1nba Citations

Crystal structure analysis, refinement and enzymatic reaction mechanism of N-carbamoylsarcosine amidohydrolase from Arthrobacter sp. at 2.0 A resolution.

Abstract

N-carbamoylsarcosine amidohydrolase from Arthrobacter sp., a tetramer of polypeptides with 264 amino acid residues each, has been crystallized and its structure solved and refined at 2.0 A resolution, to a crystallographic R-factor of 18.6%. The crystals employed in the analysis contain one tetramer of 116,000 M(r) in the asymmetric unit. The structure determination proceeded by multiple isomorphous replacement, followed by solvent-flattening and density averaging about the local diads within the tetramer. In the final refined model, the root-mean-square deviation from ideality is 0.01 A for bond distances and 2.7 degrees for bond angles. The asymmetric unit consists of 7853 protein atoms, 431 water molecules and four sulfate ions bound into the putative active site clefts in each subunit. One subunit contains a central six-stranded parallel beta-pleated sheet packed by helices on both sides. On one side, two helices face the solvent, while two of the helices on the other side are buried in the tight intersubunit contacts. The catalytic center of the enzyme, tentatively identified by inhibitor binding, is located at the interface between two subunits and involves residues from both. It is suggested that the nucleophilic group involved in hydrolysis of the substrate is the thiol group of Cys117 and a nucleophilic addition-elimination mechanism is proposed.

Reviews - 1nba mentioned but not cited (1)

  1. Molecular replacement: tricks and treats. Abergel C. Acta Crystallogr D Biol Crystallogr 69 2167-2173 (2013)

Articles - 1nba mentioned but not cited (11)

  1. Prediction of catalytic residues using Support Vector Machine with selected protein sequence and structural properties. Petrova NV, Wu CH. BMC Bioinformatics 7 312 (2006)
  2. Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function. Almonacid DE, Yera ER, Mitchell JB, Babbitt PC. PLoS Comput Biol 6 e1000700 (2010)
  3. High-resolution crystal structures of Streptococcus pneumoniae nicotinamidase with trapped intermediates provide insights into the catalytic mechanism and inhibition by aldehydes . French JB, Cen Y, Sauve AA, Ealick SE. Biochemistry 49 8803-8812 (2010)
  4. Crystal structure of a putative isochorismatase hydrolase from Oleispira antarctica. Goral AM, Tkaczuk KL, Chruszcz M, Kagan O, Savchenko A, Minor W. J Struct Funct Genomics 13 27-36 (2012)
  5. PCASSO: a fast and efficient Cα-based method for accurately assigning protein secondary structure elements. Law SM, Frank AT, Brooks CL. J Comput Chem 35 1757-1761 (2014)
  6. ResBoost: characterizing and predicting catalytic residues in enzymes. Alterovitz R, Arvey A, Sankararaman S, Dallett C, Freund Y, Sjölander K. BMC Bioinformatics 10 197 (2009)
  7. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor. Osterman A. EcoSal Plus 3 (2009)
  8. A measure of the broad substrate specificity of enzymes based on 'duplicate' catalytic residues. Chakraborty S, Ásgeirsson B, Rao BJ. PLoS One 7 e49313 (2012)
  9. Structural and biochemical characterization of the biuret hydrolase (BiuH) from the cyanuric acid catabolism pathway of Rhizobium leguminasorum bv. viciae 3841. Esquirol L, Peat TS, Wilding M, Lucent D, French NG, Hartley CJ, Newman J, Scott C. PLoS One 13 e0192736 (2018)
  10. Crystal structure and molecular modeling study of N-carbamoylsarcosine amidase Ta0454 from Thermoplasma acidophilum. Luo HB, Zheng H, Zimmerman MD, Chruszcz M, Skarina T, Egorova O, Savchenko A, Edwards AM, Minor W. J Struct Biol 169 304-311 (2010)
  11. Chorismate mutase and isochorismatase, two potential effectors of the migratory nematode Hirschmanniella oryzae, increase host susceptibility by manipulating secondary metabolite content of rice. Bauters L, Kyndt T, De Meyer T, Morreel K, Boerjan W, Lefevere H, Gheysen G. Mol Plant Pathol 21 1634-1646 (2020)


Reviews citing this publication (4)

  1. Creatine and creatinine metabolism. Wyss M, Kaddurah-Daouk R. Physiol Rev 80 1107-1213 (2000)
  2. Structural trees for protein superfamilies. Efimov AV. Proteins 28 241-260 (1997)
  3. The proteasome: a macromolecular assembly designed to confine proteolysis to a nanocompartment. Baumeister W, Cejka Z, Kania M, Seemüller E. Biol Chem 378 121-130 (1997)
  4. Bacteria-mediated phthalic acid esters degradation and related molecular mechanisms. Ren L, Lin Z, Liu H, Hu H. Appl Microbiol Biotechnol 102 1085-1096 (2018)

Articles citing this publication (21)

  1. Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B. Eaton RW. J Bacteriol 183 3689-3703 (2001)
  2. Characterization of new mutations in pyrazinamide-resistant strains of Mycobacterium tuberculosis and identification of conserved regions important for the catalytic activity of the pyrazinamidase PncA. Lemaitre N, Sougakoff W, Truffot-Pernot C, Jarlier V. Antimicrob Agents Chemother 43 1761-1763 (1999)
  3. Crystal structure and mechanism of human L-arginine:glycine amidinotransferase: a mitochondrial enzyme involved in creatine biosynthesis. Humm A, Fritsche E, Steinbacher S, Huber R. EMBO J 16 3373-3385 (1997)
  4. Crystal structure of N-carbamyl-D-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases. Nakai T, Hasegawa T, Yamashita E, Yamamoto M, Kumasaka T, Ueki T, Nanba H, Ikenaka Y, Takahashi S, Sato M, Tsukihara T. Structure 8 729-737 (2000)
  5. Crystal structure and site-directed mutagenesis studies of N-carbamoyl-D-amino-acid amidohydrolase from Agrobacterium radiobacter reveals a homotetramer and insight into a catalytic cleft. Wang WC, Hsu WH, Chien FT, Chen CY. J Mol Biol 306 251-261 (2001)
  6. Study of the structure-activity relationships for the pyrazinamidase (PncA) from Mycobacterium tuberculosis. Lemaitre N, Callebaut I, Frenois F, Jarlier V, Sougakoff W. Biochem J 353 453-458 (2001)
  7. The 1.8 A crystal structure of the ycaC gene product from Escherichia coli reveals an octameric hydrolase of unknown specificity. Colovos C, Cascio D, Yeates TO. Structure 6 1329-1337 (1998)
  8. Characterization of plant beta-ureidopropionase and functional overexpression in Escherichia coli. Walsh TA, Green SB, Larrinua IM, Schmitzer PR. Plant Physiol 125 1001-1011 (2001)
  9. Crystal structure of the yeast nicotinamidase Pnc1p. Hu G, Taylor AB, McAlister-Henn L, Hart PJ. Arch Biochem Biophys 461 66-75 (2007)
  10. Identification, cloning, and expression of the Escherichia coli pyrazinamidase and nicotinamidase gene, pncA. Frothingham R, Meeker-O'Connell WA, Talbot EA, George JW, Kreuzer KN. Antimicrob Agents Chemother 40 1426-1431 (1996)
  11. Crystal structures and proposed structural/functional classification of three protozoan proteins from the isochorismatase superfamily. Caruthers J, Zucker F, Worthey E, Myler PJ, Buckner F, Van Voorhuis W, Mehlin C, Boni E, Feist T, Luft J, Gulde S, Lauricella A, Kaluzhniy O, Anderson L, Le Trong I, Holmes MA, Earnest T, Soltis M, Hodgson KO, Hol WG, Merritt EA. Protein Sci 14 2887-2894 (2005)
  12. Gene expression variance based on random sequencing in rat remnant kidney. Horiba N, Masuda S, Takeuchi A, Saito H, Okuda M, Inui K. Kidney Int 66 29-45 (2004)
  13. Characterization of a recombinant (+)-γ-lactamase from Microbacterium hydrocarbonoxydans which provides evidence that two enantiocomplementary γ-lactamases are in the strain. Wang J, Zhu Y, Zhao G, Zhu J, Wu S. Appl Microbiol Biotechnol 99 3069-3080 (2015)
  14. Primary sequence, oxidation-reduction potentials and tertiary-structure prediction of Desulfovibrio desulfuricans ATCC 27774 flavodoxin. Caldeira J, Palma PN, Regalla M, Lampreia J, Calvete J, Schäfer W, Legall J, Moura I, Moura JJ. Eur J Biochem 220 987-995 (1994)
  15. Identification and characterization of a novel (+)-γ-lactamase from Microbacterium hydrocarbonoxydans. Gao S, Huang R, Zhu S, Li H, Zheng G. Appl Microbiol Biotechnol 100 9543-9553 (2016)
  16. A Combination of Histological, Physiological, and Proteomic Approaches Shed Light on Seed Desiccation Tolerance of the Basal Angiosperm Amborella trichopoda. Villegente M, Marmey P, Job C, Galland M, Cueff G, Godin B, Rajjou L, Balliau T, Zivy M, Fogliani B, Sarramegna-Burtet V, Job D. Proteomes 5 E19 (2017)
  17. Structural insights into the specific recognition of N-heterocycle biodenitrogenation-derived substrates by microbial amide hydrolases. Wu G, Chen D, Tang H, Ren Y, Chen Q, Lv Y, Zhang Z, Zhao YL, Yao Y, Xu P. Mol Microbiol 91 1009-1021 (2014)
  18. Engineering the Enantioselectivity and Thermostability of a (+)-γ-Lactamase from Microbacterium hydrocarbonoxydans for Kinetic Resolution of Vince Lactam (2-Azabicyclo[2.2.1]hept-5-en-3-one). Gao S, Zhu S, Huang R, Li H, Wang H, Zheng G. Appl Environ Microbiol 84 e01780-17 (2018)
  19. Structural insight into the ISC domain of VibB from Vibrio cholerae at atomic resolution: a snapshot just before the enzymatic reaction. Liu S, Zhang C, Li N, Niu B, Liu M, Liu X, Wei T, Zhu D, Huang Y, Xu S, Gu L. Acta Crystallogr D Biol Crystallogr 68 1329-1338 (2012)
  20. The Novel Amidase PcnH Initiates the Degradation of Phenazine-1-Carboxamide in Sphingomonas histidinilytica DS-9. Ren Y, Zhang M, Gao S, Zhu Q, Ke Z, Jiang W, Qiu J, Hong Q. Appl Environ Microbiol 88 e0054322 (2022)
  21. Transcriptional Regulation of the Creatine Utilization Genes of Corynebacterium glutamicum ATCC 14067 by AmtR, a Central Nitrogen Regulator. Zhang H, Ouyang Z, Zhao N, Han S, Zheng S. Front Bioeng Biotechnol 10 816628 (2022)