1o01 Citations

Coenzyme isomerization is integral to catalysis in aldehyde dehydrogenase.

Biochemistry 42 7100-9 (2003)
Related entries: 1nzw, 1nzx, 1nzz, 1o00, 1o02, 1o04

Cited: 118 times
EuropePMC logo PMID: 12795606

Abstract

Crystal structures of many enzymes in the aldehyde dehydrogenase superfamily determined in the presence of bound NAD(P)(+) have exhibited conformational flexibility for the nicotinamide half of the cofactor. This has been hypothesized to be important in catalysis because one conformation would block the second half of the reaction, but no firm evidence has been put forth which shows whether the oxidized and reduced cofactors preferentially occupy the two observed conformations. We present here two structures of the wild type and two structures of a Cys302Ser mutant of human mitochondrial aldehyde dehydrogenase in binary complexes with NAD(+) and NADH. These structures, including the Cys302Ser mutant in complex with NAD(+) at 1.4 A resolution and the wild-type enzyme in complex with NADH at 1.9 A resolution, provide strong evidence that bound NAD(+) prefers an extended conformation ideal for hydride transfer and bound NADH prefers a contracted conformation ideal for acyl-enzyme hydrolysis. Unique interactions between the cofactor and the Rossmann fold make isomerization possible while allowing the remainder of the active site complex to remain intact. In addition, these structures clarify the role of magnesium in activating the human class 2 enzyme. Our data suggest that the presence of magnesium may lead to selection of particular conformations and speed isomerization of the reduced cofactor following hydride transfer.

Reviews - 1o01 mentioned but not cited (1)

  1. Aldehyde dehydrogenase inhibitors: a comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Koppaka V, Thompson DC, Chen Y, Ellermann M, Nicolaou KC, Juvonen RO, Petersen D, Deitrich RA, Hurley TD, Vasiliou V. Pharmacol Rev 64 520-539 (2012)

Articles - 1o01 mentioned but not cited (18)

  1. Crystal structure of human aldehyde dehydrogenase 1A3 complexed with NAD+ and retinoic acid. Moretti A, Li J, Donini S, Sobol RW, Rizzi M, Garavaglia S. Sci Rep 6 35710 (2016)
  2. Role of the general base Glu-268 in nitroglycerin bioactivation and superoxide formation by aldehyde dehydrogenase-2. Wenzl MV, Beretta M, Gorren AC, Zeller A, Baral PK, Gruber K, Russwurm M, Koesling D, Schmidt K, Mayer B. J Biol Chem 284 19878-19886 (2009)
  3. Plant ALDH10 family: identifying critical residues for substrate specificity and trapping a thiohemiacetal intermediate. Kopečny D, Končitíková R, Tylichová M, Vigouroux A, Moskalíková H, Soural M, Šebela M, Moréra S. J Biol Chem 288 9491-9507 (2013)
  4. Mechanistic implications of the cysteine-nicotinamide adduct in aldehyde dehydrogenase based on quantum mechanical/molecular mechanical simulations. Wymore T, Deerfield DW, Hempel J. Biochemistry 46 9495-9506 (2007)
  5. The X-ray crystal structure of Escherichia coli succinic semialdehyde dehydrogenase; structural insights into NADP+/enzyme interactions. Langendorf CG, Key TL, Fenalti G, Kan WT, Buckle AM, Caradoc-Davies T, Tuck KL, Law RH, Whisstock JC. PLoS One 5 e9280 (2010)
  6. ALDH16A1 is a novel non-catalytic enzyme that may be involved in the etiology of gout via protein-protein interactions with HPRT1. Vasiliou V, Sandoval M, Backos DS, Jackson BC, Chen Y, Reigan P, Lanaspa MA, Johnson RJ, Koppaka V, Thompson DC. Chem Biol Interact 202 22-31 (2013)
  7. Human ALDH1B1 polymorphisms may affect the metabolism of acetaldehyde and all-trans retinaldehyde--in vitro studies and computational modeling. Jackson BC, Reigan P, Miller B, Thompson DC, Vasiliou V. Pharm Res 32 1648-1662 (2015)
  8. A new and unified nomenclature for male fertility restorer (RF) proteins in higher plants. Kotchoni SO, Jimenez-Lopez JC, Gachomo EW, Seufferheld MJ. PLoS One 5 e15906 (2010)
  9. Activity-Based Hydrazine Probes for Protein Profiling of Electrophilic Functionality in Therapeutic Targets. Lin Z, Wang X, Bustin KA, Shishikura K, McKnight NR, He L, Suciu RM, Hu K, Han X, Ahmadi M, Olson EJ, Parsons WH, Matthews ML. ACS Cent Sci 7 1524-1534 (2021)
  10. Comparative genomics, molecular evolution and computational modeling of ALDH1B1 and ALDH2. Jackson BC, Holmes RS, Backos DS, Reigan P, Thompson DC, Vasiliou V. Chem Biol Interact 202 11-21 (2013)
  11. Characterizing Sirtuin 3 Deacetylase Affinity for Aldehyde Dehydrogenase 2. Harris PS, Gomez JD, Backos DS, Fritz KS. Chem Res Toxicol 30 785-793 (2017)
  12. Different specificities of two aldehyde dehydrogenases from Saccharomyces cerevisiae var. boulardii. Datta S, Annapure US, Timson DJ. Biosci Rep 37 BSR20160529 (2017)
  13. Engineering an aldehyde dehydrogenase toward its substrates, 3-hydroxypropanal and NAD+, for enhancing the production of 3-hydroxypropionic acid. Park YS, Choi UJ, Nam NH, Choi SJ, Nasir A, Lee SG, Kim KJ, Jung GY, Choi S, Shim JY, Park S, Yoo TH. Sci Rep 7 17155 (2017)
  14. Catalytic contribution of threonine 244 in human ALDH2. González-Segura L, Ho KK, Perez-Miller S, Weiner H, Hurley TD. Chem Biol Interact 202 32-40 (2013)
  15. Evaluation of spice and herb as phyto-derived selective modulators of human retinaldehyde dehydrogenases using a simple in vitro method. Bui TBC, Nosaki S, Kokawa M, Xu Y, Kitamura Y, Tanokura M, Hachimura S, Miyakawa T. Biosci Rep 41 BSR20210491 (2021)
  16. Mapping Aldehyde Dehydrogenase 1A1 Activity using an [18 F]Substrate-Based Approach. Pereira R, Gendron T, Sanghera C, Greenwood HE, Newcombe J, McCormick PN, Sander K, Topf M, Årstad E, Witney TH. Chemistry 25 2345-2351 (2019)
  17. ALDEFLUOR activity, ALDH isoforms, and their clinical significance in cancers. Duan JJ, Cai J, Gao L, Yu SC. J Enzyme Inhib Med Chem 38 2166035 (2023)
  18. Expression, purification and crystallization of the novel Xenopus tropicalis ALDH16B1, a homologue of human ALDH16A1. Pantouris G, Dioletis E, Chen Y, Thompson DC, Vasiliou V, Lolis EJ. Chem Biol Interact 304 168-172 (2019)


Reviews citing this publication (9)

  1. IMP dehydrogenase: structure, mechanism, and inhibition. Hedstrom L. Chem Rev 109 2903-2928 (2009)
  2. Role of Na+ and K+ in enzyme function. Page MJ, Di Cera E. Physiol Rev 86 1049-1092 (2006)
  3. FDH: an aldehyde dehydrogenase fusion enzyme in folate metabolism. Krupenko SA. Chem Biol Interact 178 84-93 (2009)
  4. Ocular aldehyde dehydrogenases: protection against ultraviolet damage and maintenance of transparency for vision. Chen Y, Thompson DC, Koppaka V, Jester JV, Vasiliou V. Prog Retin Eye Res 33 28-39 (2013)
  5. Thiol switches in mitochondria: operation and physiological relevance. Riemer J, Schwarzländer M, Conrad M, Herrmann JM. Biol Chem 396 465-482 (2015)
  6. Kinetic and structural features of betaine aldehyde dehydrogenases: mechanistic and regulatory implications. Muñoz-Clares RA, Díaz-Sánchez AG, González-Segura L, Montiel C. Arch Biochem Biophys 493 71-81 (2010)
  7. Structural Biology of Proline Catabolic Enzymes. Tanner JJ. Antioxid Redox Signal 30 650-673 (2019)
  8. Aldehyde Dehydrogenase 2 as a Therapeutic Target in Oxidative Stress-Related Diseases: Post-Translational Modifications Deserve More Attention. Gao J, Hao Y, Piao X, Gu X. Int J Mol Sci 23 2682 (2022)
  9. Enzymes and signal pathways in the pathogenesis of alcoholic cardiomyopathy. Leibing E, Meyer T. Herz 41 478-483 (2016)

Articles citing this publication (90)

  1. Alda-1 is an agonist and chemical chaperone for the common human aldehyde dehydrogenase 2 variant. Perez-Miller S, Younus H, Vanam R, Chen CH, Mochly-Rosen D, Hurley TD. Nat Struct Mol Biol 17 159-164 (2010)
  2. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Chen S, Yang Y, Shi W, Ji Q, He F, Zhang Z, Cheng Z, Liu X, Xu M. Plant Cell 20 1850-1861 (2008)
  3. Aldehyde dehydrogenase 7A1 (ALDH7A1) is a novel enzyme involved in cellular defense against hyperosmotic stress. Brocker C, Lassen N, Estey T, Pappa A, Cantore M, Orlova VV, Chavakis T, Kavanagh KL, Oppermann U, Vasiliou V. J Biol Chem 285 18452-18463 (2010)
  4. Structural and functional consequences of coenzyme binding to the inactive asian variant of mitochondrial aldehyde dehydrogenase: roles of residues 475 and 487. Larson HN, Zhou J, Chen Z, Stamler JS, Weiner H, Hurley TD. J Biol Chem 282 12940-12950 (2007)
  5. Macrophage and dendritic cell subsets in IBD: ALDH+ cells are reduced in colon tissue of patients with ulcerative colitis regardless of inflammation. Magnusson MK, Brynjólfsson SF, Dige A, Uronen-Hansson H, Börjesson LG, Bengtsson JL, Gudjonsson S, Öhman L, Agnholt J, Sjövall H, Agace WW, Wick MJ. Mucosal Immunol 9 171-182 (2016)
  6. Disruption of the coenzyme binding site and dimer interface revealed in the crystal structure of mitochondrial aldehyde dehydrogenase "Asian" variant. Larson HN, Weiner H, Hurley TD. J Biol Chem 280 30550-30556 (2005)
  7. The crystal structure of a ternary complex of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa Provides new insight into the reaction mechanism and shows a novel binding mode of the 2'-phosphate of NADP+ and a novel cation binding site. González-Segura L, Rudiño-Piñera E, Muñoz-Clares RA, Horjales E. J Mol Biol 385 542-557 (2009)
  8. Crystal structure of Thermus thermophilus Delta1-pyrroline-5-carboxylate dehydrogenase. Inagaki E, Ohshima N, Takahashi H, Kuroishi C, Yokoyama S, Tahirov TH. J Mol Biol 362 490-501 (2006)
  9. The three-dimensional structural basis of type II hyperprolinemia. Srivastava D, Singh RK, Moxley MA, Henzl MT, Becker DF, Tanner JJ. J Mol Biol 420 176-189 (2012)
  10. Crystal structure and kinetics identify Escherichia coli YdcW gene product as a medium-chain aldehyde dehydrogenase. Gruez A, Roig-Zamboni V, Grisel S, Salomoni A, Valencia C, Campanacci V, Tegoni M, Cambillau C. J Mol Biol 343 29-41 (2004)
  11. Discovery of a novel class of covalent inhibitor for aldehyde dehydrogenases. Khanna M, Chen CH, Kimble-Hill A, Parajuli B, Perez-Miller S, Baskaran S, Kim J, Dria K, Vasiliou V, Mochly-Rosen D, Hurley TD. J Biol Chem 286 43486-43494 (2011)
  12. Inhibition of the oxidative metabolism of 3,4-dihydroxyphenylacetaldehyde, a reactive intermediate of dopamine metabolism, by 4-hydroxy-2-nonenal. Florang VR, Rees JN, Brogden NK, Anderson DG, Hurley TD, Doorn JA. Neurotoxicology 28 76-82 (2007)
  13. Structural Basis of allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde 3-Phosphate dehydrogenase from Thermoproteus tenax. Lorentzen E, Hensel R, Knura T, Ahmed H, Pohl E. J Mol Biol 341 815-828 (2004)
  14. Crystal structure of lactaldehyde dehydrogenase from Escherichia coli and inferences regarding substrate and cofactor specificity. Di Costanzo L, Gomez GA, Christianson DW. J Mol Biol 366 481-493 (2007)
  15. Development of a high-throughput in vitro assay to identify selective inhibitors for human ALDH1A1. Morgan CA, Hurley TD. Chem Biol Interact 234 29-37 (2015)
  16. Structural and functional characterization of plant aminoaldehyde dehydrogenase from Pisum sativum with a broad specificity for natural and synthetic aminoaldehydes. Tylichová M, Kopecný D, Moréra S, Briozzo P, Lenobel R, Snégaroff J, Sebela M. J Mol Biol 396 870-882 (2010)
  17. Structural Basis of Substrate Recognition by Aldehyde Dehydrogenase 7A1. Luo M, Tanner JJ. Biochemistry 54 5513-5522 (2015)
  18. Development of selective inhibitors for human aldehyde dehydrogenase 3A1 (ALDH3A1) for the enhancement of cyclophosphamide cytotoxicity. Parajuli B, Georgiadis TM, Fishel ML, Hurley TD. Chembiochem 15 701-712 (2014)
  19. Discovery of novel regulators of aldehyde dehydrogenase isoenzymes. Parajuli B, Kimble-Hill AC, Khanna M, Ivanova Y, Meroueh S, Hurley TD. Chem Biol Interact 191 153-158 (2011)
  20. Selective ALDH3A1 inhibition by benzimidazole analogues increase mafosfamide sensitivity in cancer cells. Parajuli B, Fishel ML, Hurley TD. J Med Chem 57 449-461 (2014)
  21. Conserved catalytic residues of the ALDH1L1 aldehyde dehydrogenase domain control binding and discharging of the coenzyme. Tsybovsky Y, Krupenko SA. J Biol Chem 286 23357-23367 (2011)
  22. Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7. Končitíková R, Vigouroux A, Kopečná M, Andree T, Bartoš J, Šebela M, Moréra S, Kopečný D. Biochem J 468 109-123 (2015)
  23. Structural Basis of ALDH1A2 Inhibition by Irreversible and Reversible Small Molecule Inhibitors. Chen Y, Zhu JY, Hong KH, Mikles DC, Georg GI, Goldstein AS, Amory JK, Schönbrunn E. ACS Chem Biol 13 582-590 (2018)
  24. Structural studies of yeast Δ(1)-pyrroline-5-carboxylate dehydrogenase (ALDH4A1): active site flexibility and oligomeric state. Pemberton TA, Srivastava D, Sanyal N, Henzl MT, Becker DF, Tanner JJ. Biochemistry 53 1350-1359 (2014)
  25. Structure-based mutational studies of substrate inhibition of betaine aldehyde dehydrogenase BetB from Staphylococcus aureus. Chen C, Joo JC, Brown G, Stolnikova E, Halavaty AS, Savchenko A, Anderson WF, Yakunin AF. Appl Environ Microbiol 80 3992-4002 (2014)
  26. Structural and biochemical characterization of a novel aldehyde dehydrogenase encoded by the benzoate oxidation pathway in Burkholderia xenovorans LB400. Bains J, Boulanger MJ. J Mol Biol 379 597-608 (2008)
  27. Vascular bioactivation of nitroglycerin by aldehyde dehydrogenase-2: reaction intermediates revealed by crystallography and mass spectrometry. Lang BS, Gorren AC, Oberdorfer G, Wenzl MV, Furdui CM, Poole LB, Mayer B, Gruber K. J Biol Chem 287 38124-38134 (2012)
  28. Development of selective inhibitors for aldehyde dehydrogenases based on substituted indole-2,3-diones. Kimble-Hill AC, Parajuli B, Chen CH, Mochly-Rosen D, Hurley TD. J Med Chem 57 714-722 (2014)
  29. Structural basis of substrate selectivity of Δ(1)-pyrroline-5-carboxylate dehydrogenase (ALDH4A1): semialdehyde chain length. Pemberton TA, Tanner JJ. Arch Biochem Biophys 538 34-40 (2013)
  30. Transcriptome analysis and prognosis of ALDH isoforms in human cancer. Chang PM, Chen CH, Yeh CC, Lu HJ, Liu TT, Chen MH, Liu CY, Wu ATH, Yang MH, Tai SK, Mochly-Rosen D, Huang CF. Sci Rep 8 2713 (2018)
  31. Crystallographic evidence for active-site dynamics in the hydrolytic aldehyde dehydrogenases. Implications for the deacylation step of the catalyzed reaction. Muñoz-Clares RA, González-Segura L, Díaz-Sánchez AG. Chem Biol Interact 191 137-146 (2011)
  32. Carboxylate and aromatic active-site residues are determinants of high-affinity binding of ω-aminoaldehydes to plant aminoaldehyde dehydrogenases. Kopečný D, Tylichová M, Snegaroff J, Popelková H, Šebela M. FEBS J 278 3130-3139 (2011)
  33. Inhibition of the Aldehyde Dehydrogenase 1/2 Family by Psoralen and Coumarin Derivatives. Buchman CD, Hurley TD. J Med Chem 60 2439-2455 (2017)
  34. Retinoic acid biosynthesis catalyzed by retinal dehydrogenases relies on a rate-limiting conformational transition associated with substrate recognition. Bchini R, Vasiliou V, Branlant G, Talfournier F, Rahuel-Clermont S. Chem Biol Interact 202 78-84 (2013)
  35. Molecular recognition of aldehydes by aldehyde dehydrogenase and mechanism of nucleophile activation. Wymore T, Hempel J, Cho SS, Mackerell AD, Nicholas HB, Deerfield DW. Proteins 57 758-771 (2004)
  36. The crystal structure of seabream antiquitin reveals the structural basis of its substrate specificity. Tang WK, Wong KB, Lam YM, Cha SS, Cheng CH, Fong WP. FEBS Lett 582 3090-3096 (2008)
  37. Structural Insights into the Drosophila melanogaster Retinol Dehydrogenase, a Member of the Short-Chain Dehydrogenase/Reductase Family. Hofmann L, Tsybovsky Y, Alexander NS, Babino D, Leung NY, Montell C, Banerjee S, von Lintig J, Palczewski K. Biochemistry 55 6545-6557 (2016)
  38. On the chemical mechanism of succinic semialdehyde dehydrogenase (GabD1) from Mycobacterium tuberculosis. de Carvalho LP, Ling Y, Shen C, Warren JD, Rhee KY. Arch Biochem Biophys 509 90-99 (2011)
  39. Stabilization and conformational isomerization of the cofactor during the catalysis in hydrolytic ALDHs. Talfournier F, Pailot A, Stinès-Chaumeil C, Branlant G. Chem Biol Interact 178 79-83 (2009)
  40. Characterization of indole-3-pyruvic acid pathway-mediated biosynthesis of auxin in Neurospora crassa. Sardar P, Kempken F. PLoS One 13 e0192293 (2018)
  41. Crystallographic and spectroscopic snapshots reveal a dehydrogenase in action. Huo L, Davis I, Liu F, Andi B, Esaki S, Iwaki H, Hasegawa Y, Orville AM, Liu A. Nat Commun 6 5935 (2015)
  42. Structural basis for cofactor and substrate selection by cyanobacterium succinic semialdehyde dehydrogenase. Yuan Z, Yin B, Wei D, Yuan YR. J Struct Biol 182 125-135 (2013)
  43. Investigating the reaction and substrate preference of indole-3-acetaldehyde dehydrogenase from the plant pathogen Pseudomonas syringae PtoDC3000. Zhang K, Lee JS, Liu R, Chan ZT, Dawson TJ, De Togni ES, Edwards CT, Eng IK, Gao AR, Goicouria LA, Hall EM, Hu KA, Huang K, Kizhner A, Kodama KC, Lin AZ, Liu JY, Lu AY, Peng OW, Ryu EP, Shi S, Sorkin ML, Walker PL, Wang GJ, Xu MC, Yang RS, Cascella B, Cruz W, Holland CK, McClerkin SA, Kunkel BN, Lee SG, Jez JM. Biosci Rep 40 BSR20202959 (2020)
  44. Novel NADPH-cysteine covalent adduct found in the active site of an aldehyde dehydrogenase. Díaz-Sánchez AG, González-Segura L, Rudiño-Piñera E, Lira-Rocha A, Torres-Larios A, Muñoz-Clares RA. Biochem J 439 443-452 (2011)
  45. Relative inhibitory potency of molinate and metabolites with aldehyde dehydrogenase 2: implications for the mechanism of enzyme inhibition. Allen EM, Anderson DG, Florang VR, Khanna M, Hurley TD, Doorn JA. Chem Res Toxicol 23 1843-1850 (2010)
  46. Alda-1 modulates the kinetic properties of mitochondrial aldehyde dehydrogenase (ALDH2). Belmont-Díaz JA, Yoval-Sánchez B, Calleja-Castañeda LF, Pardo Vázquez JP, Rodríguez-Zavala JS. FEBS J 283 3637-3650 (2016)
  47. Genome-Wide Identification and Functional Classification of Tomato (Solanum lycopersicum) Aldehyde Dehydrogenase (ALDH) Gene Superfamily. Jimenez-Lopez JC, Lopez-Valverde FJ, Robles-Bolivar P, Lima-Cabello E, Gachomo EW, Kotchoni SO. PLoS One 11 e0164798 (2016)
  48. Invariant Thr244 is essential for the efficient acylation step of the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans. Pailot A, D'Ambrosio K, Corbier C, Talfournier F, Branlant G. Biochem J 400 521-530 (2006)
  49. Structure and activity of the NAD(P)+-dependent succinate semialdehyde dehydrogenase YneI from Salmonella typhimurium. Zheng H, Beliavsky A, Tchigvintsev A, Brunzelle JS, Brown G, Flick R, Evdokimova E, Wawrzak Z, Mahadevan R, Anderson WF, Savchenko A, Yakunin AF. Proteins 81 1031-1041 (2013)
  50. Structure and function of phosphonoacetaldehyde dehydrogenase: the missing link in phosphonoacetate formation. Agarwal V, Peck SC, Chen JH, Borisova SA, Chekan JR, van der Donk WA, Nair SK. Chem Biol 21 125-135 (2014)
  51. The quaternary structure of Thermus thermophilus aldehyde dehydrogenase is stabilized by an evolutionary distinct C-terminal arm extension. Hayes K, Noor M, Djeghader A, Armshaw P, Pembroke T, Tofail S, Soulimane T. Sci Rep 8 13327 (2018)
  52. Amino acid residues that affect the basicity of the catalytic glutamate of the hydrolytic aldehyde dehydrogenases. Muñoz-Clares RA, González-Segura L, Riveros-Rosas H, Julián-Sánchez A. Chem Biol Interact 234 45-58 (2015)
  53. Protein sequence alignment analysis by local covariation: coevolution statistics detect benchmark alignment errors. Dickson RJ, Gloor GB. PLoS One 7 e37645 (2012)
  54. Structure and biochemistry of phenylacetaldehyde dehydrogenase from the Pseudomonas putida S12 styrene catabolic pathway. Crabo AG, Singh B, Nguyen T, Emami S, Gassner GT, Sazinsky MH. Arch Biochem Biophys 616 47-58 (2017)
  55. Analysis of nucleoside-binding proteins by ligand-specific elution from dye resin: application to Mycobacterium tuberculosis aldehyde dehydrogenases. Kim CY, Webster C, Roberts JK, Moon JH, Alipio Lyon EZ, Kim H, Yu M, Hung LW, Terwilliger TC. J Struct Funct Genomics 10 291-301 (2009)
  56. Inhibition, crystal structures, and in-solution oligomeric structure of aldehyde dehydrogenase 9A1. Wyatt JW, Korasick DA, Qureshi IA, Campbell AC, Gates KS, Tanner JJ. Arch Biochem Biophys 691 108477 (2020)
  57. Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans. Tuck LR, Altenbach K, Ang TF, Crawshaw AD, Campopiano DJ, Clarke DJ, Marles-Wright J. Sci Rep 6 22108 (2016)
  58. Mechanisms of protection against irreversible oxidation of the catalytic cysteine of ALDH enzymes: Possible role of vicinal cysteines. Muñoz-Clares RA, González-Segura L, Murillo-Melo DS, Riveros-Rosas H. Chem Biol Interact 276 52-64 (2017)
  59. The mechanism of discrimination between oxidized and reduced coenzyme in the aldehyde dehydrogenase domain of Aldh1l1. Tsybovsky Y, Malakhau Y, Strickland KC, Krupenko SA. Chem Biol Interact 202 62-69 (2013)
  60. Tamoxifen, an anticancer drug, is an activator of human aldehyde dehydrogenase 1A1. Belmont-Díaz JA, Calleja-Castañeda LF, Yoval-Sánchez B, Rodríguez-Zavala JS. Proteins 83 105-116 (2015)
  61. Crystal Structure of Aldehyde Dehydrogenase 16 Reveals Trans-Hierarchical Structural Similarity and a New Dimer. Liu LK, Tanner JJ. J Mol Biol 431 524-541 (2019)
  62. Adenine binding mode is a key factor in triggering the early release of NADH in coenzyme A-dependent methylmalonate semialdehyde dehydrogenase. Bchini R, Dubourg-Gerecke H, Rahuel-Clermont S, Aubry A, Branlant G, Didierjean C, Talfournier F. J Biol Chem 287 31095-31103 (2012)
  63. Design, synthesis, and ex vivo evaluation of a selective inhibitor for retinaldehyde dehydrogenase enzymes. Harper AR, Le AT, Mather T, Burgett A, Berry W, Summers JA. Bioorg Med Chem 26 5766-5779 (2018)
  64. Dissecting substrate specificity of two rice BADH isoforms: Enzyme kinetics, docking and molecular dynamics simulation studies. Jiamsomboon K, Treesuwan W, Boonyalai N. Biochimie 94 1773-1783 (2012)
  65. Potassium and ionic strength effects on the conformational and thermal stability of two aldehyde dehydrogenases reveal structural and functional roles of K⁺-binding sites. Garza-Ramos G, Mújica-Jiménez C, Muñoz-Clares RA. PLoS One 8 e54899 (2013)
  66. Potential monovalent cation-binding sites in aldehyde dehydrogenases. González-Segura L, Riveros-Rosas H, Díaz-Sánchez AG, Julián-Sánchez A, Muñoz-Clares RA. Chem Biol Interact 202 41-50 (2013)
  67. Structural analysis of pathogenic mutations targeting Glu427 of ALDH7A1, the hot spot residue of pyridoxine-dependent epilepsy. Laciak AR, Korasick DA, Gates KS, Tanner JJ. J Inherit Metab Dis 43 635-644 (2020)
  68. Structural analysis of prolines and hydroxyprolines binding to the l-glutamate-γ-semialdehyde dehydrogenase active site of bifunctional proline utilization A. Campbell AC, Bogner AN, Mao Y, Becker DF, Tanner JJ. Arch Biochem Biophys 698 108727 (2021)
  69. Structure and mechanism of benzaldehyde dehydrogenase from Pseudomonas putida ATCC 12633, a member of the Class 3 aldehyde dehydrogenase superfamily. Zahniser MPD, Prasad S, Kneen MM, Kreinbring CA, Petsko GA, Ringe D, McLeish MJ. Protein Eng Des Sel 30 271-278 (2017)
  70. Associations between ALDH Genetic Variants, Alcohol Consumption, and the Risk of Nasopharyngeal Carcinoma in an East Asian Population. Liao WL, Chan FC, Chang KP, Chang YW, Chen CH, Su WH, Chang HH. Genes (Basel) 12 1547 (2021)
  71. Elucidating the reaction mechanism of the benzoate oxidation pathway encoded aldehyde dehydrogenase from Burkholderia xenovorans LB400. Bains J, Leon R, Temke KG, Boulanger MJ. Protein Sci 20 1048-1059 (2011)
  72. Fluorescence lifetime analysis and effect of magnesium ions on binding of NADH to human aldehyde dehydrogenase 1. Gonnella TP, Keating JM, Kjemhus JA, Picklo MJ, Biggane JP. Chem Biol Interact 202 85-90 (2013)
  73. NADH fluorescence lifetime analysis of the effect of magnesium ions on ALDH2. Gonnella TP, Leedahl TS, Karlstad JP, Picklo MJ. Chem Biol Interact 191 147-152 (2011)
  74. NADP-Dependent Aldehyde Dehydrogenase from Archaeon Pyrobaculum sp.1860: Structural and Functional Features. Bezsudnova EY, Petrova TE, Artemova NV, Boyko KM, Shabalin IG, Rakitina TV, Polyakov KM, Popov VO. Archaea 2016 9127857 (2016)
  75. Cloning and molecular characterization of the betaine aldehyde dehydrogenase involved in the biosynthesis of glycine betaine in white shrimp (Litopenaeus vannamei). Delgado-Gaytán MF, Rosas-Rodríguez JA, Yepiz-Plascencia G, Figueroa-Soto CG, Valenzuela-Soto EM. Chem Biol Interact 276 65-74 (2017)
  76. E487K-Induced Disorder in Functionally Relevant Dynamics of Mitochondrial Aldehyde Dehydrogenase 2. Matsumoto S, Araki M, Isaka Y, Ono F, Hirohashi K, Ohashi S, Muto M, Okuno Y. Biophys J 119 628-637 (2020)
  77. Gamma glutamyl semialdehyde dehydrogenase: simulations on native and mutant forms support the importance of outer shell lysines. Hempel J, Kraut A, Wymore T. Chem Biol Interact 178 75-78 (2009)
  78. Efficient expression of codon-adapted human acetaldehyde dehydrogenase 2 cDNA with 6xHis tag in Pichia pastoris. Zhao Y, Lei M, Wu Y, Zhang Z, Wang C. Sci China C Life Sci 52 935-941 (2009)
  79. Genetic variants in ALDH1B1 and alcohol dependence risk in a British and Irish population: A bioinformatic and genetic study. Way MJ, Ali MA, McQuillin A, Morgan MY. PLoS One 12 e0177009 (2017)
  80. Mimicking the active site of aldehyde dehydrogenases: stabilization of carbonyl hydrates through hydrogen bonds. Roth AJ, Tretbar M, Stark CB. Chem Commun (Camb) 51 14175-14178 (2015)
  81. Structural and biochemical evidence that ATP inhibits the cancer biomarker human aldehyde dehydrogenase 1A3. Castellví A, Pequerul R, Barracco V, Juanhuix J, Parés X, Farrés J. Commun Biol 5 354 (2022)
  82. XSuLT: a web server for structural annotation and representation of sequence-structure alignments. Ochoa-Montaño B, Blundell TL. Nucleic Acids Res 45 W381-W387 (2017)
  83. Biophysical studies of an NAD(P)(+)-dependent aldehyde dehydrogenase from Bacillus licheniformis. Lo HF, Su JY, Chen HL, Chen JC, Lin LL. Eur Biophys J 40 1131-1142 (2011)
  84. Contribution of conserved Glu255 and Cys289 residues to catalytic activity of recombinant aldehyde dehydrogenase from Bacillus licheniformis. Lee YC, Lin DT, Ong PL, Chen HL, Lo HF, Lin LL. Biochemistry (Mosc) 76 1233-1241 (2011)
  85. Crystal structure of the γ-hydroxymuconic semialdehyde dehydrogenase from Pseudomonas sp. strainWBC-3, a key enzyme involved in para-Nitrophenol degradation. Su J, Zhang C, Zhang JJ, Wei T, Zhu D, Zhou NY, Gu Lc. BMC Struct Biol 13 30 (2013)
  86. Double agent indole-3-acetic acid: mechanistic analysis of indole-3-acetaldehyde dehydrogenase AldA that synthesizes IAA, an auxin that aids bacterial virulence. Shah A, Mathur Y, Hazra AB. Biosci Rep 41 BSR20210598 (2021)
  87. Fragrance in Pandanus amaryllifoliusRoxb. Despite the Presence of a Betaine Aldehyde Dehydrogenase 2. Bhatt V, Barvkar VT, Furtado A, Henry RJ, Nadaf A. Int J Mol Sci 22 6968 (2021)
  88. Identifying the Molecular Drivers of Pathogenic Aldehyde Dehydrogenase Missense Mutations in Cancer and Non-Cancer Diseases. Jessen-Howard D, Pan Q, Ascher DB. Int J Mol Sci 24 10157 (2023)
  89. Structure of putative tumor suppressor ALDH1L1. Tsybovsky Y, Sereda V, Golczak M, Krupenko NI, Krupenko SA. Commun Biol 5 3 (2022)
  90. Target prediction and antioxidant analysis on isoflavones of demethyltexasin: a DFT study. Anbazhakan K, Sadasivam K, Praveena R, Dhandapani M. J Mol Model 25 169 (2019)