1mus Citations

Structure/function insights into Tn5 transposition.

Curr Opin Struct Biol 14 50-7 (2004)
Cited: 62 times
EuropePMC logo PMID: 15102449

Abstract

Prokaryotic transposon 5 (Tn5) serves as a model system for studying the molecular mechanism of DNA transposition. Elucidation of the X-ray co-crystal structure of Tn5 transposase complexed with a DNA recognition end sequence provided the first three-dimensional picture of an intermediate in a transposition/retroviral integration pathway. The many Tn5 transposase-DNA co-crystal structures now available complement biochemical and genetic studies, allowing a comprehensive and detailed understanding of transposition mechanisms. Specifically, the structures reveal two different types of protein-DNA contacts: cis contacts, required for initial DNA recognition, and trans contacts, required for catalysis. Protein-protein contacts required for synapsis are also seen. Finally, the two divalent metals in the active site of the transposase support a 'two-metal-ion' mechanism for Tn5 transposition.

Reviews - 1mus mentioned but not cited (6)

  1. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Hickman AB, Chandler M, Dyda F. Crit Rev Biochem Mol Biol 45 50-69 (2010)
  2. DDE transposases: Structural similarity and diversity. Nesmelova IV, Hackett PB. Adv Drug Deliv Rev 62 1187-1195 (2010)
  3. Moving DNA around: DNA transposition and retroviral integration. Montaño SP, Rice PA. Curr Opin Struct Biol 21 370-378 (2011)
  4. The emerging diversity of transpososome architectures. Dyda F, Chandler M, Hickman AB. Q Rev Biophys 45 493-521 (2012)
  5. Preclinical Testing in Translational Animal Models of Prader-Willi Syndrome: Overview and Gap Analysis. Carias KV, Wevrick R. Mol Ther Methods Clin Dev 13 344-358 (2019)
  6. DNA bending in the synaptic complex in V(D)J recombination: turning an ancestral transpososome upside down. Ciubotaru M, Surleac M, Musat MG, Rusu AM, Ionita E, Albu PCC. Discoveries (Craiova) 2 e13 (2014)

Articles - 1mus mentioned but not cited (12)

  1. Crystal structure of the V(D)J recombinase RAG1-RAG2. Kim MS, Lapkouski M, Yang W, Gellert M. Nature 518 507-511 (2015)
  2. DNA conformations and their sequence preferences. Svozil D, Kalina J, Omelka M, Schneider B. Nucleic Acids Res 36 3690-3706 (2008)
  3. RNA sequencing by direct tagmentation of RNA/DNA hybrids. Di L, Fu Y, Sun Y, Li J, Liu L, Yao J, Wang G, Wu Y, Lao K, Lee RW, Zheng G, Xu J, Oh J, Wang D, Xie XS, Huang Y, Wang J. Proc Natl Acad Sci U S A 117 2886-2893 (2020)
  4. Mixing active-site components: a recipe for the unique enzymatic activity of a telomere resolvase. Bankhead T, Chaconas G. Proc Natl Acad Sci U S A 101 13768-13773 (2004)
  5. Structural basis of seamless excision and specific targeting by piggyBac transposase. Chen Q, Luo W, Veach RA, Hickman AB, Wilson MH, Dyda F. Nat Commun 11 3446 (2020)
  6. Dolutegravir interactions with HIV-1 integrase-DNA: structural rationale for drug resistance and dissociation kinetics. DeAnda F, Hightower KE, Nolte RT, Hattori K, Yoshinaga T, Kawasuji T, Underwood MR. PLoS One 8 e77448 (2013)
  7. Understanding the effect of magnesium ion concentration on the catalytic activity of ribonuclease H through computation: does a third metal binding site modulate endonuclease catalysis? Ho MH, De Vivo M, Dal Peraro M, Klein ML. J Am Chem Soc 132 13702-13712 (2010)
  8. Phosphate coordination and movement of DNA in the Tn5 synaptic complex: role of the (R)YREK motif. Klenchin VA, Czyz A, Goryshin IY, Gradman R, Lovell S, Rayment I, Reznikoff WS. Nucleic Acids Res 36 5855-5862 (2008)
  9. Find and cut-and-transfer (FiCAT) mammalian genome engineering. Pallarès-Masmitjà M, Ivančić D, Mir-Pedrol J, Jaraba-Wallace J, Tagliani T, Oliva B, Rahmeh A, Sánchez-Mejías A, Güell M. Nat Commun 12 7071 (2021)
  10. A single amino acid switch converts the Sleeping Beauty transposase into an efficient unidirectional excisionase with utility in stem cell reprogramming. Kesselring L, Miskey C, Zuliani C, Querques I, Kapitonov V, Laukó A, Fehér A, Palazzo A, Diem T, Lustig J, Sebe A, Wang Y, Dinnyés A, Izsvák Z, Barabas O, Ivics Z. Nucleic Acids Res 48 316-331 (2020)
  11. Acinetobacter insertion sequence ISAba11 belongs to a novel family that encodes transposases with a signature HHEK motif. Rieck B, Tourigny DS, Crosatti M, Schmid R, Kochar M, Harrison EM, Ou HY, Turton JF, Rajakumar K. Appl Environ Microbiol 78 471-480 (2012)
  12. Tautomerism and magnesium chelation of HIV-1 integrase inhibitors: a theoretical study. Liao C, Nicklaus MC. ChemMedChem 5 1053-1066 (2010)


Reviews citing this publication (14)

  1. Aminoglycoside modifying enzymes. Ramirez MS, Tolmasky ME. Drug Resist Updat 13 151-171 (2010)
  2. Making and breaking nucleic acids: two-Mg2+-ion catalysis and substrate specificity. Yang W, Lee JY, Nowotny M. Mol Cell 22 5-13 (2006)
  3. CRISPR-based adaptive and heritable immunity in prokaryotes. van der Oost J, Jore MM, Westra ER, Lundgren M, Brouns SJ. Trends Biochem Sci 34 401-407 (2009)
  4. Nucleases: diversity of structure, function and mechanism. Yang W. Q Rev Biophys 44 1-93 (2011)
  5. Retroviral integrase superfamily: the structural perspective. Nowotny M. EMBO Rep 10 144-151 (2009)
  6. Virus world as an evolutionary network of viruses and capsidless selfish elements. Koonin EV, Dolja VV. Microbiol Mol Biol Rev 78 278-303 (2014)
  7. Mechanisms of DNA Transposition. Hickman AB, Dyda F. Microbiol Spectr 3 MDNA3-0034-2014 (2015)
  8. One is enough: insights into the two-metal ion nuclease mechanism from global analysis and computational studies. Dupureur CM. Metallomics 2 609-620 (2010)
  9. Transposable Phage Mu. Harshey RM. Microbiol Spectr 2 (2014)
  10. A Glimpse of "Dicer Biology" Through the Structural and Functional Perspective. Paturi S, Deshmukh MV. Front Mol Biosci 8 643657 (2021)
  11. Isolating Escherichia coli strains for recombinant protein production. Schlegel S, Genevaux P, de Gier JW. Cell Mol Life Sci 74 891-908 (2017)
  12. Computer tools in the discovery of HIV-1 integrase inhibitors. Liao C, Nicklaus MC. Future Med Chem 2 1123-1140 (2010)
  13. Random genome deletion methods applicable to prokaryotes. Suzuki N, Inui M, Yukawa H. Appl Microbiol Biotechnol 79 519-526 (2008)
  14. Foldback intercoil DNA and the mechanism of DNA transposition. Kim BD. Genomics Inform 12 80-86 (2014)

Articles citing this publication (30)

  1. Purified Argonaute2 and an siRNA form recombinant human RISC. Rivas FV, Tolia NH, Song JJ, Aragon JP, Liu J, Hannon GJ, Joshua-Tor L. Nat Struct Mol Biol 12 340-349 (2005)
  2. Retroviral intasome assembly and inhibition of DNA strand transfer. Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P. Nature 464 232-236 (2010)
  3. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Nowotny M, Gaidamakov SA, Crouch RJ, Yang W. Cell 121 1005-1016 (2005)
  4. Structural insight into the mechanism of double-stranded RNA processing by ribonuclease III. Gan J, Tropea JE, Austin BP, Court DL, Waugh DS, Ji X. Cell 124 355-366 (2006)
  5. A stepwise model for double-stranded RNA processing by ribonuclease III. Gan J, Shaw G, Tropea JE, Waugh DS, Court DL, Ji X. Mol Microbiol 67 143-154 (2008)
  6. Structures of endonuclease V with DNA reveal initiation of deaminated adenine repair. Dalhus B, Arvai AS, Rosnes I, Olsen ØE, Backe PH, Alseth I, Gao H, Cao W, Tainer JA, Bjørås M. Nat Struct Mol Biol 16 138-143 (2009)
  7. Structural elucidation of a PRP8 core domain from the heart of the spliceosome. Ritchie DB, Schellenberg MJ, Gesner EM, Raithatha SA, Stuart DT, Macmillan AM. Nat Struct Mol Biol 15 1199-1205 (2008)
  8. MUSTANG is a novel family of domesticated transposase genes found in diverse angiosperms. Cowan RK, Hoen DR, Schoen DJ, Bureau TE. Mol Biol Evol 22 2084-2089 (2005)
  9. Induced-fit docking approach provides insight into the binding mode and mechanism of action of HIV-1 integrase inhibitors. Barreca ML, Iraci N, De Luca L, Chimirri A. ChemMedChem 4 1446-1456 (2009)
  10. IS911 transpososome assembly as analysed by tethered particle motion. Pouget N, Turlan C, Destainville N, Salomé L, Chandler M. Nucleic Acids Res 34 4313-4323 (2006)
  11. Stable implantation of orthogonal sensor circuits in Gram-negative bacteria for environmental release. de las Heras A, Carreño CA, de Lorenzo V. Environ Microbiol 10 3305-3316 (2008)
  12. Mutational analysis of highly conserved aspartate residues essential to the catalytic core of the piggyBac transposase. Keith JH, Schaeper CA, Fraser TS, Fraser MJ. BMC Mol Biol 9 73 (2008)
  13. A relaxed active site after exon ligation by the group I intron. Lipchock SV, Strobel SA. Proc Natl Acad Sci U S A 105 5699-5704 (2008)
  14. Analysis of P element transposase protein-DNA interactions during the early stages of transposition. Tang M, Cecconi C, Bustamante C, Rio DC. J Biol Chem 282 29002-29012 (2007)
  15. Antibiotic Resistance Patterns of Pseudomonas spp. Isolated From Raw Milk Revealed by Whole Genome Sequencing. Meng L, Liu H, Lan T, Dong L, Hu H, Zhao S, Zhang Y, Zheng N, Wang J. Front Microbiol 11 1005 (2020)
  16. The AAA+ ClpX machine unfolds a keystone subunit to remodel the Mu transpososome. Abdelhakim AH, Sauer RT, Baker TA. Proc Natl Acad Sci U S A 107 2437-2442 (2010)
  17. How mouse RAG recombinase avoids DNA transposition. Chen X, Cui Y, Wang H, Zhou ZH, Gellert M, Yang W. Nat Struct Mol Biol 27 127-133 (2020)
  18. Detection of a circadian enhancer in the mDbp promoter using prokaryotic transposon vector-based strategy. Kiyohara YB, Nishii K, Ukai-Tadenuma M, Ueda HR, Uchiyama Y, Yagita K. Nucleic Acids Res 36 e23 (2008)
  19. HIV-1 Integrase-DNA Recognition Mechanisms. Kessl JJ, McKee CJ, Eidahl JO, Shkriabai N, Katz A, Kvaratskhelia M. Viruses 1 713-736 (2009)
  20. Overcoming Intrinsic Restriction Enzyme Barriers Enhances Transformation Efficiency in Arthrospira platensis C1. Jeamton W, Dulsawat S, Tanticharoen M, Vonshak A, Cheevadhanarak S. Plant Cell Physiol 58 822-830 (2017)
  21. A zinc site in the C-terminal domain of RAG1 is essential for DNA cleavage activity. Gwyn LM, Peak MM, De P, Rahman NS, Rodgers KK. J Mol Biol 390 863-878 (2009)
  22. The pH-dependence of the Escherichia coli RNase HII-catalysed reaction suggests that an active site carboxylate group participates directly in catalysis. Bastock JA, Webb M, Grasby JA. J Mol Biol 368 421-433 (2007)
  23. Viral genome packaging terminase cleaves DNA using the canonical RuvC-like two-metal catalysis mechanism. Xu RG, Jenkins HT, Chechik M, Blagova EV, Lopatina A, Klimuk E, Minakhin L, Severinov K, Greive SJ, Antson AA. Nucleic Acids Res 45 3580-3590 (2017)
  24. Analysis of genomic differences among Clostridium botulinum type A1 strains. Fang PK, Raphael BH, Maslanka SE, Cai S, Singh BR. BMC Genomics 11 725 (2010)
  25. Genomic comparison of diverse Salmonella serovars isolated from swine. Gupta SK, Sharma P, McMillan EA, Jackson CR, Hiott LM, Woodley T, Humayoun SB, Barrett JB, Frye JG, McClelland M. PLoS One 14 e0224518 (2019)
  26. Mutation of Tn5 transposase beta-loop residues affects all steps of Tn5 transposition: the role of conformational changes in Tn5 transposition. Steiniger M, Metzler J, Reznikoff WS. Biochemistry 45 15552-15562 (2006)
  27. Comprehensive understanding of Tn5 insertion preference improves transcription regulatory element identification. Zhang H, Lu T, Liu S, Yang J, Sun G, Cheng T, Xu J, Chen F, Yen K. NAR Genom Bioinform 3 lqab094 (2021)
  28. Mu transpososome activity-profiling yields hyperactive MuA variants for highly efficient genetic and genome engineering. Rasila TS, Pulkkinen E, Kiljunen S, Haapa-Paananen S, Pajunen MI, Salminen A, Paulin L, Vihinen M, Rice PA, Savilahti H. Nucleic Acids Res 46 4649-4661 (2018)
  29. Firmicutes-enriched IS1447 represents a group of IS3-family insertion sequences exhibiting unique + 1 transcriptional slippage. Liu YJ, Qi K, Zhang J, Chen C, Cui Q, Feng Y. Biotechnol Biofuels 11 300 (2018)
  30. Tn5 tagments and transposes oligos to single-stranded DNA for strand-specific RNA sequencing. Zhang Y, Tang Y, Sun Z, Jia J, Fang Y, Wan X, Fang D. Genome Res 33 412-426 (2023)