1o6p Citations

GLFG and FxFG nucleoporins bind to overlapping sites on importin-beta.

J Biol Chem 277 50597-606 (2002)
Cited: 156 times
EuropePMC logo PMID: 12372823

Abstract

The interaction between nuclear pore proteins (nucleoporins) and transport factors is crucial for the translocation of macromolecules through nuclear pores. Many nucleoporins contain FG sequence repeats, and previous studies have demonstrated interactions between repeats containing FxFG or GLFG cores and transport factors. The crystal structure of residues 1-442 of importin-beta bound to a GLFG peptide indicates that this repeat core binds to the same primary site as FxFG cores. Importin-beta-I178D shows reduced binding to both FxFG and GLFG repeats, consistent with both binding to an overlapping site in the hydrophobic groove between the A-helices of HEAT repeats 5 and 6. Moreover, FxFG repeats can displace importin-beta or its S. cerevisiae homologue, Kap95, bound to GLFG repeats. Addition of soluble GLFG repeats decreases the rate of nuclear protein import in digitonin-permeabilized HeLa cells, indicating that this interaction has a role in the translocation of carrier-cargo complexes through nuclear pores. The binding of GLFG and FxFG repeats to overlapping sites on importin-beta indicates that functional differences between different repeats probably arise from differences in their spatial organization.

Reviews - 1o6p mentioned but not cited (1)

  1. The Structure of the Nuclear Pore Complex (An Update). Lin DH, Hoelz A. Annu Rev Biochem 88 725-783 (2019)

Articles - 1o6p mentioned but not cited (3)

  1. Atomic resolution structures in nuclear transport. Süel KE, Cansizoglu AE, Chook YM. Methods 39 342-355 (2006)
  2. Helical repeat structure of apoptosis inhibitor 5 reveals protein-protein interaction modules. Han BG, Kim KH, Lee SJ, Jeong KC, Cho JW, Noh KH, Kim TW, Kim SJ, Yoon HJ, Suh SW, Lee S, Lee BI. J Biol Chem 287 10727-10737 (2012)
  3. Molecular interactions of FG nucleoporin repeats at high resolution. Ibáñez de Opakua A, Geraets JA, Frieg B, Dienemann C, Savastano A, Rankovic M, Cima-Omori MS, Schröder GF, Zweckstetter M. Nat Chem 14 1278-1285 (2022)


Reviews citing this publication (33)

  1. Molecular mechanism of the nuclear protein import cycle. Stewart M. Nat Rev Mol Cell Biol 8 195-208 (2007)
  2. Structural biology of nucleocytoplasmic transport. Cook A, Bono F, Jinek M, Conti E. Annu Rev Biochem 76 647-671 (2007)
  3. Peering through the pore: nuclear pore complex structure, assembly, and function. Suntharalingam M, Wente SR. Dev Cell 4 775-789 (2003)
  4. The structure of the nuclear pore complex. Hoelz A, Debler EW, Blobel G. Annu Rev Biochem 80 613-643 (2011)
  5. The nuclear pore complex: nucleocytoplasmic transport and beyond. Fahrenkrog B, Aebi U. Nat Rev Mol Cell Biol 4 757-766 (2003)
  6. Pushing the envelope: structure, function, and dynamics of the nuclear periphery. Hetzer MW, Walther TC, Mattaj IW. Annu Rev Cell Dev Biol 21 347-380 (2005)
  7. Flexible gates: dynamic topologies and functions for FG nucleoporins in nucleocytoplasmic transport. Terry LJ, Wente SR. Eukaryot Cell 8 1814-1827 (2009)
  8. Karyopherin flexibility in nucleocytoplasmic transport. Conti E, Müller CW, Stewart M. Curr Opin Struct Biol 16 237-244 (2006)
  9. Structural Biology and Regulation of Protein Import into the Nucleus. Christie M, Chang CW, Róna G, Smith KM, Stewart AG, Takeda AA, Fontes MR, Stewart M, Vértessy BG, Forwood JK, Kobe B. J Mol Biol 428 2060-2090 (2016)
  10. Ran-dependent nuclear export mediators: a structural perspective. Güttler T, Görlich D. EMBO J 30 3457-3474 (2011)
  11. The nuclear pore complex: a jack of all trades? Fahrenkrog B, Köser J, Aebi U. Trends Biochem Sci 29 175-182 (2004)
  12. Towards reconciling structure and function in the nuclear pore complex. Lim RY, Aebi U, Fahrenkrog B. Histochem Cell Biol 129 105-116 (2008)
  13. The role of NUP98 gene fusions in hematologic malignancy. Slape C, Aplan PD. Leuk Lymphoma 45 1341-1350 (2004)
  14. Nuclear transport, oxidative stress, and neurodegeneration. Patel VP, Chu CT. Int J Clin Exp Pathol 4 215-229 (2011)
  15. Disordered proteinaceous machines. Fuxreiter M, Tóth-Petróczy Á, Kraut DA, Matouschek A, Lim RY, Xue B, Kurgan L, Uversky VN. Chem Rev 114 6806-6843 (2014)
  16. Biology and biophysics of the nuclear pore complex and its components. Lim RY, Ullman KS, Fahrenkrog B. Int Rev Cell Mol Biol 267 299-342 (2008)
  17. The Multiple Faces of Disordered Nucleoporins. Lemke EA. J Mol Biol 428 2011-2024 (2016)
  18. Nuclear transport is becoming crystal clear. Madrid AS, Weis K. Chromosoma 115 98-109 (2006)
  19. Floppy but not sloppy: Interaction mechanism of FG-nucleoporins and nuclear transport receptors. Aramburu IV, Lemke EA. Semin Cell Dev Biol 68 34-41 (2017)
  20. Nucleocytoplasmic trafficking and transcription effects of huntingtin in Huntington's disease. Truant R, Atwal RS, Burtnik A. Prog Neurobiol 83 211-227 (2007)
  21. Trafficking to uncharted territory of the nuclear envelope. Burns LT, Wente SR. Curr Opin Cell Biol 24 341-349 (2012)
  22. Stem cell origin of myelodysplastic syndromes. Elias HK, Schinke C, Bhattacharyya S, Will B, Verma A, Steidl U. Oncogene 33 5139-5150 (2014)
  23. The selective permeability barrier in the nuclear pore complex. Li C, Goryaynov A, Yang W. Nucleus 7 430-446 (2016)
  24. Converging on the function of intrinsically disordered nucleoporins in the nuclear pore complex. Peleg O, Lim RY. Biol Chem 391 719-730 (2010)
  25. Single molecule studies of nucleocytoplasmic transport. Tu LC, Musser SM. Biochim Biophys Acta 1813 1607-1618 (2011)
  26. Distinct, but not completely separate spatial transport routes in the nuclear pore complex. Yang W. Nucleus 4 166-175 (2013)
  27. Nucleo-cytoplasmic transport defects and protein aggregates in neurodegeneration. Bitetto G, Di Fonzo A. Transl Neurodegener 9 25 (2020)
  28. Functionalization of a nanopore: the nuclear pore complex paradigm. Peters R. Biochim Biophys Acta 1793 1533-1539 (2009)
  29. Function of the Nuclear Transport Machinery in Maintaining the Distinctive Compositions of the Nucleus and Cytoplasm. Stewart M. Int J Mol Sci 23 2578 (2022)
  30. Nucleocytoplasmic Shuttling of STATs. A Target for Intervention? Ernst S, Müller-Newen G. Cancers (Basel) 11 E1815 (2019)
  31. Spelling out the roles of individual nucleoporins in nuclear export of mRNA. Tingey M, Li Y, Yu W, Young A, Yang W. Nucleus 13 170-193 (2022)
  32. Structure, Maintenance, and Regulation of Nuclear Pore Complexes: The Gatekeepers of the Eukaryotic Genome. Raices M, D'Angelo MA. Cold Spring Harb Perspect Biol 14 a040691 (2022)
  33. Synergies of Single Molecule Fluorescence and NMR for the Study of Intrinsically Disordered Proteins. Naudi-Fabra S, Blackledge M, Milles S. Biomolecules 12 27 (2021)

Articles citing this publication (119)

  1. A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins. Yamada J, Phillips JL, Patel S, Goldfien G, Calestagne-Morelli A, Huang H, Reza R, Acheson J, Krishnan VV, Newsam S, Gopinathan A, Lau EY, Colvin ME, Uversky VN, Rexach MF. Mol Cell Proteomics 9 2205-2224 (2010)
  2. Identification and characterization of a general nuclear translocation signal in signaling proteins. Chuderland D, Konson A, Seger R. Mol Cell 31 850-861 (2008)
  3. Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Jovanovic-Talisman T, Tetenbaum-Novatt J, McKenney AS, Zilman A, Peters R, Rout MP, Chait BT. Nature 457 1023-1027 (2009)
  4. NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia. Lin YW, Slape C, Zhang Z, Aplan PD. Blood 106 287-295 (2005)
  5. RanGTP mediates nuclear pore complex assembly. Walther TC, Askjaer P, Gentzel M, Habermann A, Griffiths G, Wilm M, Mattaj IW, Hetzer M. Nature 424 689-694 (2003)
  6. Structural basis for nuclear import complex dissociation by RanGTP. Lee SJ, Matsuura Y, Liu SM, Stewart M. Nature 435 693-696 (2005)
  7. Binding dynamics of isolated nucleoporin repeat regions to importin-beta. Isgro TA, Schulten K. Structure 13 1869-1879 (2005)
  8. Nup50/Npap60 function in nuclear protein import complex disassembly and importin recycling. Matsuura Y, Stewart M. EMBO J 24 3681-3689 (2005)
  9. Importin beta contains a COOH-terminal nucleoporin binding region important for nuclear transport. Bednenko J, Cingolani G, Gerace L. J Cell Biol 162 391-401 (2003)
  10. Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution. Cavalier-Smith T. Biol Direct 5 7 (2010)
  11. Structural basis for the high-affinity binding of nucleoporin Nup1p to the Saccharomyces cerevisiae importin-beta homologue, Kap95p. Liu SM, Stewart M. J Mol Biol 349 515-525 (2005)
  12. Nuclear mRNA export requires specific FG nucleoporins for translocation through the nuclear pore complex. Terry LJ, Wente SR. J Cell Biol 178 1121-1132 (2007)
  13. Self-regulated viscous channel in the nuclear pore complex. Ma J, Goryaynov A, Sarma A, Yang W. Proc Natl Acad Sci U S A 109 7326-7331 (2012)
  14. Synchronizing nuclear import of ribosomal proteins with ribosome assembly. Kressler D, Bange G, Ogawa Y, Stjepanovic G, Bradatsch B, Pratte D, Amlacher S, Strauß D, Yoneda Y, Katahira J, Sinning I, Hurt E. Science 338 666-671 (2012)
  15. The molecular mechanism of nuclear transport revealed by atomic-scale measurements. Hough LE, Dutta K, Sparks S, Temel DB, Kamal A, Tetenbaum-Novatt J, Rout MP, Cowburn D. Elife 4 e10027 (2015)
  16. Expanding the definition of the classical bipartite nuclear localization signal. Lange A, McLane LM, Mills RE, Devine SE, Corbett AH. Traffic 11 311-323 (2010)
  17. Three-dimensional distribution of transient interactions in the nuclear pore complex obtained from single-molecule snapshots. Ma J, Yang W. Proc Natl Acad Sci U S A 107 7305-7310 (2010)
  18. Structural basis for Nup2p function in cargo release and karyopherin recycling in nuclear import. Matsuura Y, Lange A, Harreman MT, Corbett AH, Stewart M. EMBO J 22 5358-5369 (2003)
  19. Translocation through the nuclear pore: Kaps pave the way. Peters R. Bioessays 31 466-477 (2009)
  20. Karyopherin-centric control of nuclear pores based on molecular occupancy and kinetic analysis of multivalent binding with FG nucleoporins. Kapinos LE, Schoch RL, Wagner RS, Schleicher KD, Lim RY. Biophys J 106 1751-1762 (2014)
  21. flDPnn: Accurate intrinsic disorder prediction with putative propensities of disorder functions. Hu G, Hu G, Katuwawala A, Wang K, Wu Z, Ghadermarzi S, Gao J, Kurgan L. Nat Commun 12 4438 (2021)
  22. Rapid evolution exposes the boundaries of domain structure and function in natively unfolded FG nucleoporins. Denning DP, Rexach MF. Mol Cell Proteomics 6 272-282 (2007)
  23. Discovering novel interactions at the nuclear pore complex using bead halo: a rapid method for detecting molecular interactions of high and low affinity at equilibrium. Patel SS, Rexach MF. Mol Cell Proteomics 7 121-131 (2008)
  24. Two distinct repeat sequences of Nup98 nucleoporins characterize dual nuclei in the binucleated ciliate tetrahymena. Iwamoto M, Mori C, Kojidani T, Bunai F, Hori T, Fukagawa T, Hiraoka Y, Haraguchi T. Curr Biol 19 843-847 (2009)
  25. Efficiency, selectivity, and robustness of nucleocytoplasmic transport. Zilman A, Di Talia S, Chait BT, Rout MP, Magnasco MO. PLoS Comput Biol 3 e125 (2007)
  26. Large cargo transport by nuclear pores: implications for the spatial organization of FG-nucleoporins. Tu LC, Fu G, Zilman A, Musser SM. EMBO J 32 3220-3230 (2013)
  27. Slide-and-exchange mechanism for rapid and selective transport through the nuclear pore complex. Raveh B, Karp JM, Sparks S, Dutta K, Rout MP, Sali A, Cowburn D. Proc Natl Acad Sci U S A 113 E2489-97 (2016)
  28. Crystal structure of MO25 alpha in complex with the C terminus of the pseudo kinase STE20-related adaptor. Milburn CC, Boudeau J, Deak M, Alessi DR, van Aalten DM. Nat Struct Mol Biol 11 193-200 (2004)
  29. Functional significance of the interaction between the mRNA-binding protein, Nab2, and the nuclear pore-associated protein, Mlp1, in mRNA export. Fasken MB, Stewart M, Corbett AH. J Biol Chem 283 27130-27143 (2008)
  30. Nucleus-specific importin alpha proteins and nucleoporins regulate protein import and nuclear division in the binucleate Tetrahymena thermophila. Malone CD, Falkowska KA, Li AY, Galanti SE, Kanuru RC, LaMont EG, Mazzarella KC, Micev AJ, Osman MM, Piotrowski NK, Suszko JW, Timm AC, Xu MM, Liu L, Chalker DL. Eukaryot Cell 7 1487-1499 (2008)
  31. Evolutionary and transcriptional analysis of karyopherin beta superfamily proteins. Quan Y, Ji ZL, Wang X, Tartakoff AM, Tao T. Mol Cell Proteomics 7 1254-1269 (2008)
  32. Scaffold nucleoporins Nup188 and Nup192 share structural and functional properties with nuclear transport receptors. Andersen KR, Onischenko E, Tang JH, Kumar P, Chen JZ, Ulrich A, Liphardt JT, Weis K, Schwartz TU. Elife 2 e00745 (2013)
  33. Structural basis for the interaction between the Tap/NXF1 UBA domain and FG nucleoporins at 1A resolution. Grant RP, Neuhaus D, Stewart M. J Mol Biol 326 849-858 (2003)
  34. Association of nuclear pore FG-repeat domains to NTF2 import and export complexes. Isgro TA, Schulten K. J Mol Biol 366 330-345 (2007)
  35. Cargo surface hydrophobicity is sufficient to overcome the nuclear pore complex selectivity barrier. Naim B, Zbaida D, Dagan S, Kapon R, Reich Z. EMBO J 28 2697-2705 (2009)
  36. Distinct functions of the Drosophila Nup153 and Nup214 FG domains in nuclear protein transport. Sabri N, Roth P, Xylourgidis N, Sadeghifar F, Adler J, Samakovlis C. J Cell Biol 178 557-565 (2007)
  37. Solution NMR study of the interaction between NTF2 and nucleoporin FxFG repeats. Morrison J, Yang JC, Stewart M, Neuhaus D. J Mol Biol 333 587-603 (2003)
  38. Nucleocytoplasmic transport: a role for nonspecific competition in karyopherin-nucleoporin interactions. Tetenbaum-Novatt J, Hough LE, Mironska R, McKenney AS, Rout MP. Mol Cell Proteomics 11 31-46 (2012)
  39. Brownian dynamics simulation of nucleocytoplasmic transport: a coarse-grained model for the functional state of the nuclear pore complex. Moussavi-Baygi R, Jamali Y, Karimi R, Mofrad MR. PLoS Comput Biol 7 e1002049 (2011)
  40. Charge as a selection criterion for translocation through the nuclear pore complex. Colwell LJ, Brenner MP, Ribbeck K. PLoS Comput Biol 6 e1000747 (2010)
  41. Cse1p-binding dynamics reveal a binding pattern for FG-repeat nucleoporins on transport receptors. Isgro TA, Schulten K. Structure 15 977-991 (2007)
  42. Promiscuous binding of Karyopherinβ1 modulates FG nucleoporin barrier function and expedites NTF2 transport kinetics. Wagner RS, Kapinos LE, Marshall NJ, Stewart M, Lim RYH. Biophys J 108 918-927 (2015)
  43. Simple biophysics underpins collective conformations of the intrinsically disordered proteins of the Nuclear Pore Complex. Vovk A, Gu C, Opferman MG, Kapinos LE, Lim RY, Coalson RD, Jasnow D, Zilman A. Elife 5 e10785 (2016)
  44. Facilitated transport and diffusion take distinct spatial routes through the nuclear pore complex. Fiserova J, Richards SA, Wente SR, Goldberg MW. J Cell Sci 123 2773-2780 (2010)
  45. Transport-related structures and processes of the nuclear pore complex studied through molecular dynamics. Miao L, Schulten K. Structure 17 449-459 (2009)
  46. The karyopherin Kap95 regulates nuclear pore complex assembly into intact nuclear envelopes in vivo. Ryan KJ, Zhou Y, Wente SR. Mol Biol Cell 18 886-898 (2007)
  47. From the trap to the basket: getting to the bottom of the nuclear pore complex. Lim RY, Aebi U, Stoffler D. Chromosoma 115 15-26 (2006)
  48. Importin-β negatively regulates multiple aspects of mitosis including RANGAP1 recruitment to kinetochores. Roscioli E, Di Francesco L, Bolognesi A, Giubettini M, Orlando S, Harel A, Schininà ME, Lavia P. J Cell Biol 196 435-450 (2012)
  49. Individual binding pockets of importin-beta for FG-nucleoporins have different binding properties and different sensitivities to RanGTP. Otsuka S, Iwasaka S, Yoneda Y, Takeyasu K, Yoshimura SH. Proc Natl Acad Sci U S A 105 16101-16106 (2008)
  50. Super-resolution 3D tomography of interactions and competition in the nuclear pore complex. Ma J, Goryaynov A, Yang W. Nat Struct Mol Biol 23 239-247 (2016)
  51. Crystal structures of the human G3BP1 NTF2-like domain visualize FxFG Nup repeat specificity. Vognsen T, Møller IR, Kristensen O. PLoS One 8 e80947 (2013)
  52. Structure of importin-α bound to a non-classical nuclear localization signal of the influenza A virus nucleoprotein. Nakada R, Hirano H, Matsuura Y. Sci Rep 5 15055 (2015)
  53. beta-Catenin shows an overlapping sequence requirement but distinct molecular interactions for its bidirectional passage through nuclear pores. Koike M, Kose S, Furuta M, Taniguchi N, Yokoya F, Yoneda Y, Imamoto N. J Biol Chem 279 34038-34047 (2004)
  54. Assembly of Nsp1 nucleoporins provides insight into nuclear pore complex gating. Gamini R, Han W, Stone JE, Schulten K. PLoS Comput Biol 10 e1003488 (2014)
  55. The importin beta binding domain modulates the avidity of importin beta for the nuclear pore complex. Lott K, Bhardwaj A, Mitrousis G, Pante N, Cingolani G. J Biol Chem 285 13769-13780 (2010)
  56. Nuclear pore complex protein sequences determine overall copolymer brush structure and function. Ando D, Zandi R, Kim YW, Colvin M, Rexach M, Gopinathan A. Biophys J 106 1997-2007 (2014)
  57. The RNA-binding proteins FMR1, rasputin and caprin act together with the UBA protein lingerer to restrict tissue growth in Drosophila melanogaster. Baumgartner R, Stocker H, Hafen E. PLoS Genet 9 e1003598 (2013)
  58. Conformational heterogeneity of karyopherin beta2 is segmental. Cansizoglu AE, Chook YM. Structure 15 1431-1441 (2007)
  59. Protein phosphatase 2A is targeted to cell division control protein 6 by a calcium-binding regulatory subunit. Davis AJ, Yan Z, Martinez B, Mumby MC. J Biol Chem 283 16104-16114 (2008)
  60. The Ty1 integrase protein can exploit the classical nuclear protein import machinery for entry into the nucleus. McLane LM, Pulliam KF, Devine SE, Corbett AH. Nucleic Acids Res 36 4317-4326 (2008)
  61. Biophysical coarse-grained modeling provides insights into transport through the nuclear pore complex. Moussavi-Baygi R, Jamali Y, Karimi R, Mofrad MR. Biophys J 100 1410-1419 (2011)
  62. Kap95p binding induces the switch loops of RanGDP to adopt the GTP-bound conformation: implications for nuclear import complex assembly dynamics. Forwood JK, Lonhienne TG, Marfori M, Robin G, Meng W, Guncar G, Liu SM, Stewart M, Carroll BJ, Kobe B. J Mol Biol 383 772-782 (2008)
  63. Requirement for lamin B receptor and its regulation by importin {beta} and phosphorylation in nuclear envelope assembly during mitotic exit. Lu X, Shi Y, Lu Q, Ma Y, Luo J, Wang Q, Ji J, Jiang Q, Zhang C. J Biol Chem 285 33281-33293 (2010)
  64. Structural basis of importin-α-mediated nuclear transport for Ku70 and Ku80. Takeda AA, de Barros AC, Chang CW, Kobe B, Fontes MR. J Mol Biol 412 226-234 (2011)
  65. Two Differential Binding Mechanisms of FG-Nucleoporins and Nuclear Transport Receptors. Tan PS, Aramburu IV, Mercadante D, Tyagi S, Chowdhury A, Spitz D, Shammas SL, Gräter F, Lemke EA. Cell Rep 22 3660-3671 (2018)
  66. Human cellular protein nucleoporin hNup98 interacts with influenza A virus NS2/nuclear export protein and overexpression of its GLFG repeat domain can inhibit virus propagation. Chen J, Huang S, Chen Z. J Gen Virol 91 2474-2484 (2010)
  67. Nucleocytoplasmic shuttling of lgl2 is developmentally regulated in fetal lung. Tao T, Lan J, Presley JF, Sweezey NB, Kaplan F. Am J Respir Cell Mol Biol 30 350-359 (2004)
  68. Probing a structural model of the nuclear pore complex channel through molecular dynamics. Miao L, Schulten K. Biophys J 98 1658-1667 (2010)
  69. New twist to nuclear import: When two travel together. Bange G, Murat G, Sinning I, Hurt E, Kressler D. Commun Integr Biol 6 e24792 (2013)
  70. Physical motif clustering within intrinsically disordered nucleoporin sequences reveals universal functional features. Ando D, Colvin M, Rexach M, Gopinathan A. PLoS One 8 e73831 (2013)
  71. Several phenylalanine-glycine motives in the nucleoporin Nup214 are essential for binding of the nuclear export receptor CRM1. Roloff S, Spillner C, Kehlenbach RH. J Biol Chem 288 3952-3963 (2013)
  72. Role of molecular charge in nucleocytoplasmic transport. Goryaynov A, Yang W. PLoS One 9 e88792 (2014)
  73. Small molecule peptidomimetic inhibitors of importin α/β mediated nuclear transport. Ambrus G, Whitby LR, Singer EL, Trott O, Choi E, Olson AJ, Boger DL, Gerace L. Bioorg Med Chem 18 7611-7620 (2010)
  74. Nucleoplasmic signals promote directed transmembrane protein import simultaneously via multiple channels of nuclear pores. Mudumbi KC, Czapiewski R, Ruba A, Junod SL, Li Y, Luo W, Ngo C, Ospina V, Schirmer EC, Yang W. Nat Commun 11 2184 (2020)
  75. Probing the sites of interactions of rotaviral proteins involved in replication. Viskovska M, Anish R, Hu L, Chow DC, Hurwitz AM, Brown NG, Palzkill T, Estes MK, Prasad BV. J Virol 88 12866-12881 (2014)
  76. Calcium Regulates the Nuclear Localization of Protein Arginine Deiminase 2. Zheng L, Nagar M, Maurais AJ, Slade DJ, Parelkar SS, Coonrod SA, Weerapana E, Thompson PR. Biochemistry 58 3042-3056 (2019)
  77. Using peptide arrays to define nuclear carrier binding sites on nucleoporins. Cushman I, Palzkill T, Moore MS. Methods 39 329-341 (2006)
  78. Higher nucleoporin-Importinβ affinity at the nuclear basket increases nucleocytoplasmic import. Azimi M, Mofrad MR. PLoS One 8 e81741 (2013)
  79. Importin beta plays an essential role in the regulation of the LysRS-Ap(4)A pathway in immunologically activated mast cells. Carmi-Levy I, Motzik A, Ofir-Birin Y, Yagil Z, Yang CM, Kemeny DM, Han JM, Kim S, Kay G, Nechushtan H, Suzuki R, Rivera J, Razin E. Mol Cell Biol 31 2111-2121 (2011)
  80. Multiple conserved domains of the nucleoporin Nup124p and its orthologs Nup1p and Nup153 are critical for nuclear import and activity of the fission yeast Tf1 retrotransposon. Sistla S, Pang JV, Wang CX, Balasundaram D. Mol Biol Cell 18 3692-3708 (2007)
  81. Enhanced diffusion by binding to the crosslinks of a polymer gel. Goodrich CP, Brenner MP, Ribbeck K. Nat Commun 9 4348 (2018)
  82. Ca-Responsive cis-Elements in Plants. Finkler A, Kaplan B, Fromm H. Plant Signal Behav 2 17-19 (2007)
  83. Fuzzy Interactions Form and Shape the Histone Transport Complex. Ivic N, Potocnjak M, Solis-Mezarino V, Herzog F, Bilokapic S, Halic M. Mol Cell 73 1191-1203.e6 (2019)
  84. Physical modeling of multivalent interactions in the nuclear pore complex. Davis LK, Šarić A, Hoogenboom BW, Zilman A. Biophys J 120 1565-1577 (2021)
  85. Physics of the Nuclear Pore Complex: Theory, Modeling and Experiment. Hoogenboom BW, Hough LE, Lemke EA, Lim RYH, Onck PR, Zilman A. Phys Rep 921 1-53 (2021)
  86. Xenopus importin beta validates human importin beta as a cell cycle negative regulator. Delmar VA, Chan RC, Forbes DJ. BMC Cell Biol 9 14 (2008)
  87. Crystal structure of the Rasputin NTF2-like domain from Drosophila melanogaster. Vognsen T, Kristensen O. Biochem Biophys Res Commun 420 188-192 (2012)
  88. Hydrophilic linkers and polar contacts affect aggregation of FG repeat peptides. Dölker N, Zachariae U, Grubmüller H. Biophys J 98 2653-2661 (2010)
  89. Specific monoclonal antibody against the nuclear pore complex protein, nup98. Fukuhara T, Ozaki T, Shikata K, Katahira J, Yoneda Y, Ogino K, Tachibana T. Hybridoma (Larchmt) 24 244-247 (2005)
  90. Super-resolved 3D tracking of cargo transport through nuclear pore complexes. Chowdhury R, Sau A, Musser SM. Nat Cell Biol 24 112-122 (2022)
  91. How calmodulin binding transcription activators (CAMTAs) mediate auxin responses. Galon Y, Snir O, Fromm H. Plant Signal Behav 5 1311-1314 (2010)
  92. Mouse embryonic stem cells that express a NUP98-HOXD13 fusion protein are impaired in their ability to differentiate and can be complemented by BCR-ABL. Slape C, Chung YJ, Soloway PD, Tessarollo L, Aplan PD. Leukemia 21 1239-1248 (2007)
  93. Nuclear Import of Arabidopsis Poly(ADP-Ribose) Polymerase 2 Is Mediated by Importin-α and a Nuclear Localization Sequence Located Between the Predicted SAP Domains. Chen C, Masi R, Lintermann R, Wirthmueller L. Front Plant Sci 9 1581 (2018)
  94. Single-molecule analysis of the recognition forces underlying nucleo-cytoplasmic transport. Rangl M, Ebner A, Yamada J, Rankl C, Tampé R, Gruber HJ, Rexach M, Hinterdorfer P. Angew Chem Int Ed Engl 52 10356-10359 (2013)
  95. Comment Nuclear transport comes full circle. Debler EW, Blobel G, Hoelz A. Nat Struct Mol Biol 16 457-459 (2009)
  96. Prolines in the α-helix confer the structural flexibility and functional integrity of importin-β. Kumeta M, Konishi HA, Zhang W, Sakagami S, Yoshimura SH. J Cell Sci 131 jcs206326 (2018)
  97. A coarse-grained computational model of the nuclear pore complex predicts Phe-Gly nucleoporin dynamics. Pulupa J, Rachh M, Tomasini MD, Mincer JS, Simon SM. J Gen Physiol 149 951-966 (2017)
  98. Charge Influences Substrate Recognition and Self-Assembly of Hydrophobic FG Sequences. Chen WG, Witten J, Grindy SC, Holten-Andersen N, Ribbeck K. Biophys J 113 2088-2099 (2017)
  99. Impact of the crystallization condition on importin-β conformation. Tauchert MJ, Hémonnot C, Neumann P, Köster S, Ficner R, Dickmanns A. Acta Crystallogr D Struct Biol 72 705-717 (2016)
  100. Importin-β/karyopherin-β1 modulates mitotic microtubule function and taxane sensitivity in cancer cells via its nucleoporin-binding region. Verrico A, Rovella P, Di Francesco L, Damizia M, Staid DS, Le Pera L, Schininà ME, Lavia P. Oncogene 39 454-468 (2020)
  101. Nuclear localization of a novel human syntaxin 1B isoform. Pereira S, Massacrier A, Roll P, Vérine A, Etienne-Grimaldi MC, Poitelon Y, Robaglia-Schlupp A, Jamali S, Roeckel-Trevisiol N, Royer B, Pontarotti P, Lévêque C, Seagar M, Lévy N, Cau P, Szepetowski P. Gene 423 160-171 (2008)
  102. A genomic glance at the components of the mRNA export machinery in Plasmodium falciparum. Tuteja R, Mehta J. Commun Integr Biol 3 318-326 (2010)
  103. A loop extrusion-independent mechanism contributes to condensin I-mediated chromosome shaping. Kinoshita K, Tsubota Y, Tane S, Aizawa Y, Sakata R, Takeuchi K, Shintomi K, Nishiyama T, Hirano T. J Cell Biol 221 e202109016 (2022)
  104. Crowding effects in non-equilibrium transport through nano-channels. Zilman A, Bel G. J Phys Condens Matter 22 454130 (2010)
  105. Permeating the nuclear pore complex. Kapon R, Naim B, Zbaida D, Nevo R, Tsabari O, Reich Z. Nucleus 1 475-480 (2010)
  106. Interactions of nuclear transport factors and surface-conjugated FG nucleoporins: Insights and limitations. Hayama R, Sorci M, Keating Iv JJ, Hecht LM, Plawsky JL, Belfort G, Chait BT, Rout MP. PLoS One 14 e0217897 (2019)
  107. N-terminally truncated POM121C inhibits HIV-1 replication. Saito H, Takeuchi H, Masuda T, Noda T, Yamaoka S. PLoS One 12 e0182434 (2017)
  108. Structural and functional analysis of Hikeshi, a new nuclear transport receptor of Hsp70s. Song J, Kose S, Watanabe A, Son SY, Choi S, Hong H, Yamashita E, Park IY, Imamoto N, Lee SJ. Acta Crystallogr D Biol Crystallogr 71 473-483 (2015)
  109. Structural characterisation of TNRC6A nuclear localisation signal in complex with importin-alpha. Chaston JJ, Stewart AG, Christie M. PLoS One 12 e0183587 (2017)
  110. Analysis of a predicted nuclear localization signal: implications for the intracellular localization and function of the Saccharomyces cerevisiae RNA-binding protein Scp160. Brykailo MA, McLane LM, Fridovich-Keil J, Corbett AH. Nucleic Acids Res 35 6862-6869 (2007)
  111. Cooperative Interactions between Different Classes of Disordered Proteins Play a Functional Role in the Nuclear Pore Complex of Baker's Yeast. Ando D, Gopinathan A. PLoS One 12 e0169455 (2017)
  112. NMR based solvent exchange experiments to understand the conformational preference of intrinsically disordered proteins using FG-nucleoporin peptide as a model. Heisel KA, Krishnan VV. Biopolymers 102 69-77 (2014)
  113. Pathogenic variants in nucleoporin TPR (translocated promoter region, nuclear basket protein) cause severe intellectual disability in humans. Van Bergen NJ, Bell KM, Carey K, Gear R, Massey S, Murrell EK, Gallacher L, Pope K, Lockhart PJ, Kornberg A, Pais L, Walkiewicz M, Simons C, MCRI Rare Diseases Flagship, Wickramasinghe VO, White SM, Christodoulou J. Hum Mol Genet 31 362-375 (2022)
  114. Comment Gate-crashing the nuclear pore complex. Lim RY. Structure 15 889-891 (2007)
  115. Molecular basis of C9orf72 poly-PR interference with the β-karyopherin family of nuclear transport receptors. Jafarinia H, Van der Giessen E, Onck PR. Sci Rep 12 21324 (2022)
  116. Binding stoichiometry and structural model of the HIV-1 Rev/importin β complex. Spittler D, Indorato RL, Boeri Erba E, Delaforge E, Signor L, Harris SJ, Garcia-Saez I, Palencia A, Gabel F, Blackledge M, Noirclerc-Savoye M, Petosa C. Life Sci Alliance 5 e202201431 (2022)
  117. Improving the hole picture: towards a consensus on the mechanism of nuclear transport. Cowburn D, Rout M. Biochem Soc Trans 51 871-886 (2023)
  118. Comment In silico access to the nuclear pore complex. Lim RY, Aebi U. Structure 13 1741-1743 (2005)
  119. Unraveling docking and initiation of mRNA export through the nuclear pore complex. Tingey M, Yang W. Bioessays 44 e2200027 (2022)