1m3x Citations

Interactions between lipids and bacterial reaction centers determined by protein crystallography.

Proc Natl Acad Sci U S A 99 11055-60 (2002)
Cited: 57 times
EuropePMC logo PMID: 12167672

Abstract

The structure of the reaction center from Rhodobacter sphaeroides has been solved by using x-ray diffraction at a 2.55-A resolution limit. Three lipid molecules that lie on the surface of the protein are resolved in the electron density maps. In addition to a cardiolipin that has previously been reported [McAuley, K. E., Fyfe, P. K., Ridge, J. P., Isaacs, N. W., Cogdell, R. J. & Jones, M. R. (1999) Proc. Natl. Acad. Sci. USA 96, 14706-14711], two other major lipids of the cell membrane are found, a phosphatidylcholine and a glucosylgalactosyl diacylglycerol. The presence of these three lipids has been confirmed by laser mass spectroscopy. The lipids are located in the hydrophobic region of the protein surface and interact predominately with hydrophobic amino acids, in particular aromatic residues. Although the cardiolipin is over 15 A from the cofactors, the other two lipids are in close contact with the cofactors and may contribute to the difference in energetics for the two branches of cofactors that is primarily responsible for the asymmetry of electron transfer. The glycolipid is 3.5 A from the active bacteriochlorophyll monomer and shields this cofactor from the solvent in contrast to a much greater exposed surface evident for the inactive bacteriochlorophyll monomer. The phosphate atom of phosphatidylcholine is 6.5 A from the inactive bacteriopheophytin, and the associated electrostatic interactions may contribute to electron transfer rates involving this cofactor. Overall, the lipids span a distance of approximately 30 A, which is consistent with a bilayer-like arrangement suggesting the presence of an "inner shell" of lipids around membrane proteins that is critical for membrane function.

Reviews - 1m3x mentioned but not cited (1)

Articles - 1m3x mentioned but not cited (6)

  1. Watching the photosynthetic apparatus in native membranes. Scheuring S, Sturgis JN, Prima V, Bernadac A, Lévy D, Rigaud JL. Proc Natl Acad Sci U S A 101 11293-11297 (2004)
  2. Prediction of transmembrane helix orientation in polytopic membrane proteins. Adamian L, Liang J. BMC Struct Biol 6 13 (2006)
  3. Energetic insights into two electron transfer pathways in light-driven energy-converting enzymes. Kawashima K, Ishikita H. Chem Sci 9 4083-4092 (2018)
  4. Multiple approaches converge on the structure of the integrin alphaIIb/beta3 transmembrane heterodimer. Metcalf DG, Kulp DW, Bennett JS, DeGrado WF. J Mol Biol 392 1087-1101 (2009)
  5. Cryo-EM structure of the photosynthetic RC-LH1-PufX supercomplex at 2.8-Å resolution. Bracun L, Yamagata A, Christianson BM, Terada T, Canniffe DP, Shirouzu M, Liu LN. Sci Adv 7 eabf8864 (2021)
  6. Studying hydrogen bonding and dynamics of the acetylate groups of the Special Pair of Rhodobacter sphaeroides WT. Gräsing D, Dziubińska-Kühn KM, Zahn S, Alia A, Matysik J. Sci Rep 9 10528 (2019)


Reviews citing this publication (11)

  1. Structure and function of glycoglycerolipids in plants and bacteria. Hölzl G, Dörmann P. Prog Lipid Res 46 225-243 (2007)
  2. Förster energy transfer theory as reflected in the structures of photosynthetic light-harvesting systems. Şener M, Strümpfer J, Hsin J, Chandler D, Scheuring S, Hunter CN, Schulten K. Chemphyschem 12 518-531 (2011)
  3. Lipids in photosynthetic reaction centres: structural roles and functional holes. Jones MR. Prog Lipid Res 46 56-87 (2007)
  4. Peptide-lipid interactions: insights and perspectives. Sanderson JM. Org Biomol Chem 3 201-212 (2005)
  5. Photosynthetic reaction center functionalized nano-composite films: effective strategies for probing and exploiting the photo-induced electron transfer of photosensitive membrane protein. Lu Y, Xu J, Liu B, Kong J. Biosens Bioelectron 22 1173-1185 (2007)
  6. Hypothesis on chlorosome biogenesis in green photosynthetic bacteria. Hohmann-Marriott MF, Blankenship RE. FEBS Lett 581 800-803 (2007)
  7. Protein-lipid interactions in the purple bacterial reaction centre. Jones MR, Fyfe PK, Roszak AW, Isaacs NW, Cogdell RJ. Biochim Biophys Acta 1565 206-214 (2002)
  8. Lipid conformation in crystalline bilayers and in crystals of transmembrane proteins. Marsh D, Páli T. Chem Phys Lipids 141 48-65 (2006)
  9. Structure-function investigations of bacterial photosynthetic reaction centers. Leonova MM, Fufina TY, Vasilieva LG, Shuvalov VA. Biochemistry (Mosc) 76 1465-1483 (2011)
  10. Influence of protein interactions on oxidation/reduction midpoint potentials of cofactors in natural and de novo metalloproteins. Olson TL, Williams JC, Allen JP. Biochim Biophys Acta 1827 914-922 (2013)
  11. Structures of proteins and cofactors: X-ray crystallography. Allen JP, Seng C, Larson C. Photosynth Res 102 231-240 (2009)

Articles citing this publication (39)

  1. Structures and physiological roles of 13 integral lipids of bovine heart cytochrome c oxidase. Shinzawa-Itoh K, Aoyama H, Muramoto K, Terada H, Kurauchi T, Tadehara Y, Yamasaki A, Sugimura T, Kurono S, Tsujimoto K, Mizushima T, Yamashita E, Tsukihara T, Yoshikawa S. EMBO J 26 1713-1725 (2007)
  2. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Ishizaki A, Calhoun TR, Schlau-Cohen GS, Fleming GR. Phys Chem Chem Phys 12 7319-7337 (2010)
  3. Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle. Sener MK, Olsen JD, Hunter CN, Schulten K. Proc Natl Acad Sci U S A 104 15723-15728 (2007)
  4. A vibrational spectral maker for probing the hydrogen-bonding status of protonated Asp and Glu residues. Nie B, Stutzman J, Xie A. Biophys J 88 2833-2847 (2005)
  5. A defined protein-detergent-lipid complex for crystallization of integral membrane proteins: The cytochrome b6f complex of oxygenic photosynthesis. Zhang H, Kurisu G, Smith JL, Cramer WA. Proc Natl Acad Sci U S A 100 5160-5163 (2003)
  6. pH modulates the quinone position in the photosynthetic reaction center from Rhodobacter sphaeroides in the neutral and charge separated states. Koepke J, Krammer EM, Klingen AR, Sebban P, Ullmann GM, Fritzsch G. J Mol Biol 371 396-409 (2007)
  7. Electron flow in multiheme bacterial cytochromes is a balancing act between heme electronic interaction and redox potentials. Breuer M, Rosso KM, Blumberger J. Proc Natl Acad Sci U S A 111 611-616 (2014)
  8. Lipidic cubic phase crystal structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.35A resolution. Katona G, Andréasson U, Landau EM, Andréasson LE, Neutze R. J Mol Biol 331 681-692 (2003)
  9. Role of mitochondrial cardiolipin peroxidation in apoptotic photokilling of 5-aminolevulinate-treated tumor cells. Kriska T, Korytowski W, Girotti AW. Arch Biochem Biophys 433 435-446 (2005)
  10. Intrinsic curvature properties of photosynthetic proteins in chromatophores. Chandler DE, Hsin J, Harrison CB, Gumbart J, Schulten K. Biophys J 95 2822-2836 (2008)
  11. Structural role of bacterioruberin in the trimeric structure of archaerhodopsin-2. Yoshimura K, Kouyama T. J Mol Biol 375 1267-1281 (2008)
  12. Quantum chemical description of absorption properties and excited-state processes in photosynthetic systems. König C, Neugebauer J. Chemphyschem 13 386-425 (2012)
  13. Structural model and excitonic properties of the dimeric RC-LH1-PufX complex from Rhodobacter sphaeroides. Sener M, Hsin J, Trabuco LG, Villa E, Qian P, Hunter CN, Schulten K. Chem Phys 357 188-197 (2009)
  14. Interactions of anionic phospholipids and phosphatidylethanolamine with the potassium channel KcsA. Alvis SJ, Williamson IM, East JM, Lee AG. Biophys J 85 3828-3838 (2003)
  15. Photosynthetic vesicle architecture and constraints on efficient energy harvesting. Sener M, Strümpfer J, Timney JA, Freiberg A, Hunter CN, Schulten K. Biophys J 99 67-75 (2010)
  16. Cyanobacterial photosystem II at 3.2 A resolution - the plastoquinone binding pockets. Kern J, Loll B, Zouni A, Saenger W, Irrgang KD, Biesiadka J. Photosynth Res 84 153-159 (2005)
  17. The electronic structure of the primary electron donor of reaction centers of purple bacteria at atomic resolution as observed by photo-CIDNP 13C NMR. Daviso E, Prakash S, Alia A, Gast P, Neugebauer J, Jeschke G, Matysik J. Proc Natl Acad Sci U S A 106 22281-22286 (2009)
  18. Conservation of lipid functions in cytochrome bc complexes. Hasan SS, Yamashita E, Ryan CM, Whitelegge JP, Cramer WA. J Mol Biol 414 145-162 (2011)
  19. Glycoengineering of cyanobacterial thylakoid membranes for future studies on the role of glycolipids in photosynthesis. Hölzl G, Zähringer U, Warnecke D, Heinz E. Plant Cell Physiol 46 1766-1778 (2005)
  20. Cardiolipin increases in chromatophores isolated from Rhodobacter sphaeroides after osmotic stress: structural and functional roles. De Leo V, De Leo V, Catucci L, Ventrella A, Milano F, Agostiano A, Corcelli A. J Lipid Res 50 256-264 (2009)
  21. Structure and function at the lipid-protein interface of a pentameric ligand-gated ion channel. Kumar P, Cymes GD, Grosman C. Proc Natl Acad Sci U S A 118 e2100164118 (2021)
  22. Novel insights into the origin and diversification of photosynthesis based on analyses of conserved indels in the core reaction center proteins. Khadka B, Adeolu M, Blankenship RE, Gupta RS. Photosynth Res 131 159-171 (2017)
  23. Enrichment of cardiolipin content throughout the purification procedure of photosystem II. Depalo N, Catucci L, Mallardi A, Corcelli A, Agostiano A. Bioelectrochemistry 63 103-106 (2004)
  24. Problems in obtaining diffraction-quality crystals of hetero-oligomeric integral membrane proteins. Zhang H, Cramer WA. J Struct Funct Genomics 6 219-223 (2005)
  25. Does different orientation of the methoxy groups of ubiquinone-10 in the reaction centre of Rhodobacter sphaeroides cause different binding at QA and QB? Remy A, Boers RB, Egorova-Zachernyuk T, Gast P, Lugtenburg J, Gerwert K. Eur J Biochem 270 3603-3609 (2003)
  26. Lipid functions in cytochrome bc complexes: an odd evolutionary transition in a membrane protein structure. Hasan SS, Cramer WA. Philos Trans R Soc Lond B Biol Sci 367 3406-3411 (2012)
  27. The thermotropic phase behaviour and phase structure of a homologous series of racemic beta-D-galactosyl dialkylglycerols studied by differential scanning calorimetry and X-ray diffraction. Mannock DA, Collins MD, Kreichbaum M, Harper PE, Gruner SM, McElhaney RN. Chem Phys Lipids 148 26-50 (2007)
  28. EPR, ENDOR, and special TRIPLE measurements of P(*+) in wild type and modified reaction centers from Rb. sphaeroides. Allen JP, Cordova JM, Jolley CC, Murray TA, Schneider JW, Woodbury NW, Williams JC, Niklas J, Klihm G, Reus M, Lubitz W. Photosynth Res 99 1-10 (2009)
  29. Energy Transfer Dynamics in an RC-LH1-PufX Tubular Photosynthetic Membrane. Hsin J, Strümpfer J, Sener M, Qian P, Hunter CN, Schulten K. New J Phys 12 085005 (2010)
  30. Enthalpy/entropy driven activation of the first interquinone electron transfer in bacterial photosynthetic reaction centers embedded in vesicles of physiologically important phospholipids. Milano F, Dorogi M, Szebényi K, Nagy L, Maróti P, Váró G, Giotta L, Agostiano A, Trotta M. Bioelectrochemistry 70 18-22 (2007)
  31. Lipid binding to the carotenoid binding site in photosynthetic reaction centers. Deshmukh SS, Tang K, Kálmán L. J Am Chem Soc 133 16309-16316 (2011)
  32. Cardiolipin deficiency causes a dissociation of the b 6 c:caa 3 megacomplex in B. subtilis membranes. García Montes de Oca LY, Cabellos Avelar T, Picón Garrido GI, Chagoya-López A, González de la Vara L, Delgado Buenrostro NL, Chirino-López YI, Gómez-Lojero C, Gutiérrez-Cirlos EB. J Bioenerg Biomembr 48 451-467 (2016)
  33. Comparative analyses of three-dimensional models of bacterial reaction centers. Camara-Artigas A, Allen JP. Photosynth Res 81 227-237 (2004)
  34. Orientation and conformation of lipids in crystals of transmembrane proteins. Marsh D, Páli T. Eur Biophys J 42 119-146 (2013)
  35. Inter- and intraspecific variation in excited-state triplet energy transfer rates in reaction centers of photosynthetic bacteria. Laible PD, Morris ZS, Thurnauer MC, Schiffer M, Hanson DK. Photochem Photobiol 78 114-123 (2003)
  36. Mass spectrometric detection of protein, lipid and heme components of cytochrome c oxidase from R. sphaeroides and the stabilization of non-covalent complexes from the enzyme. Distler AM, Allison J, Hiser C, Qin L, Hilmi Y, Ferguson-Miller S. Eur J Mass Spectrom (Chichester) 10 295-308 (2004)
  37. Properties of Rhodobacter sphaeroides photosynthetic reaction center with double amino acid substitution I(L177)H+H(M182)L. Fufina TY, Vasilieva LG, Khatypov RA, Shuvalov VA. Biochemistry (Mosc) 76 450-454 (2011)
  38. Purification, crystallization and preliminary X-ray crystallographic analysis of the transport unit of the monomeric autotransporter AIDA-I from Escherichia coli. Gawarzewski I, Tschapek B, Hoeppner A, Jose J, Smits SH, Schmitt L. Acta Crystallogr Sect F Struct Biol Cryst Commun 69 1159-1162 (2013)
  39. New tetragonal form of reaction centers from Rhodobacter sphaeroides and the involvement of a manganese ion at a crystal contact point. Uyeda G, Cámara-Artigas A, Williams JC, Allen JP. Acta Crystallogr Sect F Struct Biol Cryst Commun 61 733-736 (2005)


Related citations provided by authors (1)

  1. Individual interactions influence the crystalline order for membrane proteins. Camara-Artigas A, Magee CL, Williams JC, Allen JP Acta Crystallogr. D Biol. Crystallogr. 57 1281-1286 (2001)