1nrr Citations

Crystallographic structures of thrombin complexed with thrombin receptor peptides: existence of expected and novel binding modes.

Biochemistry 33 3266-79 (1994)
Related entries: 1hgt, 1nrn, 1nro, 1nrp, 1nrq, 1nrs, 2hgt

Cited: 78 times
EuropePMC logo PMID: 8136362

Abstract

Many of the vital actions of thrombin on platelets and other cells appear to be mediated by the recently cloned seven-transmembrane-domain thrombin receptor. Thrombin activates this receptor by a novel proteolytic mechanism. The amino-terminal exodomain of the receptor contains the sequence LDPRSFLLRNPNDKYEPF. Structure-activity studies with mutant receptors and receptor peptides suggest that this sequence binds to thrombin at two sites: LDPR with the active center of thrombin and KYEPF with the fibrinogen recognition exosite of thrombin. Thrombin then cleaves the Arg41-Ser42 bond to unmask a new amino terminus, which functions as a tethered peptide ligand binding to as yet undefined sites within the body of the receptor to effect receptor activation. We have determined eight crystal structures of thrombin complexed with receptor-based peptides. Each of the two components of the bidentate docking model was captured in individual cocrystals. In one crystal type, the LDPR sequence docked in the active center of thrombin in a manner analogous to d-PheProArg chloromethyl ketone. In other crystals, the KYEPF sequence bound in the fibrinogen anion binding exosite of thrombin in a manner analogous to the DFEEI sequence of the carboxylate-terminal peptide of hirudin. Strikingly, however, generation of a single crystal that includes both components of the anticipated bidentate binding mode was not achieved, apparently because the peptides have a dominant solution S-like conformation that does not bind in a productive way at the active center. This peptide structure apparently favored a novel alternative mode of receptor peptide-thrombin interaction in which the receptor peptides formed an intermolecular bridge between neighboring thrombin molecules, resulting in an infinite peptide thrombin chain in crystals. In this structure, the KYEPF sequence docked in the expected manner at the exosite of one thrombin molecule, but the LDPR sequence docked in an unusual nonproductive mode with the active center of a neighboring molecule. Mutations that removed important determinants of the S-like receptor peptide structure underlying the bridging mode in the receptor itself did not significantly alter thrombin signaling. Additionally, a comparison of receptor density to the responsiveness of a cell did not support a role for receptor oligomerization in signaling. The physiological role for this unexpected intermolecular binding mode, if any, remains to be identified.(ABSTRACT TRUNCATED AT 400 WORDS)

Reviews - 1nrr mentioned but not cited (1)

  1. Exosite Binding in Thrombin: A Global Structural/Dynamic Overview of Complexes with Aptamers and Other Ligands. Troisi R, Balasco N, Autiero I, Vitagliano L, Sica F. Int J Mol Sci 22 10803 (2021)


Reviews citing this publication (22)

  1. Protease-activated receptors in hemostasis, thrombosis and vascular biology. Coughlin SR. J. Thromb. Haemost. 3 1800-1814 (2005)
  2. How the protease thrombin talks to cells. Coughlin SR. Proc. Natl. Acad. Sci. U.S.A. 96 11023-11027 (1999)
  3. Cellular consequences of thrombin-receptor activation. Grand RJ, Turnell AS, Grabham PW. Biochem. J. 313 ( Pt 2) 353-368 (1996)
  4. Protease-activated receptors in cardiovascular diseases. Leger AJ, Covic L, Kuliopulos A. Circulation 114 1070-1077 (2006)
  5. Thrombin. Di Cera E. Mol. Aspects Med. 29 203-254 (2008)
  6. Molecular recognition mechanisms of thrombin. Huntington JA. J. Thromb. Haemost. 3 1861-1872 (2005)
  7. The clot thickens: clues provided by thrombin structure. Stubbs MT, Bode W. Trends Biochem. Sci. 20 23-28 (1995)
  8. New tricks for old dogs: nonthrombotic effects of thrombin in vessel wall biology. Patterson C, Stouffer GA, Madamanchi N, Runge MS. Circ. Res. 88 987-997 (2001)
  9. Thrombin interactions. Di Cera E. Chest 124 11S-7S (2003)
  10. Protease-activated receptors start a family. Coughlin SR. Proc. Natl. Acad. Sci. U.S.A. 91 9200-9202 (1994)
  11. Structure and interaction modes of thrombin. Bode W. Blood Cells Mol. Dis. 36 122-130 (2006)
  12. The link between vascular features and thrombosis. Esmon CT, Esmon NL. Annu. Rev. Physiol. 73 503-514 (2011)
  13. Thrombin domains: structure, function and interaction with platelet receptors. De Cristofaro R, De Candia E. J. Thromb. Thrombolysis 15 151-163 (2003)
  14. Thrombin as procoagulant and anticoagulant. Di Cera E. J. Thromb. Haemost. 5 Suppl 1 196-202 (2007)
  15. Coagulation factors and their inhibitors. Stubbs MT, Bode W. Curr. Opin. Struct. Biol. 4 823-832 (1994)
  16. Sol Sherry lecture in thrombosis: how thrombin 'talks' to cells: molecular mechanisms and roles in vivo. Coughlin SR. Arterioscler. Thromb. Vasc. Biol. 18 514-518 (1998)
  17. Protease-activated receptors in the cardiovascular system. Coughlin SR. Cold Spring Harb. Symp. Quant. Biol. 67 197-208 (2002)
  18. Thrombin allostery. Di Cera E, Page MJ, Bah A, Bush-Pelc LA, Garvey LC. Phys Chem Chem Phys 9 1291-1306 (2007)
  19. Protease-activated receptor 4: from structure to function and back again. French SL, Hamilton JR. Br. J. Pharmacol. 173 2952-2965 (2016)
  20. Structural basis of thrombin-protease-activated receptor interactions. Gandhi PS, Chen Z, Appelbaum E, Zapata F, Di Cera E. IUBMB Life 63 375-382 (2011)
  21. Antiplatelet strategies: past, present, and future. Stanger L, Yamaguchi A, Holinstat M. J Thromb Haemost 21 3317-3328 (2023)
  22. Protease-Activated Receptor 1 Inhibitors: Novel Antiplatelet Drugs in Prevention of Atherothrombosis. Al-Khafaji K, Mutyala M, Al-Khafaji N, Harper Y, Ismail I, Hakim H, Arora RR. Am J Ther 24 e730-e736 (2017)

Articles citing this publication (55)

  1. Protease-activated receptor 3 is a second thrombin receptor in humans. Ishihara H, Connolly AJ, Zeng D, Kahn ML, Zheng YW, Timmons C, Tram T, Coughlin SR. Nature 386 502-506 (1997)
  2. A dual thrombin receptor system for platelet activation. Kahn ML, Zheng YW, Huang W, Bigornia V, Zeng D, Moff S, Farese RV, Tam C, Coughlin SR. Nature 394 690-694 (1998)
  3. Cloning and characterization of human protease-activated receptor 4. Xu WF, Andersen H, Whitmore TE, Presnell SR, Yee DP, Ching A, Gilbert T, Davie EW, Foster DC. Proc. Natl. Acad. Sci. U.S.A. 95 6642-6646 (1998)
  4. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, Coughlin SR. J. Clin. Invest. 103 879-887 (1999)
  5. High-resolution crystal structure of human protease-activated receptor 1. Zhang C, Srinivasan Y, Arlow DH, Fung JJ, Palmer D, Zheng Y, Green HF, Pandey A, Dror RO, Shaw DE, Weis WI, Coughlin SR, Kobilka BK. Nature 492 387-392 (2012)
  6. Synthesis of positional-scanning libraries of fluorogenic peptide substrates to define the extended substrate specificity of plasmin and thrombin. Backes BJ, Harris JL, Leonetti F, Craik CS, Ellman JA. Nat. Biotechnol. 18 187-193 (2000)
  7. Molecular dissection of Na+ binding to thrombin. Pineda AO, Carrell CJ, Bush LA, Prasad S, Caccia S, Chen ZW, Mathews FS, Di Cera E. J. Biol. Chem. 279 31842-31853 (2004)
  8. Two heads are better than one: crystal structure of the insect derived double domain Kazal inhibitor rhodniin in complex with thrombin. van de Locht A, Lamba D, Bauer M, Huber R, Friedrich T, Kröger B, Höffken W, Bode W. EMBO J. 14 5149-5157 (1995)
  9. The isomorphous structures of prethrombin2, hirugen-, and PPACK-thrombin: changes accompanying activation and exosite binding to thrombin. Vijayalakshmi J, Padmanabhan KP, Mann KG, Tulinsky A. Protein Sci. 3 2254-2271 (1994)
  10. Structure of the thrombin complex with triabin, a lipocalin-like exosite-binding inhibitor derived from a triatomine bug. Fuentes-Prior P, Noeske-Jungblut C, Donner P, Schleuning WD, Huber R, Bode W. Proc. Natl. Acad. Sci. U.S.A. 94 11845-11850 (1997)
  11. Molecular mapping of thrombin-receptor interactions. Ayala YM, Cantwell AM, Rose T, Bush LA, Arosio D, Di Cera E. Proteins 45 107-116 (2001)
  12. Structural identification of the pathway of long-range communication in an allosteric enzyme. Gandhi PS, Chen Z, Mathews FS, Di Cera E. Proc. Natl. Acad. Sci. U.S.A. 105 1832-1837 (2008)
  13. The molecular environment of the Na+ binding site of thrombin. Zhang E, Tulinsky A. Biophys. Chem. 63 185-200 (1997)
  14. Thrombin potently stimulates cytokine production in human vascular smooth muscle cells but not in mononuclear phagocytes. Kranzhöfer R, Clinton SK, Ishii K, Coughlin SR, Fenton JW, Libby P. Circ. Res. 79 286-294 (1996)
  15. The molecular basis of thrombin allostery revealed by a 1.8 A structure of the "slow" form. Huntington JA, Esmon CT. Structure 11 469-479 (2003)
  16. Protease-activated receptor-4 uses dual prolines and an anionic retention motif for thrombin recognition and cleavage. Jacques SL, Kuliopulos A. Biochem. J. 376 733-740 (2003)
  17. Fibrinogen gamma' chain binds thrombin exosite II. Lovely RS, Moaddel M, Farrell DH. J. Thromb. Haemost. 1 124-131 (2003)
  18. Structural basis for thrombin activation of a protease-activated receptor: inhibition of intramolecular liganding. Seeley S, Covic L, Jacques SL, Sudmeier J, Baleja JD, Kuliopulos A. Chem. Biol. 10 1033-1041 (2003)
  19. Crystal structures of murine thrombin in complex with the extracellular fragments of murine protease-activated receptors PAR3 and PAR4. Bah A, Chen Z, Bush-Pelc LA, Mathews FS, Di Cera E. Proc. Natl. Acad. Sci. U.S.A. 104 11603-11608 (2007)
  20. Cleavage of the thrombin receptor: identification of potential activators and inactivators. Parry MA, Myles T, Tschopp J, Stone SR. Biochem. J. 320 ( Pt 1) 335-341 (1996)
  21. New insights into the regulation of the blood clotting cascade derived from the X-ray crystal structure of bovine meizothrombin des F1 in complex with PPACK. Martin PD, Malkowski MG, Box J, Esmon CT, Edwards BF. Structure 5 1681-1693 (1997)
  22. Crystal structure of thrombin bound to the uncleaved extracellular fragment of PAR1. Gandhi PS, Chen Z, Di Cera E. J. Biol. Chem. 285 15393-15398 (2010)
  23. Interaction of viper venom serine peptidases with thrombin receptors on human platelets. Santos BF, Serrano SM, Kuliopulos A, Niewiarowski S. FEBS Lett. 477 199-202 (2000)
  24. Interaction of thrombin with PAR1 and PAR4 at the thrombin cleavage site. Nieman MT, Schmaier AH. Biochemistry 46 8603-8610 (2007)
  25. The dual role of thrombin's anion-binding exosite-I in the recognition and cleavage of the protease-activated receptor 1. Myles T, Le Bonniec BF, Stone SR. Eur. J. Biochem. 268 70-77 (2001)
  26. Protease-activated receptor 4-like peptides bind to thrombin through an optimized interaction with the enzyme active site surface. Cleary DB, Trumbo TA, Maurer MC. Arch. Biochem. Biophys. 403 179-188 (2002)
  27. Structure-function analysis of Yersinia pestis YopM's interaction with alpha-thrombin to rule on its significance in systemic plague and to model YopM's mechanism of binding host proteins. Hines J, Skrzypek E, Kajava AV, Straley SC. Microb. Pathog. 30 193-209 (2001)
  28. Fibrinogen-elongated gamma chain inhibits thrombin-induced platelet response, hindering the interaction with different receptors. Lancellotti S, Rutella S, De Filippis V, Pozzi N, Rocca B, De Cristofaro R. J. Biol. Chem. 283 30193-30204 (2008)
  29. Crystal structures of thrombin with thiazole-containing inhibitors: probes of the S1' binding site. Matthews JH, Krishnan R, Costanzo MJ, Maryanoff BE, Tulinsky A. Biophys. J. 71 2830-2839 (1996)
  30. Effect of high- and low-molecular-weight heparins on thrombin-thrombomodulin interaction and protein C activation. De Cristofaro R, De Candia E, Landolfi R. Circulation 98 1297-1301 (1998)
  31. From natural to synthetic multisite thrombin inhibitors. Lombardi A, De Simone G, Galdiero S, Staiano N, Nastri F, Pavone V. Biopolymers 51 19-39 (1999)
  32. Synthesis, structure, and structure-activity relationships of divalent thrombin inhibitors containing an alpha-keto-amide transition-state mimetic. Krishnan R, Tulinsky A, Vlasuk GP, Pearson D, Vallar P, Bergum P, Brunck TK, Ripka WC. Protein Sci. 5 422-433 (1996)
  33. Tethered ligand library for discovery of peptide agonists. Chen J, Bernstein HS, Chen M, Wang L, Ishii M, Turck CW, Coughlin SR. J. Biol. Chem. 270 23398-23401 (1995)
  34. Targeting the anionic region of human protease-activated receptor 4 inhibits platelet aggregation and thrombosis without interfering with hemostasis. Mumaw MM, de la Fuente M, Noble DN, Nieman MT. J. Thromb. Haemost. 12 1331-1341 (2014)
  35. Biophysical investigation of GpIbalpha binding to thrombin anion binding exosite II. Sabo TM, Maurer MC. Biochemistry 48 7110-7122 (2009)
  36. Anticoagulant thrombins. Di Cera E. Trends Cardiovasc. Med. 8 340-350 (1998)
  37. Functionality map analysis of the active site cleft of human thrombin. Grootenhuis PD, Karplus M. J. Comput. Aided Mol. Des. 10 1-10 (1996)
  38. Comparison of the structures of the cyclotheonamide A complexes of human alpha-thrombin and bovine beta-trypsin. Ganesh V, Lee AY, Clardy J, Tulinsky A. Protein Sci. 5 825-835 (1996)
  39. Conformational analysis of the thrombin receptor agonist peptides SFLLR and SFLLR-NH2 by NMR: evidence for a cyclic bioactive conformation. Matsoukas J, Hollenberg MD, Mavromoustakos T, Panagiotopoulos D, Alexopoulos K, Yamdagni R, Wu Q, Moore GJ. J Protein Chem 16 113-131 (1997)
  40. Enhanced thrombin sensitivity of a factor VIII-heparin cofactor II hybrid. Voorberg J, van Stempvoort G, Bos JM, Mertens K, van Mourik JA, Donath MJ. J. Biol. Chem. 271 20985-20988 (1996)
  41. Hirunorms are true hirudin mimetics. The crystal structure of human alpha-thrombin-hirunorm V complex. De Simone G, Lombardi A, Galdiero S, Nastri F, Della Morte R, Staiano N, Pedone C, Bolognesi M, Pavone V. Protein Sci. 7 243-253 (1998)
  42. Mapping the interaction of bradykinin 1-5 with the exodomain of human protease activated receptor 4. Nieman MT, Pagan-Ramos E, Warnock M, Krijanovski Y, Hasan AA, Schmaier AH. FEBS Lett. 579 25-29 (2005)
  43. Allosteric modulation of the activity of thrombin. Duffy EJ, Angliker H, Le Bonniec BF, Stone SR. Biochem. J. 321 ( Pt 2) 361-365 (1997)
  44. Interaction between Yersinia pestis YopM protein and human alpha-thrombin. Skrzypek E, Straley SC. Thromb. Res. 84 33-43 (1996)
  45. Evolution of thrombin and other hemostatic proteases by survey of protochordate, hemichordate, and echinoderm genomes. Ponczek MB, Bijak MZ, Nowak PZ. J. Mol. Evol. 74 319-331 (2012)
  46. Probing thrombin's ability to accommodate a V34F substitution within the factor XIII activation peptide segment (28-41). Isetti G, Maurer MC. J. Pept. Res. 63 241-252 (2004)
  47. Role of the thrombin insertion loop 144-155. Study of thrombin mutations W148G, K154E and a thrombin-based synthetic peptide. Bouton MC, Plantier JL, Dembak M, Guillin MC, Rabiet MJ, Jandrot-Perrus M. Eur. J. Biochem. 229 526-532 (1995)
  48. Design of Factor XIII V34X activation peptides to control ability to interact with thrombin mutants. Jadhav MA, Lucas RC, Goldsberry WN, Maurer MC. Biochim. Biophys. Acta 1814 1955-1963 (2011)
  49. Hematopoietic lineage cell-specific protein-1 (HS1) regulates PAR-mediated ERK activation and thromboxane generation in platelets. Kahner BN, Dorsam RT, Kim S, Shankar H, Kitamura D, Kunapuli SP. Platelets 19 614-623 (2008)
  50. ProtCID: a data resource for structural information on protein interactions. Xu Q, Dunbrack RL. Nat Commun 11 711 (2020)
  51. Beyond heparinization: design of highly potent thrombin inhibitors suitable for surface coupling. Steinmetzer T, Baum B, Biela A, Klebe G, Nowak G, Bucha E. ChemMedChem 7 1965-1973 (2012)
  52. In Silico Design of Novel Anticoagulant Peptides targeting Blood Coagulation Factor VIIa. Al-Amri MS, Alrasadi K, Bayoumi R, Banerjee Y. Sultan Qaboos Univ Med J 11 83-94 (2011)
  53. Antithrombin Resistance Rescues Clotting Defect of Homozygous Prothrombin-Y510N Dysprothrombinemia. Lu Y, Villoutreix BO, Biswas I, Ding Q, Wang X, Rezaie AR. Thromb Haemost 122 679-691 (2022)
  54. Effects of introducing fibrinogen Aalpha character into the factor XIII activation peptide segment. Jadhav MA, Isetti G, Trumbo TA, Maurer MC. Biochemistry 49 2918-2924 (2010)
  55. The protease-activated receptor 4 Ala120Thr variant alters platelet responsiveness to low-dose thrombin and protease-activated receptor 4 desensitization, and is blocked by non-competitive P2Y12 inhibition. Whitley MJ, Henke DM, Ghazi A, Nieman M, Stoller M, Simon LM, Chen E, Vesci J, Holinstat M, McKenzie SE, Shaw CA, Edelstein LC, Bray PF. J. Thromb. Haemost. 16 2501-2514 (2018)


Related citations provided by authors (2)

  1. Refined Structure of the Hirudin-Thrombin Complex. Rydel TJ, Tulinsky A, Bode W, Huber R J. Mol. Biol. 221 583- (1991)
  2. Structure of the hirugen and hirulog 1 complexes of alpha-thrombin.. Skrzypczak-Jankun E, Carperos VE, Ravichandran KG, Tulinsky A, Westbrook M, Maraganore JM J Mol Biol 221 1379-93 (1991)