1lfb Citations

The X-ray structure of an atypical homeodomain present in the rat liver transcription factor LFB1/HNF1 and implications for DNA binding.

EMBO J 12 1805-10 (1993)
Cited: 60 times
EuropePMC logo PMID: 8491173

Abstract

The transcription factor LFB1/HNF1 from rat liver nuclei is a 628 amino acid protein that functions as a dimer binding to the inverted palindrome GTTAATN-ATTAAC consensus site. We have crystallized a 99 residue protein containing the homeodomain portion of LFB1, and solved its structure using X-ray diffraction data to 2.8 A resolution. The topology and orientation of the helices is essentially the same as that found in the engrailed, MAT alpha 2 and Antennapedia homeodomains, even though the LFB1 homeodomain contains 21 more residues. The 21 residue insertion is found in an extension of helix 2 and consequent lengthening of the connecting loop between helix 2 and helix 3. Comparison with the engrailed homeodomain-DNA complex indicates that the mode of interaction with DNA is similar in both proteins, with a number of conserved contacts in the major groove. The extra 21 residues of the LFB1 homeodomain are not involved in DNA binding. Binding of the LFB1 dimer to a B-DNA palindromic consensus sequence requires either a conformational change of the DNA (presumably bending), or a rearrangement of the subunits relative to the DNA.

Articles - 1lfb mentioned but not cited (16)

  1. An accurate, residue-level, pair potential of mean force for folding and binding based on the distance-scaled, ideal-gas reference state. Zhang C, Liu S, Zhou H, Zhou Y. Protein Sci 13 400-411 (2004)
  2. Predictive energy landscapes for protein-protein association. Zheng W, Schafer NP, Davtyan A, Papoian GA, Wolynes PG. Proc Natl Acad Sci U S A 109 19244-19249 (2012)
  3. Improved protein structure selection using decoy-dependent discriminatory functions. Wang K, Fain B, Levitt M, Samudrala R. BMC Struct Biol 4 8 (2004)
  4. Nativelike topology assembly of small proteins using predicted restraints in Monte Carlo folding simulations. Ortiz AR, Kolinski A, Skolnick J. Proc Natl Acad Sci U S A 95 1020-1025 (1998)
  5. The dependence of all-atom statistical potentials on structural training database. Zhang C, Liu S, Zhou H, Zhou Y. Biophys J 86 3349-3358 (2004)
  6. Specificity and affinity quantification of flexible recognition from underlying energy landscape topography. Chu X, Wang J. PLoS Comput Biol 10 e1003782 (2014)
  7. Design of an optimal Chebyshev-expanded discrimination function for globular proteins. Fain B, Xia Y, Levitt M. Protein Sci 11 2010-2021 (2002)
  8. A free-energy approach for all-atom protein simulation. Verma A, Wenzel W. Biophys J 96 3483-3494 (2009)
  9. Protein structure prediction by all-atom free-energy refinement. Verma A, Wenzel W. BMC Struct Biol 7 12 (2007)
  10. A free-rotating and self-avoiding chain model for deriving statistical potentials based on protein structures. Cheng J, Pei J, Lai L. Biophys J 92 3868-3877 (2007)
  11. Atomic hydration potentials using a Monte Carlo Reference State (MCRS) for protein solvation modeling. Rakhmanov SV, Makeev VJ. BMC Struct Biol 7 19 (2007)
  12. In silico chaperonin-like cycle helps folding of proteins for structure prediction. Furuta T, Fujitsuka Y, Chikenji G, Takada S. Biophys J 94 2558-2565 (2008)
  13. The effects of rigid motions on elastic network model force constants. Lezon TR. Proteins 80 1133-1142 (2012)
  14. A Kinetic Transition Network Model Reveals the Diversity of Protein Dimer Formation Mechanisms. Györffy D, Závodszky P, Szilágyi A. Biomolecules 13 1708 (2023)
  15. Exploring protein structural dissimilarity to facilitate structure classification. Jain P, Hirst JD. BMC Struct Biol 9 60 (2009)
  16. Solving the molecular distance geometry problem with inaccurate distance data. Souza M, Lavor C, Muritiba A, Maculan N. BMC Bioinformatics 14 Suppl 9 S7 (2013)


Reviews citing this publication (6)

  1. Homeodomain-DNA recognition. Gehring WJ, Qian YQ, Billeter M, Furukubo-Tokunaga K, Schier AF, Resendez-Perez D, Affolter M, Otting G, Wüthrich K. Cell 78 211-223 (1994)
  2. The winged-helix DNA-binding motif: another helix-turn-helix takeoff. Brennan RG. Cell 74 773-776 (1993)
  3. Analysis and design of three-stranded coiled coils and three-helix bundles. Schneider JP, Lombardi A, DeGrado WF. Fold Des 3 R29-40 (1998)
  4. Role of transcription factor hepatocyte nuclear factor-1β in polycystic kidney disease. Shao A, Chan SC, Igarashi P. Cell Signal 71 109568 (2020)
  5. Structure and function of PCD/DCoH, an enzyme with regulatory properties. Suck D, Ficner R. FEBS Lett 389 35-39 (1996)
  6. Patterning the expression of a tissue-specific transcription factor in embryogenesis: HNF1 alpha gene activation during Xenopus development. von Strandmann EP, Nastos A, Holewa B, Senkel S, Weber H, Ryffel GU. Mech Dev 64 7-17 (1997)

Articles citing this publication (38)

  1. Knowledge-based protein secondary structure assignment. Frishman D, Argos P. Proteins 23 566-579 (1995)
  2. Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Bürglin TR. Nucleic Acids Res 25 4173-4180 (1997)
  3. Analysis of the distribution of binding sites for a tissue-specific transcription factor in the vertebrate genome. Tronche F, Ringeisen F, Blumenfeld M, Yaniv M, Pontoglio M. J Mol Biol 266 231-245 (1997)
  4. Molecular evolution of the homeodomain family of transcription factors. Banerjee-Basu S, Baxevanis AD. Nucleic Acids Res 29 3258-3269 (2001)
  5. Diabetes mutations delineate an atypical POU domain in HNF-1alpha. Chi YI, Frantz JD, Oh BC, Hansen L, Dhe-Paganon S, Shoelson SE. Mol Cell 10 1129-1137 (2002)
  6. Electrostatic effects in homeodomain-DNA interactions. Fogolari F, Elcock AH, Esposito G, Viglino P, Briggs JM, McCammon JA. J Mol Biol 267 368-381 (1997)
  7. Three-dimensional structure of the bifunctional protein PCD/DCoH, a cytoplasmic enzyme interacting with transcription factor HNF1. Ficner R, Sauer UH, Stier G, Suck D. EMBO J 14 2034-2042 (1995)
  8. The bifunctional DCOH protein binds to HNF1 independently of its 4-alpha-carbinolamine dehydratase activity. Sourdive DJ, Transy C, Garbay S, Yaniv M. Nucleic Acids Res 25 1476-1484 (1997)
  9. Letter A Caenorhabditis elegans prospero homologue defines a novel domain. Bürglin TR. Trends Biochem Sci 19 70-71 (1994)
  10. Structure of the DNA binding region of prospero reveals a novel homeo-prospero domain. Ryter JM, Doe CQ, Matthews BW. Structure 10 1541-1549 (2002)
  11. Homology modeling using simulated annealing of restrained molecular dynamics and conformational search calculations with CONGEN: application in predicting the three-dimensional structure of murine homeodomain Msx-1. Li H, Tejero R, Monleon D, Bassolino-Klimas D, Abate-Shen C, Bruccoleri RE, Montelione GT. Protein Sci 6 956-970 (1997)
  12. Structural basis of Prospero-DNA interaction: implications for transcription regulation in developing cells. Yousef MS, Matthews BW. Structure 13 601-607 (2005)
  13. The bifunctional protein DCoH modulates interactions of the homeodomain transcription factor HNF1 with nucleic acids. Rhee KH, Stier G, Becker PB, Suck D, Sandaltzopoulos R. J Mol Biol 265 20-29 (1997)
  14. DNA bending by the a1 and alpha 2 homeodomain proteins from yeast. Smith DL, Desai AB, Johnson AD. Nucleic Acids Res 23 1239-1243 (1995)
  15. Analysis of the solution structure of the homeodomain of rat thyroid transcription factor 1 by 1H-NMR spectroscopy and restrained molecular mechanics. Esposito G, Fogolari F, Damante G, Formisano S, Tell G, Leonardi A, Di Lauro R, Viglino P. Eur J Biochem 241 101-113 (1996)
  16. Classification of multi-helical DNA-binding domains and application to predict the DBD structures of sigma factor, LysR, OmpR/PhoB, CENP-B, Rapl, and Xy1S/Ada/AraC. Suzuki M, Brenner SE. FEBS Lett 372 215-221 (1995)
  17. Mutation of a single lysine residue severely impairs the DNA recognition and regulatory functions of the VZV gene 62 transactivator protein. Tyler JK, Allen KE, Everett RD. Nucleic Acids Res 22 270-278 (1994)
  18. Molecular characterisation of a novel plant homeobox gene expressed in the maturing xylem zone of Populus tremula x tremuloides. Hertzberg M, Olsson O. Plant J 16 285-295 (1998)
  19. The Compass-like locus, exclusive to the Ambulacrarians, encodes a chromatin insulator binding protein in the sea urchin embryo. Cavalieri V, Melfi R, Spinelli G. PLoS Genet 9 e1003847 (2013)
  20. The Homeodomain Resource: 2003 update. Banerjee-Basu S, Moreland T, Hsu BJ, Trout KL, Baxevanis AD. Nucleic Acids Res 31 304-306 (2003)
  21. The Homeodomain Resource: sequences, structures, DNA binding sites and genomic information. Banerjee-Basu S, Sink DW, Baxevanis AD. Nucleic Acids Res 29 291-293 (2001)
  22. Crosslinking of double-stranded oligonucleotides containing O-methyl-substituted pyrophosphate groups to the HNF1 transcription factor in nuclear cell extract. Kuznetsova SA, Clusel C, Ugarte E, Elias I, Vasseur M, Blumenfeld M, Shabarova ZA. Nucleic Acids Res 24 4783-4790 (1996)
  23. Only one of the paired Schizophyllum commune A alpha mating-type, putative homeobox genes encodes a homeodomain essential for A alpha-regulated development. Luo Y, Ullrich RC, Novotny CP. Mol Gen Genet 244 318-324 (1994)
  24. The solution structure of the homeodomain of the rat insulin-gene enhancer protein isl-1. Comparison with other homeodomains. Ippel H, Larsson G, Behravan G, Zdunek J, Lundqvist M, Schleucher J, Lycksell PO, Wijmenga S. J Mol Biol 288 689-703 (1999)
  25. The NMR solution structure of the non-classical homeodomain from the rat liver LFB1/HNF1 transcription factor. Schott O, Billeter M, Leiting B, Wider G, Wüthrich K. J Mol Biol 267 673-683 (1997)
  26. The Homeodomain Resource: a comprehensive collection of sequence, structure, interaction, genomic and functional information on the homeodomain protein family. Moreland RT, Ryan JF, Pan C, Baxevanis AD. Database (Oxford) 2009 bap004 (2009)
  27. The homeodomain resource: a prototype database for a large protein family. Banerjee-Basu S, Ryan JF, Baxevanis AD. Nucleic Acids Res 28 329-330 (2000)
  28. Coactivation of estrogen receptor alpha (ER alpha)/Sp1 by vitamin D receptor interacting protein 150 (DRIP150). Lee J, Safe S. Arch Biochem Biophys 461 200-210 (2007)
  29. Threading analysis of the Pitx2 homeodomain: predicted structural effects of mutations causing Rieger syndrome and iridogoniodysgenesis. Banerjee-Basu S, Baxevanis AD. Hum Mutat 14 312-319 (1999)
  30. Determinants of bacteriophage 933W repressor DNA binding specificity. Bullwinkle TJ, Samorodnitsky D, Rosati RC, Koudelka GB. PLoS One 7 e34563 (2012)
  31. Role of salt bridges in homeodomains investigated by structural analyses and molecular dynamics simulations. Iurcu-Mustata G, Van Belle D, Wintjens R, Prévost M, Rooman M. Biopolymers 59 145-159 (2001)
  32. Serine 249 phosphorylation by ATM protein kinase regulates hepatocyte nuclear factor-1α transactivation. Zhao L, Chen H, Zhan YQ, Li CY, Ge CH, Zhang JH, Wang XH, Yu M, Yang XM. Biochim Biophys Acta 1839 604-620 (2014)
  33. 14-3-3ζ interacts with hepatocyte nuclear factor 1α and enhances its DNA binding and transcriptional activation. Yu M, Guo HX, Hui-Chen, Wang XH, Li CY, Zhan YQ, Ge CH, Yang XM. Biochim Biophys Acta 1829 970-979 (2013)
  34. HNF1B Alters an Evolutionarily Conserved Nephrogenic Program of Target Genes. Grand K, Stoltz M, Rizzo L, Röck R, Kaminski MM, Salinas G, Getwan M, Naert T, Pichler R, Lienkamp SS. J Am Soc Nephrol 34 412-432 (2023)
  35. NMR solution structure of the RED subdomain of the Sleeping Beauty transposase. Konnova TA, Singer CM, Nesmelova IV. Protein Sci 26 1171-1181 (2017)
  36. Hydrogen-deuterium exchange studies of the rat thyroid transcription factor 1 homeodomain. Esposito G, Fogolari F, Damante G, Formisano S, Tell G, Leonardi A, Di Lauro R, Viglino P. J Biomol NMR 9 397-407 (1997)
  37. Structural and biophysical characterization of transcription factor HNF-1A as a tool to study MODY3 diabetes variants. Kind L, Raasakka A, Molnes J, Aukrust I, Bjørkhaug L, Njølstad PR, Kursula P, Arnesen T. J Biol Chem 298 101803 (2022)
  38. Function of HNF1 in the pathogenesis of diabetes. Rhoads DB, Levitsky LL. Expert Rev Endocrinol Metab 3 391-403 (2008)