaas E, Palmer LJ, Pietiläinen KH, Pin I, Pola Sbreve Ek O, Pouta A, Psaty BM, Hartikainen AL, Rantanen T, Ripatti S, Rotter JI, Rudan I, Rudnicka AR, Schulz H, Shin SY, Spector TD, Surakka I, Vitart V, Völzke H, Wareham NJ, Warrington NM, Wichmann HE, Wild SH, Wilk JB, Wjst M, Wright AF, Zgaga L, Zemunik T, Pennell CE, Nyberg F, Kuh D, Holloway JW, Boezen HM, Lawlor DA, Morris RW, Probst-Hensch N, International Lung Cancer Consortium, GIANT consortium, Kaprio J, Wilson JF, Hayward C, Kähönen M, Heinrich J, Musk AW, Jarvis DL, Gläser S, Järvelin MR, Ch Stricker BH, Elliott P, O'Connor GT, Strachan DP, London SJ, Hall IP, Gudnason V, Tobin MD. Nat Genet 43 1082-1090 (2011)
  2. A tyrosine kinase and its activator control the activity of the CtsR heat shock repressor in B. subtilis. Kirstein J, Zühlke D, Gerth U, Turgay K, Hecker M. EMBO J 24 3435-3445 (2005)
  3. Possible roles of exceptionally conserved residues around the selectivity filters of sodium and calcium channels. Tikhonov DB, Zhorov BS. J Biol Chem 286 2998-3006 (2011)
  4. Fluoxetine blocks Nav1.5 channels via a mechanism similar to that of class 1 antiarrhythmics. Poulin H, Bruhova I, Timour Q, Theriault O, Beaulieu JM, Frassati D, Chahine M. Mol Pharmacol 86 378-389 (2014)
  5. Crystal structures of TM0549 and NE1324--two orthologs of E. coli AHAS isozyme III small regulatory subunit. Petkowski JJ, Chruszcz M, Zimmerman MD, Zheng H, Skarina T, Onopriyenko O, Cymborowski MT, Koclega KD, Savchenko A, Edwards A, Minor W. Protein Sci 16 1360-1367 (2007)
  6. A New Computer Model for Evaluating the Selective Binding Affinity of Phenylalkylamines to T-Type Ca2+ Channels. Lu Y, Li M. Pharmaceuticals (Basel) 14 141 (2021)


Reviews citing this publication (2)

  1. Chemical biology of protein arginine modifications in epigenetic regulation. Fuhrmann J, Clancy KW, Thompson PR. Chem Rev 115 5413-5461 (2015)
  2. Relating structure to mechanism in creatine kinase. McLeish MJ, Kenyon GL. Crit Rev Biochem Mol Biol 40 1-20 (2005)

Articles citing this publication (29)

  1. Structural studies of human brain-type creatine kinase complexed with the ADP-Mg2+-NO3- -creatine transition-state analogue complex. Bong SM, Moon JH, Nam KH, Lee KS, Chi YM, Hwang KY. FEBS Lett 582 3959-3965 (2008)
  2. Evolution of the arginine kinase gene family. Uda K, Fujimoto N, Akiyama Y, Mizuta K, Tanaka K, Ellington WR, Suzuki T. Comp Biochem Physiol Part D Genomics Proteomics 1 209-218 (2006)
  3. Arginine kinase: joint crystallographic and NMR RDC analyses link substrate-associated motions to intrinsic flexibility. Niu X, Bruschweiler-Li L, Davulcu O, Skalicky JJ, Brüschweiler R, Chapman MS. J Mol Biol 405 479-496 (2011)
  4. Intrinsic domain and loop dynamics commensurate with catalytic turnover in an induced-fit enzyme. Davulcu O, Flynn PF, Chapman MS, Skalicky JJ. Structure 17 1356-1367 (2009)
  5. The crystal structure of Trypanosoma cruzi arginine kinase. Fernandez P, Haouz A, Pereira CA, Aguilar C, Alzari PM. Proteins 69 209-212 (2007)
  6. Metabolic Depression is Delayed and Mitochondrial Impairment Averted during Prolonged Anoxia in the ghost shrimp, Lepidophthalmus louisianensis (Schmitt, 1935). Holman JD, Hand SC. J Exp Mar Biol Ecol 376 85-93 (2009)
  7. Arginine kinase: differentiation of gene expression and protein activity in the red imported fire ant, Solenopsis invicta. Wang H, Zhang L, Zhang L, Lin Q, Liu N. Gene 430 38-43 (2009)
  8. Crystal structure of shrimp arginine kinase in binary complex with arginine-a molecular view of the phosphagen precursor binding to the enzyme. López-Zavala AA, García-Orozco KD, Carrasco-Miranda JS, Sugich-Miranda R, Velázquez-Contreras EF, Criscitiello MF, Brieba LG, Rudiño-Piñera E, Sotelo-Mundo RR. J Bioenerg Biomembr 45 511-518 (2013)
  9. The structure of lombricine kinase: implications for phosphagen kinase conformational changes. Bush DJ, Kirillova O, Clark SA, Davulcu O, Fabiola F, Xie Q, Somasundaram T, Ellington WR, Chapman MS. J Biol Chem 286 9338-9350 (2011)
  10. Exploring the role of the active site cysteine in human muscle creatine kinase. Wang PF, Flynn AJ, Naor MM, Jensen JH, Cui G, Merz KM, Kenyon GL, McLeish MJ. Biochemistry 45 11464-11472 (2006)
  11. Rate-limiting domain and loop motions in arginine kinase. Davulcu O, Skalicky JJ, Chapman MS. Biochemistry 50 4011-4018 (2011)
  12. Phosphagen kinase in Schistosoma japonicum: characterization of its enzymatic properties and determination of its gene structure. Tokuhiro S, Uda K, Yano H, Nagataki M, Jarilla BR, Suzuki T, Agatsuma T. Mol Biochem Parasitol 188 91-98 (2013)
  13. Structure of McsB, a protein kinase for regulated arginine phosphorylation. Suskiewicz MJ, Hajdusits B, Beveridge R, Heuck A, Vu LD, Kurzbauer R, Hauer K, Thoeny V, Rumpel K, Mechtler K, Meinhart A, Clausen T. Nat Chem Biol 15 510-518 (2019)
  14. Crystal structures of arginine kinase in complex with ADP, nitrate, and various phosphagen analogs. Clark SA, Davulcu O, Chapman MS. Biochem Biophys Res Commun 427 212-217 (2012)
  15. The Michaelis Complex of Arginine Kinase Samples the Transition State at a Frequency That Matches the Catalytic Rate. Peng Y, Hansen AL, Bruschweiler-Li L, Davulcu O, Skalicky JJ, Chapman MS, Brüschweiler R. J Am Chem Soc 139 4846-4853 (2017)
  16. Crystallization and X-ray analysis of the Schistosoma mansoni guanidino kinase. Awama AM, Paracuellos P, Laurent S, Dissous C, Marcillat O, Gouet P. Acta Crystallogr Sect F Struct Biol Cryst Commun 64 854-857 (2008)
  17. Molecular cloning and characterization of taurocyamine kinase from Clonorchis sinensis: a candidate chemotherapeutic target. Xiao JY, Lee JY, Tokuhiro S, Nagataki M, Jarilla BR, Nomura H, Kim TI, Hong SJ, Agatsuma T. PLoS Negl Trop Dis 7 e2548 (2013)
  18. Biochemical and structural characterization of a novel arginine kinase from the spider Polybetes pythagoricus. Laino A, Lopez-Zavala AA, Garcia-Orozco KD, Carrasco-Miranda JS, Santana M, Stojanoff V, Sotelo-Mundo RR, Garcia CF. PeerJ 5 e3787 (2017)
  19. The roles of C-terminal loop residues of dimeric arginine kinase from sea cucumber Stichopus japonicus in catalysis, specificity and structure. Zhang JW, Zhao TJ, Wang SL, Guo Q, Liu TT, Zhao F, Wang XC. Int J Biol Macromol 38 203-210 (2006)
  20. The substrate-free and -bound crystal structures of the duplicated taurocyamine kinase from the human parasite Schistosoma mansoni. Merceron R, Awama AM, Montserret R, Marcillat O, Gouet P. J Biol Chem 290 12951-12963 (2015)
  21. Backbone resonance assignments of the 42 kDa enzyme arginine kinase in the transition state analogue form. Davulcu O, Niu X, Brüschweiler-Li L, Brüschweiler R, Skalicky JJ, Chapman MS. Biomol NMR Assign 8 335-338 (2014)
  22. Broad-complex transcription factor mediates opposing hormonal regulation of two phylogenetically distant arginine kinase genes in Tribolium castaneum. Zhang N, Jiang H, Meng X, Qian K, Liu Y, Song Q, Stanley D, Wu J, Park Y, Wang J. Commun Biol 3 631 (2020)
  23. Despite its high similarity with monomeric arginine kinase, muscle creatine kinase is only enzymatically active as a dimer. Awama AM, Mazon H, Vial C, Marcillat O. Arch Biochem Biophys 458 158-166 (2007)
  24. First proteomic analysis of the role of lysine acetylation in extensive functions in Solenopsis invicta. Ye J, Li J. PLoS One 15 e0243787 (2020)
  25. Phosphagen kinase in Schistosoma japonicum: II. Determination of amino acid residues essential for substrate catalysis using site-directed mutagenesis. Tokuhiro S, Nagataki M, Jarilla BR, Uda K, Suzuki T, Sugiura T, Agatsuma T. Mol Biochem Parasitol 194 56-63 (2014)
  26. Common hydrogen bond interactions in diverse phosphoryl transfer active sites. Summerton JC, Martin GM, Evanseck JD, Chapman MS. PLoS One 9 e108310 (2014)
  27. Insight into Structural Aspects of Histidine 284 of Daphnia magna Arginine Kinase. Rao Z, Kim SY, Li X, Kim DS, Kim YJ, Park JH. Mol Cells 43 784-792 (2020)
  28. Sorted gene genealogies and species-specific nonsynonymous substitutions point to putative postmating prezygotic isolation genes in Allonemobius crickets. Noh S, Marshall JL. PeerJ 4 e1678 (2016)
  29. RNAi-mediated knockdown of arginine kinase genes leads to high mortality and negatively affect reproduction and blood-feeding behavior of Culex pipiens pallens. Qian K, Guan Q, Zhang H, Zhang N, Meng X, Liu H, Wang J. PLoS Negl Trop Dis 16 e0010954 (2022)