1os4 Citations

Lessons from an aged, dried crystal of T(6) human insulin.

Acta Crystallogr D Biol Crystallogr 59 1384-94 (2003)
Cited: 7 times
EuropePMC logo PMID: 12876340

Abstract

The structure of the T(6) hexameric form of human insulin has been determined at both room temperature and 100 K from a single air-dried crystal. At 100 K, the space group is R3 and the asymmetric unit consists of a dimer, as has been observed previously in hydrated structures. At room temperature, the space group is P1 and the unit cell contains a quasi-threefold-symmetric hexamer. In the absence of stabilizing water interactions, the N-termini of all six A chains in the room-temperature structure appear to have undergone partial unfolding, but the N-termini of these chains are well ordered in the 100 K structure. Other differences between the room-temperature and 100 K structures involve the coordination around the zinc ions. At 100 K, both zinc ions clearly exhibit dual coordination: zinc is octahedrally coordinated in one half of the zinc sites but tetrahedrally coordinated in the other half; at room temperature, the electron densities suggest tetrahedral coordination but the bond distances to the fourth ligands are longer than expected. Contrary to what has been observed to date in all other T(6) insulin structures, there are no contacts between pairs of GluB13 residues, either at room temperature or at 100 K, that would suggest the presence of a hydrogen bond. At room temperature, three of the six independent GluB13 side chains are disordered; at 100 K, both independent side chains are disordered. The disorder in the GluB13 side chains and the lack of contacts between carboxylate groups suggests that as a result of disruption of the hydration structure in the central core of the hexamer, all six B13 carboxylates bear a negative charge. This in turn suggests that in the hydrated structures the well ordered water structure in the central core is involved in stabilizing the B13 side-chain conformations and modulating charge repulsions among the six B13 glutamates if they are not protonated, or that, as is considered more likely, the water structure plays an important role in modulating the pK(a) values of the B13 glutamates, resulting in protonation and hydrogen-bond formation.

Reviews citing this publication (2)

Articles citing this publication (5)

  1. Is the spin-orbit coupling important in the prediction of the 51V hyperfine coupling constants of V(IV) O2+ species? ORCA versus Gaussian performance and biological applications. Micera G, Garribba E. J Comput Chem 32 2822-2835 (2011)
  2. Quantitative symmetry and chirality--a fast computational algorithm for large structures: proteins, macromolecules, nanotubes, and unit cells. Dryzun C, Zait A, Avnir D. J Comput Chem 32 2526-2538 (2011)
  3. Adsorption of human insulin on single-crystal gold surfaces investigated by in situ scanning tunnelling microscopy and electrochemistry. Welinder AC, Zhang J, Steensgaard DB, Ulstrup J. Phys Chem Chem Phys 12 9999-10011 (2010)
  4. Metal induced structural changes observed in hexameric insulin. Sreekanth R, Pattabhi V, Rajan SS. Int J Biol Macromol 44 29-36 (2009)
  5. Serial macromolecular crystallography at ALBA Synchrotron Light Source. Martin-Garcia JM, Botha S, Hu H, Jernigan R, CastellvĂ­ A, Lisova S, Gil F, Calisto B, Crespo I, Roy-Chowdhury S, Grieco A, Ketawala G, Weierstall U, Spence J, Fromme P, Zatsepin N, Boer DR, Carpena X. J Synchrotron Radiat 29 896-907 (2022)


Related citations provided by authors (3)

  1. The structure of T6 human insulin at 1.0 A resolution.. Smith GD, Pangborn WA, Blessing RH Acta Crystallogr. D Biol. Crystallogr. 59 474-482 (2003)
  2. The structure of 2Zn pig insulin crystals at 1.5 A resoltuion.. Baker EN, Blundel TL, Cutfield JF, Cutfield SM, Dodson EJ, Dodson GG, Hodgkin DMC, Hubbard RE, Isaacs NW, Reynolds CD Philos. Trans. R. Soc. London,Ser. B 319 369-456 (1988)
  3. Structure of insulin: Results of joint neutron and X-ray refinement.. Wlodawer A, Savage H, Dodson G Acta Crystallogr., B 45 99-107 (1989)