1oez Citations

Amyloid-like filaments and water-filled nanotubes formed by SOD1 mutant proteins linked to familial ALS.

Nat Struct Biol 10 461-7 (2003)
Related entries: 1ozt, 1ozu

Cited: 200 times
EuropePMC logo PMID: 12754496

Abstract

Mutations in the SOD1 gene cause the autosomal dominant, neurodegenerative disorder familial amyotrophic lateral sclerosis (FALS). In spinal cord neurons of human FALS patients and in transgenic mice expressing these mutant proteins, aggregates containing FALS SOD1 are observed. Accumulation of SOD1 aggregates is believed to interfere with axonal transport, protein degradation and anti-apoptotic functions of the neuronal cellular machinery. Here we show that metal-deficient, pathogenic SOD1 mutant proteins crystallize in three different crystal forms, all of which reveal higher-order assemblies of aligned beta-sheets. Amyloid-like filaments and water-filled nanotubes arise through extensive interactions between loop and beta-barrel elements of neighboring mutant SOD1 molecules. In all cases, non-native conformational changes permit a gain of interaction between dimers that leads to higher-order arrays. Normal beta-sheet-containing proteins avoid such self-association by preventing their edge strands from making intermolecular interactions. Loss of this protection through conformational rearrangement in the metal-deficient enzyme could be a toxic property common to mutants of SOD1 linked to FALS.

Reviews - 1oez mentioned but not cited (1)

Articles - 1oez mentioned but not cited (5)

  1. Structural characterization of zinc-deficient human superoxide dismutase and implications for ALS. Roberts BR, Tainer JA, Getzoff ED, Malencik DA, Anderson SR, Bomben VC, Meyers KR, Karplus PA, Beckman JS. J Mol Biol 373 877-890 (2007)
  2. Small-molecule-mediated stabilization of familial amyotrophic lateral sclerosis-linked superoxide dismutase mutants against unfolding and aggregation. Ray SS, Nowak RJ, Brown RH, Lansbury PT. Proc Natl Acad Sci U S A 102 3639-3644 (2005)
  3. Detecting hidden sequence propensity for amyloid fibril formation. Yoon S, Welsh WJ. Protein Sci 13 2149-2160 (2004)
  4. Structural consequences of the familial amyotrophic lateral sclerosis SOD1 mutant His46Arg. Antonyuk S, Elam JS, Hough MA, Strange RW, Doucette PA, Rodriguez JA, Hayward LJ, Valentine JS, Hart PJ, Hasnain SS. Protein Sci 14 1201-1213 (2005)
  5. Molecular dynamics analysis of superoxide dismutase 1 mutations suggests decoupling between mechanisms underlying ALS onset and progression. Kalia M, Miotto M, Ness D, Opie-Martin S, Spargo TP, Di Rienzo L, Biagini T, Petrizzelli F, Al Khleifat A, Kabiljo R, Project MinE ALS Sequencing Consortium, SOD1-ALS clinical and genetic data collection group, Mazza T, Ruocco G, Milanetti E, Dobson RJ, Al-Chalabi A, Iacoangeli A. Comput Struct Biotechnol J 21 5296-5308 (2023)


Reviews citing this publication (38)

  1. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Chiti F, Dobson CM. Annu Rev Biochem 86 27-68 (2017)
  2. Amyloid formation by globular proteins under native conditions. Chiti F, Dobson CM. Nat Chem Biol 5 15-22 (2009)
  3. Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Valentine JS, Doucette PA, Zittin Potter S. Annu Rev Biochem 74 563-593 (2005)
  4. The power of two: protein dimerization in biology. Marianayagam NJ, Sunde M, Matthews JM. Trends Biochem Sci 29 618-625 (2004)
  5. Superoxide dismutases and superoxide reductases. Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M, Valentine JS. Chem Rev 114 3854-3918 (2014)
  6. Recent atomic models of amyloid fibril structure. Nelson R, Eisenberg D. Curr Opin Struct Biol 16 260-265 (2006)
  7. The structural biochemistry of the superoxide dismutases. Perry JJ, Shin DS, Getzoff ED, Tainer JA. Biochim Biophys Acta 1804 245-262 (2010)
  8. Lessons from models of SOD1-linked familial ALS. Bendotti C, Carrì MT. Trends Mol Med 10 393-400 (2004)
  9. Deposition diseases and 3D domain swapping. Bennett MJ, Sawaya MR, Eisenberg D. Structure 14 811-824 (2006)
  10. Superoxide dismutases: active sites that save, but a protein that kills. Miller AF. Curr Opin Chem Biol 8 162-168 (2004)
  11. An emerging role for misfolded wild-type SOD1 in sporadic ALS pathogenesis. Rotunno MS, Bosco DA. Front Cell Neurosci 7 253 (2013)
  12. Top-down proteomics in health and disease: challenges and opportunities. Gregorich ZR, Ge Y. Proteomics 14 1195-1210 (2014)
  13. Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications. Cozzolino M, Ferri A, Carrì MT. Antioxid Redox Signal 10 405-443 (2008)
  14. Structural insights into functional and pathological amyloid. Shewmaker F, McGlinchey RP, Wickner RB. J Biol Chem 286 16533-16540 (2011)
  15. Protein aggregation in motor neurone disorders. Wood JD, Beaujeux TP, Shaw PJ. Neuropathol Appl Neurobiol 29 529-545 (2003)
  16. Structure, folding, and misfolding of Cu,Zn superoxide dismutase in amyotrophic lateral sclerosis. Rakhit R, Chakrabartty A. Biochim Biophys Acta 1762 1025-1037 (2006)
  17. Cellular copper distribution: a mechanistic systems biology approach. Banci L, Bertini I, Cantini F, Ciofi-Baffoni S. Cell Mol Life Sci 67 2563-2589 (2010)
  18. Beta arcades: recurring motifs in naturally occurring and disease-related amyloid fibrils. Kajava AV, Baxa U, Steven AC. FASEB J 24 1311-1319 (2010)
  19. Posttranslational modifications in Cu,Zn-superoxide dismutase and mutations associated with amyotrophic lateral sclerosis. Furukawa Y, O'Halloran TV. Antioxid Redox Signal 8 847-867 (2006)
  20. Pathogenic superoxide dismutase structure, folding, aggregation and turnover. Hart PJ. Curr Opin Chem Biol 10 131-138 (2006)
  21. Understanding the complex mechanisms of β2-microglobulin amyloid assembly. Eichner T, Radford SE. FEBS J 278 3868-3883 (2011)
  22. Molecular and Cellular Mechanisms Affected in ALS. Le Gall L, Anakor E, Connolly O, Vijayakumar UG, Duddy WJ, Duguez S. J Pers Med 10 E101 (2020)
  23. Failure of protein quality control in amyotrophic lateral sclerosis. Kabashi E, Durham HD. Biochim Biophys Acta 1762 1038-1050 (2006)
  24. Motor neurons rely on motor proteins. Holzbaur EL. Trends Cell Biol 14 233-240 (2004)
  25. Chemical approaches to detect and analyze protein sulfenic acids. Furdui CM, Poole LB. Mass Spectrom Rev 33 126-146 (2014)
  26. Immature copper-zinc superoxide dismutase and familial amyotrophic lateral sclerosis. Seetharaman SV, Prudencio M, Karch C, Holloway SP, Borchelt DR, Hart PJ. Exp Biol Med (Maywood) 234 1140-1154 (2009)
  27. Amyotrophic lateral sclerosis: new insights into underlying molecular mechanisms and opportunities for therapeutic intervention. Cozzolino M, Pesaresi MG, Gerbino V, Grosskreutz J, Carrì MT. Antioxid Redox Signal 17 1277-1330 (2012)
  28. Breaking the amyloidogenicity code: methods to predict amyloids from amino acid sequence. Ahmed AB, Kajava AV. FEBS Lett 587 1089-1095 (2013)
  29. From molecule to molecule and cell to cell: prion-like mechanisms in amyotrophic lateral sclerosis. Grad LI, Fernando SM, Cashman NR. Neurobiol Dis 77 257-265 (2015)
  30. Hacking the code of amyloid formation: the amyloid stretch hypothesis. Pastor MT, Esteras-Chopo A, Serrano L. Prion 1 9-14 (2007)
  31. Mutant SOD1 instability: implications for toxicity in amyotrophic lateral sclerosis. Tiwari A, Hayward LJ. Neurodegener Dis 2 115-127 (2005)
  32. "Native-like aggregation" of the acylphosphatase from Sulfolobus solfataricus and its biological implications. Bemporad F, Chiti F. FEBS Lett 583 2630-2638 (2009)
  33. Energetics of oligomeric protein folding and association. Doyle CM, Rumfeldt JA, Broom HR, Broom A, Stathopulos PB, Vassall KA, Almey JJ, Meiering EM. Arch Biochem Biophys 531 44-64 (2013)
  34. Structural basis of infectious and non-infectious amyloids. Baxa U. Curr Alzheimer Res 5 308-318 (2008)
  35. Infinite Assembly of Folded Proteins in Evolution, Disease, and Engineering. Garcia-Seisdedos H, Villegas JA, Levy ED. Angew Chem Int Ed Engl 58 5514-5531 (2019)
  36. Amyloids of multiple species: are they helpful in survival? Upadhyay A, Mishra A. Biol Rev Camb Philos Soc 93 1363-1386 (2018)
  37. Insights on the Multifaceted Roles of Wild-Type and Mutated Superoxide Dismutase 1 in Amyotrophic Lateral Sclerosis Pathogenesis. Rubino V, La Rosa G, Pipicelli L, Carriero F, Damiano S, Santillo M, Terrazzano G, Ruggiero G, Mondola P. Antioxidants (Basel) 12 1747 (2023)
  38. Yeast red pigment, protein aggregates, and amyloidoses: a review. Nevzglyadova OV, Mikhailova EV, Soidla TR. Cell Tissue Res 388 211-223 (2022)

Articles citing this publication (156)

  1. Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria. Liu J, Lillo C, Jonsson PA, Vande Velde C, Ward CM, Miller TM, Subramaniam JR, Rothstein JD, Marklund S, Andersen PM, Brännström T, Gredal O, Wong PC, Williams DS, Cleveland DW. Neuron 43 5-17 (2004)
  2. Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. Urushitani M, Sik A, Sakurai T, Nukina N, Takahashi R, Julien JP. Nat Neurosci 9 108-118 (2006)
  3. Mapping abeta amyloid fibril secondary structure using scanning proline mutagenesis. Williams AD, Portelius E, Kheterpal I, Guo JT, Cook KD, Xu Y, Wetzel R. J Mol Biol 335 833-842 (2004)
  4. Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils-current status. Groenning M. J Chem Biol 3 1-18 (2010)
  5. Amyloid formation under physiological conditions proceeds via a native-like folding intermediate. Jahn TR, Parker MJ, Homans SW, Radford SE. Nat Struct Mol Biol 13 195-201 (2006)
  6. Familial ALS-superoxide dismutases associate with mitochondria and shift their redox potentials. Ferri A, Cozzolino M, Crosio C, Nencini M, Casciati A, Gralla EB, Rotilio G, Valentine JS, Carrì MT. Proc Natl Acad Sci U S A 103 13860-13865 (2006)
  7. Intermolecular transmission of superoxide dismutase 1 misfolding in living cells. Grad LI, Guest WC, Yanai A, Pokrishevsky E, O'Neill MA, Gibbs E, Semenchenko V, Yousefi M, Wishart DS, Plotkin SS, Cashman NR. Proc Natl Acad Sci U S A 108 16398-16403 (2011)
  8. Therapeutic effects of immunization with mutant superoxide dismutase in mice models of amyotrophic lateral sclerosis. Urushitani M, Ezzi SA, Julien JP. Proc Natl Acad Sci U S A 104 2495-2500 (2007)
  9. The common architecture of cross-beta amyloid. Jahn TR, Makin OS, Morris KL, Marshall KE, Tian P, Sikorski P, Serpell LC. J Mol Biol 395 717-727 (2010)
  10. Dimer destabilization in superoxide dismutase may result in disease-causing properties: structures of motor neuron disease mutants. Hough MA, Grossmann JG, Antonyuk SV, Strange RW, Doucette PA, Rodriguez JA, Whitson LJ, Hart PJ, Hayward LJ, Valentine JS, Hasnain SS. Proc Natl Acad Sci U S A 101 5976-5981 (2004)
  11. Common molecular signature in SOD1 for both sporadic and familial amyotrophic lateral sclerosis. Gruzman A, Wood WL, Alpert E, Prasad MD, Miller RG, Rothstein JD, Bowser R, Hamilton R, Wood TD, Cleveland DW, Lingappa VR, Liu J. Proc Natl Acad Sci U S A 104 12524-12529 (2007)
  12. Disulfide cross-linked protein represents a significant fraction of ALS-associated Cu, Zn-superoxide dismutase aggregates in spinal cords of model mice. Furukawa Y, Fu R, Deng HX, Siddique T, O'Halloran TV. Proc Natl Acad Sci U S A 103 7148-7153 (2006)
  13. CHIP promotes proteasomal degradation of familial ALS-linked mutant SOD1 by ubiquitinating Hsp/Hsc70. Urushitani M, Kurisu J, Tateno M, Hatakeyama S, Nakayama K, Kato S, Takahashi R. J Neurochem 90 231-244 (2004)
  14. An amyloid-forming segment of beta2-microglobulin suggests a molecular model for the fibril. Ivanova MI, Sawaya MR, Gingery M, Attinger A, Eisenberg D. Proc Natl Acad Sci U S A 101 10584-10589 (2004)
  15. Complete loss of post-translational modifications triggers fibrillar aggregation of SOD1 in the familial form of amyotrophic lateral sclerosis. Furukawa Y, Kaneko K, Yamanaka K, O'Halloran TV, Nukina N. J Biol Chem 283 24167-24176 (2008)
  16. Folding of human superoxide dismutase: disulfide reduction prevents dimerization and produces marginally stable monomers. Lindberg MJ, Normark J, Holmgren A, Oliveberg M. Proc Natl Acad Sci U S A 101 15893-15898 (2004)
  17. Destabilization of apoprotein is insufficient to explain Cu,Zn-superoxide dismutase-linked ALS pathogenesis. Rodriguez JA, Shaw BF, Durazo A, Sohn SH, Doucette PA, Nersissian AM, Faull KF, Eggers DK, Tiwari A, Hayward LJ, Valentine JS. Proc Natl Acad Sci U S A 102 10516-10521 (2005)
  18. Protein aggregation and protein instability govern familial amyotrophic lateral sclerosis patient survival. Wang Q, Johnson JL, Agar NY, Agar JN. PLoS Biol 6 e170 (2008)
  19. The rate and equilibrium constants for a multistep reaction sequence for the aggregation of superoxide dismutase in amyotrophic lateral sclerosis. Khare SD, Caplow M, Dokholyan NV. Proc Natl Acad Sci U S A 101 15094-15099 (2004)
  20. Somatodendritic accumulation of misfolded SOD1-L126Z in motor neurons mediates degeneration: alphaB-crystallin modulates aggregation. Wang J, Xu G, Li H, Gonzales V, Fromholt D, Karch C, Copeland NG, Jenkins NA, Borchelt DR. Hum Mol Genet 14 2335-2347 (2005)
  21. Superoxide dismutase 1 and tgSOD1 mouse spinal cord seed fibrils, suggesting a propagative cell death mechanism in amyotrophic lateral sclerosis. Chia R, Tattum MH, Jones S, Collinge J, Fisher EM, Jackson GS. PLoS One 5 e10627 (2010)
  22. Variable metallation of human superoxide dismutase: atomic resolution crystal structures of Cu-Zn, Zn-Zn and as-isolated wild-type enzymes. Strange RW, Antonyuk SV, Hough MA, Doucette PA, Valentine JS, Hasnain SS. J Mol Biol 356 1152-1162 (2006)
  23. A limited role for disulfide cross-linking in the aggregation of mutant SOD1 linked to familial amyotrophic lateral sclerosis. Karch CM, Borchelt DR. J Biol Chem 283 13528-13537 (2008)
  24. Structural and dynamic aspects related to oligomerization of apo SOD1 and its mutants. Banci L, Bertini I, Boca M, Calderone V, Cantini F, Girotto S, Vieru M. Proc Natl Acad Sci U S A 106 6980-6985 (2009)
  25. Aberrantly increased hydrophobicity shared by mutants of Cu,Zn-superoxide dismutase in familial amyotrophic lateral sclerosis. Tiwari A, Xu Z, Hayward LJ. J Biol Chem 280 29771-29779 (2005)
  26. Modeling of tumor necrosis factor receptor superfamily 1A mutants associated with tumor necrosis factor receptor-associated periodic syndrome indicates misfolding consistent with abnormal function. Rebelo SL, Bainbridge SE, Amel-Kashipaz MR, Radford PM, Powell RJ, Todd I, Tighe PJ. Arthritis Rheum 54 2674-2687 (2006)
  27. Accumulation of human SOD1 and ubiquitinated deposits in the spinal cord of SOD1G93A mice during motor neuron disease progression correlates with a decrease of proteasome. Cheroni C, Peviani M, Cascio P, Debiasi S, Monti C, Bendotti C. Neurobiol Dis 18 509-522 (2005)
  28. Common dynamical signatures of familial amyotrophic lateral sclerosis-associated structurally diverse Cu, Zn superoxide dismutase mutants. Khare SD, Dokholyan NV. Proc Natl Acad Sci U S A 103 3147-3152 (2006)
  29. Decreased stability and increased formation of soluble aggregates by immature superoxide dismutase do not account for disease severity in ALS. Vassall KA, Stubbs HR, Primmer HA, Tong MS, Sullivan SM, Sobering R, Srinivasan S, Briere LA, Dunn SD, Colón W, Meiering EM. Proc Natl Acad Sci U S A 108 2210-2215 (2011)
  30. Exposure of hydrophobic surfaces initiates aggregation of diverse ALS-causing superoxide dismutase-1 mutants. Münch C, Bertolotti A. J Mol Biol 399 512-525 (2010)
  31. Mapping superoxide dismutase 1 domains of non-native interaction: roles of intra- and intermolecular disulfide bonding in aggregation. Wang J, Xu G, Borchelt DR. J Neurochem 96 1277-1288 (2006)
  32. Core and heterogeneity of beta2-microglobulin amyloid fibrils as revealed by H/D exchange. Yamaguchi K, Katou H, Hoshino M, Hasegawa K, Naiki H, Goto Y. J Mol Biol 338 559-571 (2004)
  33. Decrease of Hsp25 protein expression precedes degeneration of motoneurons in ALS-SOD1 mice. Maatkamp A, Vlug A, Haasdijk E, Troost D, French PJ, Jaarsma D. Eur J Neurosci 20 14-28 (2004)
  34. Detergent-insoluble aggregates associated with amyotrophic lateral sclerosis in transgenic mice contain primarily full-length, unmodified superoxide dismutase-1. Shaw BF, Lelie HL, Durazo A, Nersissian AM, Xu G, Chan PK, Gralla EB, Tiwari A, Hayward LJ, Borchelt DR, Valentine JS, Whitelegge JP. J Biol Chem 283 8340-8350 (2008)
  35. The structure of human extracellular copper-zinc superoxide dismutase at 1.7 A resolution: insights into heparin and collagen binding. Antonyuk SV, Strange RW, Marklund SL, Hasnain SS. J Mol Biol 388 310-326 (2009)
  36. Functional features cause misfolding of the ALS-provoking enzyme SOD1. Nordlund A, Leinartaite L, Saraboji K, Aisenbrey C, Gröbner G, Zetterström P, Danielsson J, Logan DT, Oliveberg M. Proc Natl Acad Sci U S A 106 9667-9672 (2009)
  37. Folding of Cu, Zn superoxide dismutase and familial amyotrophic lateral sclerosis. Khare SD, Ding F, Dokholyan NV. J Mol Biol 334 515-525 (2003)
  38. Amyloidogenic regions and interaction surfaces overlap in globular proteins related to conformational diseases. Castillo V, Ventura S. PLoS Comput Biol 5 e1000476 (2009)
  39. Local unfolding of Cu, Zn superoxide dismutase monomer determines the morphology of fibrillar aggregates. Ding F, Furukawa Y, Nukina N, Dokholyan NV. J Mol Biol 421 548-560 (2012)
  40. Local unfolding in a destabilized, pathogenic variant of superoxide dismutase 1 observed with H/D exchange and mass spectrometry. Shaw BF, Durazo A, Nersissian AM, Whitelegge JP, Faull KF, Valentine JS. J Biol Chem 281 18167-18176 (2006)
  41. Structural and biophysical properties of metal-free pathogenic SOD1 mutants A4V and G93A. Galaleldeen A, Strange RW, Whitson LJ, Antonyuk SV, Narayana N, Taylor AB, Schuermann JP, Holloway SP, Hasnain SS, Hart PJ. Arch Biochem Biophys 492 40-47 (2009)
  42. Thermal fluctuations of immature SOD1 lead to separate folding and misfolding pathways. Sekhar A, Rumfeldt JA, Broom HR, Doyle CM, Bouvignies G, Meiering EM, Kay LE. Elife 4 e07296 (2015)
  43. Transient structural distortion of metal-free Cu/Zn superoxide dismutase triggers aberrant oligomerization. Teilum K, Smith MH, Schulz E, Christensen LC, Solomentsev G, Oliveberg M, Akke M. Proc Natl Acad Sci U S A 106 18273-18278 (2009)
  44. Mapping the folding free energy surface for metal-free human Cu,Zn superoxide dismutase. Svensson AK, Bilsel O, Kondrashkina E, Zitzewitz JA, Matthews CR. J Mol Biol 364 1084-1102 (2006)
  45. Molecular dynamics using atomic-resolution structure reveal structural fluctuations that may lead to polymerization of human Cu-Zn superoxide dismutase. Strange RW, Yong CW, Smith W, Hasnain SS. Proc Natl Acad Sci U S A 104 10040-10044 (2007)
  46. Metal deficiency increases aberrant hydrophobicity of mutant superoxide dismutases that cause amyotrophic lateral sclerosis. Tiwari A, Liba A, Sohn SH, Seetharaman SV, Bilsel O, Matthews CR, Hart PJ, Valentine JS, Hayward LJ. J Biol Chem 284 27746-27758 (2009)
  47. Fibrillation precursor of superoxide dismutase 1 revealed by gradual tuning of the protein-folding equilibrium. Lang L, Kurnik M, Danielsson J, Oliveberg M. Proc Natl Acad Sci U S A 109 17868-17873 (2012)
  48. Disrupted zinc-binding sites in structures of pathogenic SOD1 variants D124V and H80R. Seetharaman SV, Winkler DD, Taylor AB, Cao X, Whitson LJ, Doucette PA, Valentine JS, Schirf V, Demeler B, Carroll MC, Culotta VC, Hart PJ. Biochemistry 49 5714-5725 (2010)
  49. Prion-like activity of Cu/Zn superoxide dismutase: implications for amyotrophic lateral sclerosis. Grad LI, Cashman NR. Prion 8 33-41 (2014)
  50. Proteasomal degradation of mutant superoxide dismutases linked to amyotrophic lateral sclerosis. Di Noto L, Whitson LJ, Cao X, Hart PJ, Levine RL. J Biol Chem 280 39907-39913 (2005)
  51. Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site. Fetherolf MM, Boyd SD, Taylor AB, Kim HJ, Wohlschlegel JA, Blackburn NJ, Hart PJ, Winge DR, Winkler DD. J Biol Chem 292 12025-12040 (2017)
  52. Inhibition of chaperone activity is a shared property of several Cu,Zn-superoxide dismutase mutants that cause amyotrophic lateral sclerosis. Tummala H, Jung C, Tiwari A, Higgins CM, Hayward LJ, Xu Z. J Biol Chem 280 17725-17731 (2005)
  53. Unsaturated fatty acids induce cytotoxic aggregate formation of amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutants. Kim YJ, Nakatomi R, Akagi T, Hashikawa T, Takahashi R. J Biol Chem 280 21515-21521 (2005)
  54. A common property of amyotrophic lateral sclerosis-associated variants: destabilization of the copper/zinc superoxide dismutase electrostatic loop. Molnar KS, Karabacak NM, Johnson JL, Wang Q, Tiwari A, Hayward LJ, Coales SJ, Hamuro Y, Agar JN. J Biol Chem 284 30965-30973 (2009)
  55. The effects of glutaredoxin and copper activation pathways on the disulfide and stability of Cu,Zn superoxide dismutase. Carroll MC, Outten CE, Proescher JB, Rosenfeld L, Watson WH, Whitson LJ, Hart PJ, Jensen LT, Cizewski Culotta V. J Biol Chem 281 28648-28656 (2006)
  56. Unfolding and folding kinetics of amyotrophic lateral sclerosis-associated mutant Cu,Zn superoxide dismutases. Rumfeldt JA, Lepock JR, Meiering EM. J Mol Biol 385 278-298 (2009)
  57. Disease-associated mutations at copper ligand histidine residues of superoxide dismutase 1 diminish the binding of copper and compromise dimer stability. Wang J, Caruano-Yzermans A, Rodriguez A, Scheurmann JP, Slunt HH, Cao X, Gitlin J, Hart PJ, Borchelt DR. J Biol Chem 282 345-352 (2007)
  58. Disulfide-reduced ALS variants of Cu, Zn superoxide dismutase exhibit increased populations of unfolded species. Kayatekin C, Zitzewitz JA, Matthews CR. J Mol Biol 398 320-331 (2010)
  59. Structural and biophysical properties of the pathogenic SOD1 variant H46R/H48Q. Winkler DD, Schuermann JP, Cao X, Holloway SP, Borchelt DR, Carroll MC, Proescher JB, Culotta VC, Hart PJ. Biochemistry 48 3436-3447 (2009)
  60. Nonamyloid aggregates arising from mature copper/zinc superoxide dismutases resemble those observed in amyotrophic lateral sclerosis. Hwang YM, Stathopulos PB, Dimmick K, Yang H, Badiei HR, Tong MS, Rumfeldt JA, Chen P, Karanassios V, Meiering EM. J Biol Chem 285 41701-41711 (2010)
  61. Dominant role of copper in the kinetic stability of Cu/Zn superoxide dismutase. Lynch SM, Colón W. Biochem Biophys Res Commun 340 457-461 (2006)
  62. Metal-free ALS variants of dimeric human Cu,Zn-superoxide dismutase have enhanced populations of monomeric species. Svensson AK, Bilsel O, Kayatekin C, Adefusika JA, Zitzewitz JA, Matthews CR. PLoS One 5 e10064 (2010)
  63. Effects of chain length on the aggregation of model polyglutamine peptides: molecular dynamics simulations. Marchut AJ, Hall CK. Proteins 66 96-109 (2007)
  64. Characterization of a covalent polysulfane bridge in copper-zinc superoxide dismutase . You Z, Cao X, Taylor AB, Hart PJ, Levine RL. Biochemistry 49 1191-1198 (2010)
  65. Informatics-assisted protein profiling in a transgenic mouse model of amyotrophic lateral sclerosis. Lukas TJ, Luo WW, Mao H, Cole N, Siddique T. Mol Cell Proteomics 5 1233-1244 (2006)
  66. 3' untranslated region in a light neurofilament (NF-L) mRNA triggers aggregation of NF-L and mutant superoxide dismutase 1 proteins in neuronal cells. Lin H, Zhai J, Cañete-Soler R, Schlaepfer WW. J Neurosci 24 2716-2726 (2004)
  67. Aggregation of ALS mutant superoxide dismutase expressed in Escherichia coli. Leinweber B, Barofsky E, Barofsky DF, Ermilov V, Nylin K, Beckman JS. Free Radic Biol Med 36 911-918 (2004)
  68. SOD1 exhibits allosteric frustration to facilitate metal binding affinity. Das A, Plotkin SS. Proc Natl Acad Sci U S A 110 3871-3876 (2013)
  69. SOD1-associated ALS: a promising system for elucidating the origin of protein-misfolding disease. Nordlund A, Oliveberg M. HFSP J 2 354-364 (2008)
  70. Conformational Disorder of the Most Immature Cu, Zn-Superoxide Dismutase Leading to Amyotrophic Lateral Sclerosis. Furukawa Y, Anzai I, Akiyama S, Imai M, Cruz FJ, Saio T, Nagasawa K, Nomura T, Ishimori K. J Biol Chem 291 4144-4155 (2016)
  71. Improving binding specificity of pharmacological chaperones that target mutant superoxide dismutase-1 linked to familial amyotrophic lateral sclerosis using computational methods. Nowak RJ, Cuny GD, Choi S, Lansbury PT, Ray SS. J Med Chem 53 2709-2718 (2010)
  72. Truncated wild-type SOD1 and FALS-linked mutant SOD1 cause neural cell death in the chick embryo spinal cord. Ghadge GD, Wang L, Sharma K, Monti AL, Bindokas V, Stevens FJ, Roos RP. Neurobiol Dis 21 194-205 (2006)
  73. Redox properties of the disulfide bond of human Cu,Zn superoxide dismutase and the effects of human glutaredoxin 1. Bouldin SD, Darch MA, Hart PJ, Outten CE. Biochem J 446 59-67 (2012)
  74. Copper-based pulsed dipolar ESR spectroscopy as a probe of protein conformation linked to disease states. Merz GE, Borbat PP, Pratt AJ, Getzoff ED, Freed JH, Crane BR. Biophys J 107 1669-1674 (2014)
  75. Evaluation of a symmetry-based strategy for assembling protein complexes. Patterson DP, Desai AM, Holl MM, Marsh EN. RSC Adv 1 1004-1012 (2011)
  76. HoxB2 binds mutant SOD1 and is altered in transgenic model of ALS. Zhai J, Lin H, Canete-Soler R, Schlaepfer WW. Hum Mol Genet 14 2629-2640 (2005)
  77. Molecular dynamics simulation study on the structural stabilities of polyglutamine peptides. Ogawa H, Nakano M, Watanabe H, Starikov EB, Rothstein SM, Tanaka S. Comput Biol Chem 32 102-110 (2008)
  78. A common 'aggregation-prone' interface possibly participates in the self-assembly of human zona pellucida proteins. Louros NN, Chrysina ED, Baltatzis GE, Patsouris ES, Hamodrakas SJ, Iconomidou VA. FEBS Lett 590 619-630 (2016)
  79. A novel variant of human superoxide dismutase 1 harboring amyotrophic lateral sclerosis-associated and experimental mutations in metal-binding residues and free cysteines lacks toxicity in vivo. Prudencio M, Lelie H, Brown HH, Whitelegge JP, Valentine JS, Borchelt DR. J Neurochem 121 475-485 (2012)
  80. Overexpression of metallothionein protects cultured motor neurons against oxidative stress, but not mutant Cu/Zn-superoxide dismutase toxicity. Taylor DM, Minotti S, Agar JN, Durham HD. Neurotoxicology 25 779-792 (2004)
  81. Pathogenic Mutations Induce Partial Structural Changes in the Native β-Sheet Structure of Transthyretin and Accelerate Aggregation. Lim KH, Dasari AKR, Ma R, Hung I, Gan Z, Kelly JW, Fitzgerald MC. Biochemistry 56 4808-4818 (2017)
  82. Structural consequences of cysteinylation of Cu/Zn-superoxide dismutase. Auclair JR, Brodkin HR, D'Aquino JA, Petsko GA, Ringe D, Agar JN. Biochemistry 52 6145-6150 (2013)
  83. Aggregation modulating elements in mutant human superoxide dismutase 1. Karch CM, Borchelt DR. Arch Biochem Biophys 503 175-182 (2010)
  84. Elucidation of the ribonuclease A aggregation process mediated by 3D domain swapping: a computational approach reveals possible new multimeric structures. Cozza G, Moro S, Gotte G. Biopolymers 89 26-39 (2008)
  85. Human Motor Neurons With SOD1-G93A Mutation Generated From CRISPR/Cas9 Gene-Edited iPSCs Develop Pathological Features of Amyotrophic Lateral Sclerosis. Kim BW, Ryu J, Jeong YE, Kim J, Martin LJ. Front Cell Neurosci 14 604171 (2020)
  86. Probing the free energy landscapes of ALS disease mutants of SOD1 by NMR spectroscopy. Sekhar A, Rumfeldt JAO, Broom HR, Doyle CM, Sobering RE, Meiering EM, Kay LE. Proc Natl Acad Sci U S A 113 E6939-E6945 (2016)
  87. Self assembly of human septin 2 into amyloid filaments. Pissuti Damalio JC, Garcia W, Alves Macêdo JN, de Almeida Marques I, Andreu JM, Giraldo R, Garratt RC, Ulian Araújo AP. Biochimie 94 628-636 (2012)
  88. A quantitative examination of the role of cargo-exerted forces in axonal transport. Mitchell CS, Lee RH. J Theor Biol 257 430-437 (2009)
  89. Identification of a misfolded region in superoxide dismutase 1 that is exposed in amyotrophic lateral sclerosis. Rotunno MS, Auclair JR, Maniatis S, Shaffer SA, Agar J, Bosco DA. J Biol Chem 289 28527-28538 (2014)
  90. Many roads lead to Rome? Multiple modes of Cu,Zn superoxide dismutase destabilization, misfolding and aggregation in amyotrophic lateral sclerosis. Broom HR, Rumfeldt JA, Meiering EM. Essays Biochem 56 149-165 (2014)
  91. Mutant SOD1 forms ion channel: implications for ALS pathophysiology. Allen MJ, Lacroix JJ, Ramachandran S, Capone R, Whitlock JL, Ghadge GD, Arnsdorf MF, Roos RP, Lal R. Neurobiol Dis 45 831-838 (2012)
  92. Structures of mouse SOD1 and human/mouse SOD1 chimeras. Seetharaman SV, Taylor AB, Holloway S, Hart PJ. Arch Biochem Biophys 503 183-190 (2010)
  93. Cellular Redox Systems Impact the Aggregation of Cu,Zn Superoxide Dismutase Linked to Familial Amyotrophic Lateral Sclerosis. Álvarez-Zaldiernas C, Lu J, Zheng Y, Yang H, Blasi J, Solsona C, Holmgren A. J Biol Chem 291 17197-17208 (2016)
  94. Characterization of heparin-induced glyceraldehyde-3-phosphate dehydrogenase early amyloid-like oligomers and their implication in α-synuclein aggregation. Torres-Bugeau CM, Ávila CL, Raisman-Vozari R, Papy-Garcia D, Itri R, Barbosa LR, Cortez LM, Sim VL, Chehín RN. J Biol Chem 287 2398-2409 (2012)
  95. Disruption of mitochondrial membrane integrity induced by amyloid aggregates arising from variants of SOD1. Oladzad Abbasabadi A, Javanian A, Nikkhah M, Meratan AA, Ghiasi P, Nemat-Gorgani M. Int J Biol Macromol 61 212-217 (2013)
  96. Characterizing intermolecular interactions that initiate native-like protein aggregation. Bemporad F, De Simone A, Chiti F, Dobson CM. Biophys J 102 2595-2604 (2012)
  97. Photoinduced fibrils formation of chicken egg white lysozyme under native conditions. Xie JB, Cao Y, Pan H, Qin M, Yan ZQ, Xiong X, Wang W. Proteins 80 2501-2513 (2012)
  98. TFE-induced local unfolding and fibrillation of SOD1: bridging the experiment and simulation studies. Kumar V, Prakash A, Pandey P, Lynn AM, Hassan MI. Biochem J 475 1701-1719 (2018)
  99. β-Methylamino-L-alanine substitution of serine in SOD1 suggests a direct role in ALS etiology. Proctor EA, Mowrey DD, Dokholyan NV. PLoS Comput Biol 15 e1007225 (2019)
  100. Cargo distributions differentiate pathological axonal transport impairments. Mitchell CS, Lee RH. J Theor Biol 300 277-291 (2012)
  101. Parsing disease-relevant protein modifications from epiphenomena: perspective on the structural basis of SOD1-mediated ALS. Schmitt ND, Agar JN. J Mass Spectrom 52 480-491 (2017)
  102. Tryptophan residue 32 in human Cu-Zn superoxide dismutase modulates prion-like propagation and strain selection. Crown A, McAlary L, Fagerli E, Brown H, Yerbury JJ, Galaleldeen A, Cashman NR, Borchelt DR, Ayers JI. PLoS One 15 e0227655 (2020)
  103. A misfolded dimer of Cu/Zn-superoxide dismutase leading to pathological oligomerization in amyotrophic lateral sclerosis. Anzai I, Tokuda E, Mukaiyama A, Akiyama S, Endo F, Yamanaka K, Misawa H, Furukawa Y. Protein Sci 26 484-496 (2017)
  104. Atomic structures of corkscrew-forming segments of SOD1 reveal varied oligomer conformations. Sangwan S, Sawaya MR, Murray KA, Hughes MP, Eisenberg DS. Protein Sci 27 1231-1242 (2018)
  105. Mitochondrial membrane disruption by aggregation products of ALS-causing superoxide dismutase-1 mutants. Salehi M, Nikkhah M, Ghasemi A, Arab SS. Int J Biol Macromol 75 290-297 (2015)
  106. The threat of instability: neurodegeneration predicted by protein destabilization and aggregation propensity. Meiering EM. PLoS Biol 6 e193 (2008)
  107. Alterations in local stability and dynamics of A4V SOD1 in the presence of trifluoroethanol. Kumar V, Prakash A, Lynn AM. Biopolymers 109 e23102 (2018)
  108. Dehydration stability of amyloid fibrils studied by AFM. Maurstad G, Prass M, Serpell LC, Sikorski P. Eur Biophys J 38 1135-1140 (2009)
  109. Prion-associated proteins in yeast: comparative analysis of isogenic [PSI(+)] and [psi(-)] strains. Nevzglyadova OV, Artemov AV, Mittenberg AG, Solovyov KV, Kostyleva EI, Mikhailova EV, Kuznetsova IM, Turoverov KK, Soidla TR. Yeast 26 611-631 (2009)
  110. Structural, Functional, and Immunogenic Insights on Cu,Zn Superoxide Dismutase Pathogenic Virulence Factors from Neisseria meningitidis and Brucella abortus. Pratt AJ, DiDonato M, Shin DS, Cabelli DE, Bruns CK, Belzer CA, Gorringe AR, Langford PR, Tabatabai LB, Kroll JS, Tainer JA, Getzoff ED. J Bacteriol 197 3834-3847 (2015)
  111. Comprehensive in silico analysis and molecular dynamics of the superoxide dismutase 1 (SOD1) variants related to amyotrophic lateral sclerosis. Pereira GRC, Vieira BAA, De Mesquita JF. PLoS One 16 e0247841 (2021)
  112. Direct Conversion of an Enzyme from Native-like to Amyloid-like Aggregates within Inclusion Bodies. Elia F, Cantini F, Chiti F, Dobson CM, Bemporad F. Biophys J 112 2540-2551 (2017)
  113. Edge strand engineering prevents native-like aggregation in Sulfolobus solfataricus acylphosphatase. de Rosa M, Bemporad F, Pellegrino S, Chiti F, Bolognesi M, Ricagno S. FEBS J 281 4072-4084 (2014)
  114. Inducible superoxide dismutase 1 aggregation in transgenic amyotrophic lateral sclerosis mouse fibroblasts. Turner BJ, Lopes EC, Cheema SS. J Cell Biochem 91 1074-1084 (2004)
  115. Molecular dynamics of a far positioned SOD1 mutant V14M reveals pathogenic misfolding behavior. Tompa DR, Kadhirvel S. J Biomol Struct Dyn 36 4085-4098 (2018)
  116. Computational Investigation on Electrostatic Loop Mutants Instigating Destabilization and Aggregation on Human SOD1 Protein Causing Amyotrophic Lateral Sclerosis. Srinivasan E, Rajasekaran R. Protein J 38 37-49 (2019)
  117. Crystal structures of holo and Cu-deficient Cu/Zn-SOD from the silkworm Bombyx mori and the implications in amyotrophic lateral sclerosis. Zhang NN, He YX, Li WF, Teng YB, Yu J, Chen Y, Zhou CZ. Proteins 78 1999-2004 (2010)
  118. Different immunoreactivity against monoclonal antibodies between wild-type and mutant copper/zinc superoxide dismutase linked to amyotrophic lateral sclerosis. Fujiwara N, Miyamoto Y, Ogasahara K, Takahashi M, Ikegami T, Takamiya R, Suzuki K, Taniguchi N. J Biol Chem 280 5061-5070 (2005)
  119. Experimental Mutations in Superoxide Dismutase 1 Provide Insight into Potential Mechanisms Involved in Aberrant Aggregation in Familial Amyotrophic Lateral Sclerosis. Crown AM, Roberts BL, Crosby K, Brown H, Ayers JI, Hart PJ, Borchelt DR. G3 (Bethesda) 9 719-728 (2019)
  120. Structural switching of Cu,Zn-superoxide dismutases at loop VI: insights from the crystal structure of 2-mercaptoethanol-modified enzyme. Ihara K, Fujiwara N, Yamaguchi Y, Torigoe H, Wakatsuki S, Taniguchi N, Suzuki K. Biosci Rep 32 539-548 (2012)
  121. A model for gain of function in superoxide dismutase. Healy EF, Roth-Rodriguez A, Toledo S. Biochem Biophys Rep 21 100728 (2020)
  122. Computational methods for identifying a layered allosteric regulatory mechanism for ALS-causing mutations of Cu-Zn superoxide dismutase 1. Schuyler AD, Carlson HA, Feldman EL. Proteins 79 417-427 (2011)
  123. Insights into SOD1-linked amyotrophic lateral sclerosis from NMR studies of Ni(2+)- and other metal-ion-substituted wild-type copper-zinc superoxide dismutases. Ming LJ, Valentine JS. J Biol Inorg Chem 19 647-657 (2014)
  124. Microsecond sub-domain motions and the folding and misfolding of the mouse prion protein. Goluguri RR, Sen S, Udgaonkar J. Elife 8 e44766 (2019)
  125. The effect of red pigment on the amyloidization of yeast proteins. Nevzglyadova OV, Kuznetsova IM, Mikhailova EV, Artamonova TO, Artemov AV, Mittenberg AG, Kostyleva EI, Turoverov KK, Khodorkovskii MA, Soidla TR. Yeast 28 505-526 (2011)
  126. DNA-triggered aggregation of copper, zinc superoxide dismutase in the presence of ascorbate. Yin J, Hu S, Jiang W, Liu L, Lan S, Song X, Liu C. PLoS One 5 e12328 (2010)
  127. Molecular mechanisms underlying the impact of mutations in SOD1 on its conformational properties associated with amyotrophic lateral sclerosis as revealed with molecular modelling. Alemasov NA, Ivanisenko NV, Ramachandran S, Ivanisenko VA. BMC Struct Biol 18 1 (2018)
  128. Structural analysis of the overoxidized Cu/Zn-superoxide dismutase in ROS-induced ALS filament formation. Baek Y, Woo TG, Ahn J, Lee D, Kwon Y, Park BJ, Ha NC. Commun Biol 5 1085 (2022)
  129. The effect of amyotrophic lateral sclerosis-linked exogenous SOD1-G93A on electrophysiological properties and intracellular calcium in cultured rat astrocytes. Milošević M, Bataveljić D, Nikolić L, Bijelić D, Andjus P. Amyotroph Lateral Scler Frontotemporal Degener 17 443-451 (2016)
  130. An in silico study of the effect of SOD1 electrostatic loop dynamics on amyloid‑like filament formation. Healy EF, Cervantes L. Eur Biophys J 45 853-859 (2016)
  131. Analysis of mutant SOD1 electrophoretic mobility by Blue Native gel electrophoresis; evidence for soluble multimeric assemblies. Brown HH, Borchelt DR. PLoS One 9 e104583 (2014)
  132. Bicarbonate and active site zinc modulate the self-peroxidation of bovine copper-zinc superoxide dismutase. Gunther MR, Donahue JA. Free Radic Res 41 1005-1016 (2007)
  133. Crystallizing ideas about Parkinson's disease. Cookson MR. Proc Natl Acad Sci U S A 100 9111-9113 (2003)
  134. Evolutionary Analyses of Sequence and Structure Space Unravel the Structural Facets of SOD1. Chowdhury S, Sanyal D, Sen S, Uversky VN, Maulik U, Chattopadhyay K. Biomolecules 9 E826 (2019)
  135. Polymorphism of the SOD1-DNA aggregation species can be modulated by DNA. Jiang W, Zhang B, Yin J, Liu L, Wang L, Liu C. Biopolymers 89 1154-1169 (2008)
  136. Real-Time Observation of the Interaction between Thioflavin T and an Amyloid Protein by Using High-Sensitivity Rheo-NMR. Iwakawa N, Morimoto D, Walinda E, Kawata Y, Shirakawa M, Sugase K. Int J Mol Sci 18 E2271 (2017)
  137. The role of solvent exclusion in the interaction between D124 and the metal site in SOD1: implications for ALS. Mera-Adasme R, Suomivuori CM, Fierro A, Pesonen J, Sundholm D. J Biol Inorg Chem 18 931-938 (2013)
  138. 4-Phenylbutyric Acid (4-PBA) Derivatives Prevent SOD1 Amyloid Aggregation In Vitro with No Effect on Disease Progression in SOD1-ALS Mice. Alfahel L, Argueti-Ostrovsky S, Barel S, Ali Saleh M, Kahn J, Azoulay-Ginsburg S, Rothstein A, Ebbinghaus S, Gruzman A, Israelson A. Int J Mol Sci 23 9403 (2022)
  139. A prion-like mechanism for the propagated misfolding of SOD1 from in silico modeling of solvated near-native conformers. Healy EF. PLoS One 12 e0177284 (2017)
  140. Characterization of the p.L145F and p.S135N Mutations in SOD1: Impact on the Metabolism of Fibroblasts Derived from Amyotrophic Lateral Sclerosis Patients. Perciballi E, Bovio F, Rosati J, Arrigoni F, D'Anzi A, Lattante S, Gelati M, De Marchi F, Lombardi I, Ruotolo G, Forcella M, Mazzini L, D'Alfonso S, Corrado L, Sabatelli M, Conte A, De Gioia L, Martino S, Vescovi AL, Fusi P, Ferrari D. Antioxidants (Basel) 11 815 (2022)
  141. Characterizing Structural Stability of Amyloid Motif Fibrils Mediated by Water Molecules. Choi H, Chang HJ, Lee M, Na S. Chemphyschem 18 817-827 (2017)
  142. Conformational dynamics of superoxide dismutase (SOD1) in osmolytes: a molecular dynamics simulation study. Jahan I, Nayeem SM. RSC Adv 10 27598-27614 (2020)
  143. Cryo-EM structure of an amyloid fibril formed by full-length human SOD1 reveals its conformational conversion. Wang LQ, Ma Y, Yuan HY, Zhao K, Zhang MY, Wang Q, Huang X, Xu WC, Dai B, Chen J, Li D, Zhang D, Wang Z, Zou L, Yin P, Liu C, Liang Y. Nat Commun 13 3491 (2022)
  144. Hydrogen-Deuterium Exchange Profiles of Polyubiquitin Fibrils. Morimoto D, Nishizawa R, Walinda E, Takashima S, Sugase K, Shirakawa M. Polymers (Basel) 10 E240 (2018)
  145. Identification of amyloidogenic peptide sequences using a coarse-grained physicochemical model. Clarke OJ, Parker MJ. J Comput Chem 30 621-630 (2009)
  146. Loss of charge mutations in solvent exposed Lys residues of superoxide dismutase 1 do not induce inclusion formation in cultured cell models. Crosby K, Crown AM, Roberts BL, Brown H, Ayers JI, Borchelt DR. PLoS One 13 e0206751 (2018)
  147. Small molecules present in the cerebrospinal fluid metabolome influence superoxide dismutase 1 aggregation. Cristóvão JS, Leal SS, Cardoso I, Gomes CM. Int J Mol Sci 14 19128-19145 (2013)
  148. Dynamic properties of SOD1 mutants can predict survival time of patients carrying familial amyotrophic lateral sclerosis. Alemasov NA, Ivanisenko NV, Medvedev SP, Zakian SM, Kolchanov NA, Ivanisenko VA. J Biomol Struct Dyn 35 645-656 (2017)
  149. Native Mass Spectrometry Coupled to Spectroscopic Methods to Investigate the Effect of Soybean Isoflavones on Structural Stability and Aggregation of Zinc Deficient and Metal-Free Superoxide Dismutase. Bian X, Zhuang X, Xing J, Liu S, Liu Z, Song F. Molecules 27 7303 (2022)
  150. Novel SOD1 monoclonal antibodies against the electrostatic loop preferentially detect misfolded SOD1 aggregates. Xia Y, Chen Z, Xu G, Borchelt DR, Ayers JI, Giasson BI. Neurosci Lett 742 135553 (2021)
  151. Slow Evolution toward "Super-Aggregation" of the Oligomers Formed through the Swapping of RNase A N-Termini: A Wish for Amyloidosis? Gotte G, Butturini E, Bettin I, Noro I, Mahmoud Helmy A, Fagagnini A, Cisterna B, Malatesta M. Int J Mol Sci 23 11192 (2022)
  152. A novel D90_K91insN mutation in exon 4 of the SOD1 gene caused familial amyotrophic lateral sclerosis in a Chinese pedigree. Li Y, Sun B, Chen S, Ren Y, Cui F, Yang F, Chen Z, Ling L, Huang X. Amyotroph Lateral Scler Frontotemporal Degener 19 516-521 (2018)
  153. First Principles Calculation of Protein-Protein Dimer Affinities of ALS-Associated SOD1 Mutants. Hsueh SCC, Nijland M, Peng X, Hilton B, Plotkin SS. Front Mol Biosci 9 845013 (2022)
  154. Intrinsic structural vulnerability in the hydrophobic core induces species-specific aggregation of canine SOD1 with degenerative myelopathy-linked E40K mutation. Hashimoto K, Watanabe S, Akutsu M, Muraki N, Kamishina H, Furukawa Y, Yamanaka K. J Biol Chem 299 104798 (2023)
  155. Modeling of mutant superoxide dismutase 1 octamers with cross-linked disulfide bonds. Zhang A, Teigen K, Kouznetsova VL, Tsigelny IF. J Mol Model 28 89 (2022)
  156. OmpC and OmpF Outer Membrane Proteins of Escherichia coli and Salmonella enterica Form Bona Fide Amyloids. Belousov MV, Kosolapova AO, Fayoud H, Sulatsky MI, Sulatskaya AI, Romanenko MN, Bobylev AG, Antonets KS, Nizhnikov AA. Int J Mol Sci 24 15522 (2023)