1oya Citations

Old yellow enzyme at 2 A resolution: overall structure, ligand binding, and comparison with related flavoproteins.

Structure 2 1089-105 (1994)
Related entries: 1oyc, 1oyb

Cited: 81 times
EuropePMC logo PMID: 7881908

Abstract

Background

Old yellow enzyme (OYE) was the first flavoenzyme purified, but its function is still unknown. Nevertheless, the NADPH oxidase activity, the flavin mononucleotide environment and the ligand-binding properties of OYE have been extensively studied by biochemical and spectroscopic approaches. Full interpretation of these data requires structural information.

Results

The crystal structures of oxidized and reduced OYE at 2 A resolution reveal an alpha/beta-barrel topology clearly related to trimethylamine dehydrogenase. Complexes of OYE with p-hydroxybenzaldehyde, beta-estradiol, and an NADPH analog show all three binding at a common site, stacked on the flavin. The putative NADPH binding mode is novel as it involves primary recognition of the nicotinamide mononucleotide portion.

Conclusion

This work shows that the striking spectral changes seen upon phenol binding are due to close physical association of the flavin and phenolate. It also identifies the structural class of OYE and suggests that if NADPH is its true substrate, then OYE has adopted NADPH dependence during evolution.

Articles - 1oya mentioned but not cited (2)

  1. The combined structural and kinetic characterization of a bacterial nitronate monooxygenase from Pseudomonas aeruginosa PAO1 establishes NMO class I and II. Salvi F, Agniswamy J, Yuan H, Vercammen K, Pelicaen R, Cornelis P, Spain JC, Weber IT, Gadda G. J. Biol. Chem. 289 23764-23775 (2014)
  2. Structure of an Aspergillus fumigatus old yellow enzyme (EasA) involved in ergot alkaloid biosynthesis. Chilton AS, Ellis AL, Lamb AL. Acta Crystallogr F Struct Biol Commun 70 1328-1332 (2014)


Reviews citing this publication (5)

  1. The flavoproteome of the yeast Saccharomyces cerevisiae. Gudipati V, Koch K, Lienhart WD, Macheroux P. Biochim. Biophys. Acta 1844 535-544 (2014)
  2. Reduction of polynitroaromatic compounds: the bacterial nitroreductases. Roldán MD, Pérez-Reinado E, Castillo F, Moreno-Vivián C. FEMS Microbiol. Rev. 32 474-500 (2008)
  3. Out of the blue: the photocycle of the photoactive yellow protein. Schlichting I, Berendzen J. Structure 5 735-739 (1997)
  4. alpha-Amylase family: molecular biology and evolution. Janecek S. Prog. Biophys. Mol. Biol. 67 67-97 (1997)
  5. Structure of bacterial luciferase. Baldwin TO, Christopher JA, Raushel FM, Sinclair JF, Ziegler MM, Fisher AJ, Rayment I. Curr. Opin. Struct. Biol. 5 798-809 (1995)

Articles citing this publication (74)

  1. Cloning and sequence analysis of two Pseudomonas flavoprotein xenobiotic reductases. Blehert DS, Fox BG, Chambliss GH. J. Bacteriol. 181 6254-6263 (1999)
  2. Crystal structures and inhibitor binding in the octameric flavoenzyme vanillyl-alcohol oxidase: the shape of the active-site cavity controls substrate specificity. Mattevi A, Fraaije MW, Mozzarelli A, Olivi L, Coda A, van Berkel WJ. Structure 5 907-920 (1997)
  3. Biotransformation of explosives by the old yellow enzyme family of flavoproteins. Williams RE, Rathbone DA, Scrutton NS, Bruce NC. Appl. Environ. Microbiol. 70 3566-3574 (2004)
  4. The subunit interfaces of weakly associated homodimeric proteins. Dey S, Pal A, Chakrabarti P, Janin J. J. Mol. Biol. 398 146-160 (2010)
  5. Sequence and properties of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2. French CE, Nicklin S, Bruce NC. J. Bacteriol. 178 6623-6627 (1996)
  6. Crystal structure of reduced thioredoxin reductase from Escherichia coli: structural flexibility in the isoalloxazine ring of the flavin adenine dinucleotide cofactor. Lennon BW, Williams CH, Ludwig ML. Protein Sci. 8 2366-2379 (1999)
  7. The crystal structure of the flavin containing enzyme dihydroorotate dehydrogenase A from Lactococcus lactis. Rowland P, Nielsen FS, Jensen KF, Larsen S. Structure 5 239-252 (1997)
  8. Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase. Li L, Liu X, Yang W, Xu F, Wang W, Feng L, Bartlam M, Wang L, Rao Z. J. Mol. Biol. 376 453-465 (2008)
  9. Asymmetric Reduction of Activated Alkenes by Pentaerythritol Tetranitrate Reductase: Specificity and Control of Stereochemical Outcome by Reaction Optimisation. Fryszkowska A, Toogood H, Sakuma M, Gardiner JM, Stephens GM, Scrutton NS. Adv. Synth. Catal. 351 2976-2990 (2009)
  10. Crystal structure of pentaerythritol tetranitrate reductase: "flipped" binding geometries for steroid substrates in different redox states of the enzyme. Barna TM, Khan H, Bruce NC, Barsukov I, Scrutton NS, Moody PC. J. Mol. Biol. 310 433-447 (2001)
  11. 1.8 A crystal structure of the major NAD(P)H:FMN oxidoreductase of a bioluminescent bacterium, Vibrio fischeri: overall structure, cofactor and substrate-analog binding, and comparison with related flavoproteins. Koike H, Sasaki H, Kobori T, Zenno S, Saigo K, Murphy ME, Adman ET, Tanokura M. J. Mol. Biol. 280 259-273 (1998)
  12. Deletion of copies of the gene encoding old yellow enzyme (TcOYE), a NAD(P)H flavin oxidoreductase, associates with in vitro-induced benznidazole resistance in Trypanosoma cruzi. Murta SM, Krieger MA, Montenegro LR, Campos FF, Probst CM, Avila AR, Muto NH, de Oliveira RC, Nunes LR, Nirdé P, Bruna-Romero O, Goldenberg S, Romanha AJ. Mol. Biochem. Parasitol. 146 151-162 (2006)
  13. A second FMN binding site in yeast NADPH-cytochrome P450 reductase suggests a mechanism of electron transfer by diflavin reductases. Lamb DC, Kim Y, Yermalitskaya LV, Yermalitsky VN, Lepesheva GI, Kelly SL, Waterman MR, Podust LM. Structure 14 51-61 (2006)
  14. Asymmetric alkene reduction by yeast old yellow enzymes and by a novel Zymomonas mobilis reductase. Müller A, Hauer B, Rosche B. Biotechnol. Bioeng. 98 22-29 (2007)
  15. X-ray structure of 12-oxophytodienoate reductase 1 provides structural insight into substrate binding and specificity within the family of OYE. Breithaupt C, Strassner J, Breitinger U, Huber R, Macheroux P, Schaller A, Clausen T. Structure 9 419-429 (2001)
  16. Purification, properties, and sequence of glycerol trinitrate reductase from Agrobacterium radiobacter. Snape JR, Walkley NA, Morby AP, Nicklin S, White GF. J. Bacteriol. 179 7796-7802 (1997)
  17. Old yellow enzyme protects the actin cytoskeleton from oxidative stress. Haarer BK, Amberg DC. Mol. Biol. Cell 15 4522-4531 (2004)
  18. Molecular mechanism of the redox-dependent interaction between NADH-dependent ferredoxin reductase and Rieske-type [2Fe-2S] ferredoxin. Senda M, Kishigami S, Kimura S, Fukuda M, Ishida T, Senda T. J. Mol. Biol. 373 382-400 (2007)
  19. Barrel structures in proteins: automatic identification and classification including a sequence analysis of TIM barrels. Nagano N, Hutchinson EG, Thornton JM. Protein Sci. 8 2072-2084 (1999)
  20. Old yellow enzyme: stepwise reduction of nitro-olefins and catalysis of aci-nitro tautomerization. Meah Y, Massey V. Proc. Natl. Acad. Sci. U.S.A. 97 10733-10738 (2000)
  21. Structure-Based Insight into the Asymmetric Bioreduction of the C=C Double Bond of alpha,beta-Unsaturated Nitroalkenes by Pentaerythritol Tetranitrate Reductase. Toogood HS, Fryszkowska A, Hare V, Fisher K, Roujeinikova A, Leys D, Gardiner JM, Stephens GM, Scrutton NS. Adv. Synth. Catal. 350 2789-2803 (2008)
  22. X-ray structure of Escherichia coli pyridoxine 5'-phosphate oxidase complexed with pyridoxal 5'-phosphate at 2.0 A resolution. Safo MK, Musayev FN, di Salvo ML, Schirch V. J. Mol. Biol. 310 817-826 (2001)
  23. Regioselectivity of nitroglycerin denitration by flavoprotein nitroester reductases purified from two Pseudomonas species. Blehert DS, Knoke KL, Fox BG, Chambliss GH. J. Bacteriol. 179 6912-6920 (1997)
  24. Xenobiotic reductase A in the degradation of quinoline by Pseudomonas putida 86: physiological function, structure and mechanism of 8-hydroxycoumarin reduction. Griese JJ, P Jakob R, Schwarzinger S, Dobbek H. J. Mol. Biol. 361 140-152 (2006)
  25. The role of threonine 37 in flavin reactivity of the old yellow enzyme. Xu D, Kohli RM, Massey V. Proc. Natl. Acad. Sci. U.S.A. 96 3556-3561 (1999)
  26. Coenzyme binding in F420-dependent secondary alcohol dehydrogenase, a member of the bacterial luciferase family. Aufhammer SW, Warkentin E, Berk H, Shima S, Thauer RK, Ermler U. Structure 12 361-370 (2004)
  27. Proton transfer in the oxidative half-reaction of pentaerythritol tetranitrate reductase. Structure of the reduced enzyme-progesterone complex and the roles of residues Tyr186, His181, His184. Khan H, Barna T, Bruce NC, Munro AW, Leys D, Scrutton NS. FEBS J. 272 4660-4671 (2005)
  28. Nitroreductase from Salmonella typhimurium: characterization and catalytic activity. Yanto Y, Hall M, Bommarius AS. Org. Biomol. Chem. 8 1826-1832 (2010)
  29. Biochemical characterization of trinitrotoluene transforming oxygen-insensitive nitroreductases from Clostridium acetobutylicum ATCC 824. Kutty R, Bennett GN. Arch. Microbiol. 184 158-167 (2005)
  30. Bioreduction of alpha-methylcinnamaldehyde derivatives: chemo-enzymatic asymmetric synthesis of Lilial and Helional. Stueckler C, Mueller NJ, Winkler CK, Glueck SM, Gruber K, Steinkellner G, Faber K. Dalton Trans 39 8472-8476 (2010)
  31. Old yellow enzyme: reduction of nitrate esters, glycerin trinitrate, and propylene 1,2-dinitrate. Meah Y, Brown BJ, Chakraborty S, Massey V. Proc. Natl. Acad. Sci. U.S.A. 98 8560-8565 (2001)
  32. Are the genes nadA and norB involved in formation of aflatoxin G(1)? Ehrlich KC, Scharfenstein LL, Montalbano BG, Chang PK. Int J Mol Sci 9 1717-1729 (2008)
  33. Cysteine as a modulator residue in the active site of xenobiotic reductase A: a structural, thermodynamic and kinetic study. Spiegelhauer O, Mende S, Dickert F, Knauer SH, Ullmann GM, Dobbek H. J. Mol. Biol. 398 66-82 (2010)
  34. Thermoregulated expression and characterization of an NAD(P)H-dependent 2-cyclohexen-1-one reductase in the plant pathogenic bacterium Pseudomonas syringae pv. glycinea. Rohde BH, Schmid R, Ullrich MS. J. Bacteriol. 181 814-822 (1999)
  35. A site-saturated mutagenesis study of pentaerythritol tetranitrate reductase reveals that residues 181 and 184 influence ligand binding, stereochemistry and reactivity. Toogood HS, Fryszkowska A, Hulley M, Sakuma M, Mansell D, Stephens GM, Gardiner JM, Scrutton NS. Chembiochem 12 738-749 (2011)
  36. Asymmetric reduction of activated alkenes using an enoate reductase from Gluconobacter oxydans. Richter N, Gröger H, Hummel W. Appl. Microbiol. Biotechnol. 89 79-89 (2011)
  37. Old yellow enzyme interferes with Bax-induced NADPH loss and lipid peroxidation in yeast. Reekmans R, De Smet K, Chen C, Van Hummelen P, Contreras R. FEMS Yeast Res. 5 711-725 (2005)
  38. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations. Steinkellner G, Gruber CC, Pavkov-Keller T, Binter A, Steiner K, Winkler C, Lyskowski A, Schwamberger O, Oberer M, Schwab H, Faber K, Macheroux P, Gruber K. Nat Commun 5 4150 (2014)
  39. A Rhizobium selenitireducens protein showing selenite reductase activity. Hunter WJ. Curr. Microbiol. 68 311-316 (2014)
  40. Crystal structure determination and mutagenesis analysis of the ene reductase NCR. Reich S, Hoeffken HW, Rosche B, Nestl BM, Hauer B. Chembiochem 13 2400-2407 (2012)
  41. Focused directed evolution of pentaerythritol tetranitrate reductase by using automated anaerobic kinetic screening of site-saturated libraries. Hulley ME, Toogood HS, Fryszkowska A, Mansell D, Stephens GM, Gardiner JM, Scrutton NS. Chembiochem 11 2433-2447 (2010)
  42. Insights into substrate specificity of geranylgeranyl reductases revealed by the structure of digeranylgeranylglycerophospholipid reductase, an essential enzyme in the biosynthesis of archaeal membrane lipids. Xu Q, Eguchi T, Mathews II, Rife CL, Chiu HJ, Farr CL, Feuerhelm J, Jaroszewski L, Klock HE, Knuth MW, Miller MD, Weekes D, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Wilson IA. J. Mol. Biol. 404 403-417 (2010)
  43. Reduction of aliphatic nitroesters and N-nitramines by Enterobacter cloacae PB2 pentaerythritol tetranitrate reductase: quantitative structure-activity relationships. Nivinskas H, Sarlauskas J, Anusevicius Z, Toogood HS, Scrutton NS, Cenas N. FEBS J. 275 6192-6203 (2008)
  44. Geometric restraint drives on- and off-pathway catalysis by the Escherichia coli menaquinol:fumarate reductase. Tomasiak TM, Archuleta TL, Andréll J, Luna-Chávez C, Davis TA, Sarwar M, Ham AJ, McDonald WH, Yankovskaya V, Stern HA, Johnston JN, Maklashina E, Cecchini G, Iverson TM. J. Biol. Chem. 286 3047-3056 (2011)
  45. Invariant glycines and prolines flanking in loops the strand beta 2 of various (alpha/beta)8-barrel enzymes: a hidden homology? Janecek S. Protein Sci. 5 1136-1143 (1996)
  46. Vinyl ketone reduction by three distinct Gluconobacter oxydans 621H enzymes. Schweiger P, Gross H, Wesener S, Deppenmeier U. Appl. Microbiol. Biotechnol. 80 995-1006 (2008)
  47. Variations in the stability of NCR ene reductase by rational enzyme loop modulation. Reich S, Kress N, Nestl BM, Hauer B. J. Struct. Biol. 185 228-233 (2014)
  48. A substrate-driven approach to determine reactivities of α,β-unsaturated carboxylic esters towards asymmetric bioreduction. Tasnádi G, Winkler CK, Clay D, Sultana N, Fabian WM, Hall M, Ditrich K, Faber K. Chemistry 18 10362-10367 (2012)
  49. Characterization of glycerol trinitrate reductase (NerA) and the catalytic role of active-site residues. Marshall SJ, Krause D, Blencowe DK, White GF. J. Bacteriol. 186 1802-1810 (2004)
  50. Better than Nature: Nicotinamide Biomimetics That Outperform Natural Coenzymes. Knaus T, Paul CE, Levy CW, de Vries S, Mutti FG, Hollmann F, Scrutton NS. J. Am. Chem. Soc. 138 1033-1039 (2016)
  51. Bipartite recognition and conformational sampling mechanisms for hydride transfer from nicotinamide coenzyme to FMN in pentaerythritol tetranitrate reductase. Pudney CR, Hay S, Scrutton NS. FEBS J. 276 4780-4789 (2009)
  52. Stereospecific alkyne reduction: novel activity of old yellow enzymes. Müller A, Stürmer R, Hauer B, Rosche B. Angew. Chem. Int. Ed. Engl. 46 3316-3318 (2007)
  53. X-ray structure of Arabidopsis At2g06050, 12-oxophytodienoate reductase isoform 3. Malone TE, Madson SE, Wrobel RL, Jeon WB, Rosenberg NS, Johnson KA, Bingman CA, Smith DW, Phillips GN, Markley JL, Fox BG. Proteins 58 243-245 (2005)
  54. X-ray structure of Arabidopsis At1g77680, 12-oxophytodienoate reductase isoform 1. Fox BG, Malone TE, Johnson KA, Madson SE, Aceti D, Bingman CA, Blommel PG, Buchan B, Burns B, Cao J, Cornilescu C, Doreleijers J, Ellefson J, Frederick R, Geetha H, Hruby D, Jeon WB, Kimball T, Kunert J, Markley JL, Newman C, Olson A, Peterson FC, Phillips GN, Primm J, Ramirez B, Rosenberg NS, Runnels M, Seder K, Shaw J, Smith DW, Sreenath H, Song J, Sussman MR, Thao S, Troestler D, Tyler E, Tyler R, Ulrich E, Vinarov D, Vojtik F, Volkman BF, Wesenberg G, Wrobel RL, Zhang J, Zhao Q, Zolnai Z. Proteins 61 206-208 (2005)
  55. Biodegradation of the organic disulfide 4,4'-dithiodibutyric acid by Rhodococcus spp. Khairy H, Wübbeler JH, Steinbüchel A. Appl. Environ. Microbiol. 81 8294-8306 (2015)
  56. Comparative structural modeling of six old yellow enzymes (OYEs) from the necrotrophic fungus Ascochyta rabiei: insight into novel OYE classes with differences in cofactor binding, organization of active site residues and stereopreferences. Nizam S, Gazara RK, Verma S, Singh K, Verma PK. PLoS ONE 9 e95989 (2014)
  57. Comparative characterization, expression pattern and function analysis of the 12-oxo-phytodienoic acid reductase gene family in rice. Li W, Zhou F, Liu B, Feng D, He Y, Qi K, Wang H, Wang J. Plant Cell Rep. 30 981-995 (2011)
  58. The structure of glycerol trinitrate reductase NerA from Agrobacterium radiobacter reveals the molecular reason for nitro- and ene-reductase activity in OYE homologues. Oberdorfer G, Binter A, Wallner S, Durchschein K, Hall M, Faber K, Macheroux P, Gruber K. Chembiochem 14 836-845 (2013)
  59. Three-dimensional model of the alpha-subunit of bacterial luciferase. Sandalova T, Lindqvist Y. Proteins 23 241-255 (1995)
  60. Functional characterization and stability improvement of a 'thermophilic-like' ene-reductase from Rhodococcus opacus 1CP. Riedel A, Mehnert M, Paul CE, Westphal AH, van Berkel WJ, Tischler D. Front Microbiol 6 1073 (2015)
  61. STRUCTURAL AND FUNCTIONAL CONSEQUENCES OF CIRCULAR PERMUTATION ON THE ACTIVE SITE OF OLD YELLOW ENZYME. Daugherty AB, Horton JR, Cheng X, Lutz S. ACS Catal 5 892-899 (2015)
  62. An engineered old yellow enzyme that enables efficient synthesis of (4R,6R)-Actinol in a one-pot reduction system. Horita S, Kataoka M, Kitamura N, Nakagawa T, Miyakawa T, Ohtsuka J, Nagata K, Shimizu S, Tanokura M. Chembiochem 16 440-445 (2015)
  63. Comprehensive genome-wide analysis reveals different classes of enigmatic old yellow enzyme in fungi. Nizam S, Verma S, Borah NN, Gazara RK, Verma PK. Sci Rep 4 4013 (2014)
  64. An enoate reductase Achr-OYE4 from Achromobacter sp. JA81: characterization and application in asymmetric bioreduction of C=C bonds. Wang HB, Pei XQ, Wu ZL. Appl. Microbiol. Biotechnol. 98 705-715 (2014)
  65. Further computational studies on the conformation of 1,5-dihydrolumiflavin. Rizzo CJ. Antioxid. Redox Signal. 3 737-746 (2001)
  66. Loop-Grafted Old Yellow Enzymes in the Bienzymatic Cascade Reduction of Allylic Alcohols. Reich S, Nestl BM, Hauer B. Chembiochem 17 561-565 (2016)
  67. Engineering towards nitroreductase functionality in ene-reductase scaffolds. Park JT, Gómez Ramos LM, Bommarius AS. Chembiochem 16 811-818 (2015)
  68. Pichia stipitis OYE 2.6 variants with improved catalytic efficiencies from site-saturation mutagenesis libraries. Patterson-Orazem A, Sullivan B, Stewart JD. Bioorg. Med. Chem. 22 5628-5632 (2014)
  69. Recombinant S. cerevisiae expressing Old Yellow Enzymes from non-conventional yeasts: an easy system for selective reduction of activated alkenes. Romano D, Contente ML, Molinari F, Eberini I, Ruvutuso E, Sensi C, Amaretti A, Rossi M, Raimondi S. Microb. Cell Fact. 13 60 (2014)
  70. NAD(P)H-independent asymmetric C=C bond reduction catalyzed by ene reductases by using artificial co-substrates as the hydrogen donor. Winkler CK, Clay D, Entner M, Plank M, Faber K. Chemistry 20 1403-1409 (2014)
  71. Structural insights into stereospecific reduction of α, β-unsaturated carbonyl substrates by old yellow enzyme from Gluconobacter oxydans. Yin B, Deng J, Lim L, Yuan YA, Wei D. Biosci. Biotechnol. Biochem. 79 410-421 (2015)
  72. α,β-Dicarbonyl reduction is mediated by the Saccharomyces Old Yellow Enzyme. van Bergen B, Cyr N, Strasser R, Blanchette M, Sheppard JD, Jardim A. FEMS Yeast Res. 16 (2016)
  73. Sequential Enzymatic Conversion of α-Angelica Lactone to γ-Valerolactone through Hydride-Independent C=C Bond Isomerization. Turrini NG, Eger E, Reiter TC, Faber K, Hall M. ChemSusChem 9 3393-3396 (2016)
  74. Mycobacterial F420H2-Dependent Reductases Promiscuously Reduce Diverse Compounds through a Common Mechanism. Greening C, Jirapanjawat T, Afroze S, Ney B, Scott C, Pandey G, Lee BM, Russell RJ, Jackson CJ, Oakeshott JG, Taylor MC, Warden AC. Front Microbiol 8 1000 (2017)