1lds Citations

Crystal structure of monomeric human beta-2-microglobulin reveals clues to its amyloidogenic properties.

Proc Natl Acad Sci U S A 99 9771-6 (2002)
Cited: 136 times
EuropePMC logo PMID: 12119416

Abstract

Dissociation of human beta-2-microglobulin (beta(2)m) from the heavy chain of the class I HLA complex is a critical first step in the formation of amyloid fibrils from this protein. As a consequence of renal failure, the concentration of circulating monomeric beta(2)m increases, ultimately leading to deposition of the protein into amyloid fibrils and development of the disorder, dialysis-related amyloidosis. Here we present the crystal structure of a monomeric form of human beta(2)m determined at 1.8-A resolution that reveals remarkable structural changes relative to the HLA-bound protein. These involve the restructuring of a beta bulge that separates two short beta strands to form a new six-residue beta strand at one edge of this beta sandwich protein. These structural changes remove key features proposed to have evolved to protect beta sheet proteins from aggregation [Richardson, J. & Richardson, D. (2002) Proc. Natl. Acad. Sci. USA 99, 2754-2759] and replaces them with an aggregation-competent surface. In combination with solution studies using (1)H NMR, we show that the crystal structure presented here represents a rare species in solution that could provide important clues about the mechanism of amyloid formation from the normally highly soluble native protein.

Reviews - 1lds mentioned but not cited (4)

Articles - 1lds mentioned but not cited (40)

  1. An amyloid-forming segment of beta2-microglobulin suggests a molecular model for the fibril. Ivanova MI, Sawaya MR, Gingery M, Attinger A, Eisenberg D. Proc Natl Acad Sci U S A 101 10584-10589 (2004)
  2. Improvement of molecular-replacement models with Sculptor. Bunkóczi G, Read RJ. Acta Crystallogr D Biol Crystallogr 67 303-312 (2011)
  3. Crystal structure of monomeric human beta-2-microglobulin reveals clues to its amyloidogenic properties. Trinh CH, Smith DP, Kalverda AP, Phillips SE, Radford SE. Proc Natl Acad Sci U S A 99 9771-9776 (2002)
  4. Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores. Huang G, Willems K, Soskine M, Wloka C, Maglia G. Nat Commun 8 935 (2017)
  5. A systematic screen of beta(2)-microglobulin and insulin for amyloid-like segments. Ivanova MI, Thompson MJ, Eisenberg D. Proc Natl Acad Sci U S A 103 4079-4082 (2006)
  6. Amyloidogenic determinants are usually not buried. Frousios KK, Iconomidou VA, Karletidi CM, Hamodrakas SJ. BMC Struct Biol 9 44 (2009)
  7. Pauling and Corey's alpha-pleated sheet structure may define the prefibrillar amyloidogenic intermediate in amyloid disease. Armen RS, DeMarco ML, Alonso DO, Daggett V. Proc Natl Acad Sci U S A 101 11622-11627 (2004)
  8. β₂-microglobulin forms three-dimensional domain-swapped amyloid fibrils with disulfide linkages. Liu C, Sawaya MR, Eisenberg D. Nat Struct Mol Biol 18 49-55 (2011)
  9. Design and characterization of structured protein linkers with differing flexibilities. Klein JS, Jiang S, Galimidi RP, Keeffe JR, Bjorkman PJ. Protein Eng Des Sel 27 325-330 (2014)
  10. Prediction of amyloid fibril-forming segments based on a support vector machine. Tian J, Wu N, Guo J, Fan Y. BMC Bioinformatics 10 Suppl 1 S45 (2009)
  11. Search for allosteric disulfide bonds in NMR structures. Schmidt B, Hogg PJ. BMC Struct Biol 7 49 (2007)
  12. Stacked sets of parallel, in-register beta-strands of beta2-microglobulin in amyloid fibrils revealed by site-directed spin labeling and chemical labeling. Ladner CL, Chen M, Smith DP, Platt GW, Radford SE, Langen R. J Biol Chem 285 17137-17147 (2010)
  13. Copper binding to beta-2-microglobulin and its pre-amyloid oligomers. Srikanth R, Mendoza VL, Bridgewater JD, Zhang G, Vachet RW. Biochemistry 48 9871-9881 (2009)
  14. Systematic comparison of crystal and NMR protein structures deposited in the protein data bank. Sikic K, Tomic S, Carugo O. Open Biochem J 4 83-95 (2010)
  15. X-ray vs. NMR structures as templates for computational protein design. Schneider M, Fu X, Keating AE. Proteins 77 97-110 (2009)
  16. Interactive sequences in the molecular chaperone, human alphaB crystallin modulate the fibrillation of amyloidogenic proteins. Ghosh JG, Houck SA, Clark JI. Int J Biochem Cell Biol 40 954-967 (2008)
  17. Structure and dynamics of oligomeric intermediates in β2-microglobulin self-assembly. Smith DP, Woods LA, Radford SE, Ashcroft AE. Biophys J 101 1238-1247 (2011)
  18. Crystal structure of a bony fish beta2-microglobulin: insights into the evolutionary origin of immunoglobulin superfamily constant molecules. Chen W, Gao F, Chu F, Zhang J, Gao GF, Xia C. J Biol Chem 285 22505-22512 (2010)
  19. HAAD: A quick algorithm for accurate prediction of hydrogen atoms in protein structures. Li Y, Roy A, Zhang Y. PLoS One 4 e6701 (2009)
  20. Denatured-state energy landscapes of a protein structural database reveal the energetic determinants of a framework model for folding. Wang S, Gu J, Larson SA, Whitten ST, Hilser VJ. J Mol Biol 381 1184-1201 (2008)
  21. Analysis of the "thermodynamic information content" of a Homo sapiens structural database reveals hierarchical thermodynamic organization. Larson SA, Hilser VJ. Protein Sci 13 1787-1801 (2004)
  22. Equilibrium unfolding thermodynamics of beta2-microglobulin analyzed through native-state H/D exchange. Rennella E, Corazza A, Fogolari F, Viglino P, Giorgetti S, Stoppini M, Bellotti V, Esposito G. Biophys J 96 169-179 (2009)
  23. Insights into the role of the beta-2 microglobulin D-strand in amyloid propensity revealed by mass spectrometry. Leney AC, Pashley CL, Scarff CA, Radford SE, Ashcroft AE. Mol Biosyst 10 412-420 (2014)
  24. Delineating the conformational elements responsible for Cu(2+)-induced oligomerization of beta-2 microglobulin. Blaho DV, Miranker AD. Biochemistry 48 6610-6617 (2009)
  25. Does deamidation cause protein unfolding? A top-down tandem mass spectrometry study. Soulby AJ, Heal JW, Barrow MP, Roemer RA, O'Connor PB. Protein Sci 24 850-860 (2015)
  26. Assessing the effect of loop mutations in the folding space of β2-microglobulin with molecular dynamics simulations. Estácio SG, Shakhnovich EI, Faísca PF. Int J Mol Sci 14 17256-17278 (2013)
  27. Formation of protein cross-links by singlet oxygen-mediated disulfide oxidation. Jiang S, Carroll L, Mariotti M, Hägglund P, Davies MJ. Redox Biol 41 101874 (2021)
  28. Proline Residues as Switches in Conformational Changes Leading to Amyloid Fibril Formation. Taler-Verčič A, Hasanbašić S, Berbić S, Stoka V, Turk D, Žerovnik E. Int J Mol Sci 18 E549 (2017)
  29. The role of the IT-state in D76N β2-microglobulin amyloid assembly: A crucial intermediate or an innocuous bystander? Smith HI, Guthertz N, Cawood EE, Maya-Martinez R, Breeze AL, Radford SE. J Biol Chem 295 12474-12484 (2020)
  30. The two tryptophans of β2-microglobulin have distinct roles in function and folding and might represent two independent responses to evolutionary pressure. Raimondi S, Barbarini N, Mangione P, Esposito G, Ricagno S, Bolognesi M, Zorzoli I, Marchese L, Soria C, Bellazzi R, Monti M, Stoppini M, Stefanelli M, Magni P, Bellotti V. BMC Evol Biol 11 159 (2011)
  31. Simulation of pH-dependent edge strand rearrangement in human beta-2 microglobulin. Park S, Saven JG. Protein Sci 15 200-207 (2006)
  32. Quantitative first principles calculations of protein circular dichroism in the near-ultraviolet. Li Z, Hirst JD. Chem Sci 8 4318-4333 (2017)
  33. Approach to characterization of the higher order structure of disulfide-containing proteins using hydrogen/deuterium exchange and top-down mass spectrometry. Wang G, Kaltashov IA. Anal Chem 86 7293-7298 (2014)
  34. Structural Heterogeneity in the Preamyloid Oligomers of β-2-Microglobulin. Marcinko TM, Liang C, Savinov S, Chen J, Vachet RW. J Mol Biol 432 396-409 (2020)
  35. The effect of mutation on an aggregation-prone protein: An in vivo, in vitro, and in silico analysis. Guthertz N, van der Kant R, Martinez RM, Xu Y, Trinh CH, Iorga BI, Rousseau F, Schymkowitz J, Brockwell DJ, Radford SE. Proc Natl Acad Sci U S A 119 e2200468119 (2022)
  36. Computational Evolution of Beta-2-Microglobulin Binding Peptides for Nanopatterned Surface Sensors. Adedeji Olulana AF, Soler MA, Lotteri M, Vondracek H, Casalis L, Marasco D, Castronovo M, Fortuna S. Int J Mol Sci 22 E812 (2021)
  37. Epigallocatechin-3-gallate Inhibits Cu(II)-Induced β-2-Microglobulin Amyloid Formation by Binding to the Edge of Its β-Sheets. Marcinko TM, Drews T, Liu T, Vachet RW. Biochemistry 59 1093-1103 (2020)
  38. Expression, purification, crystallization and preliminary X-ray diffraction analysis of grass carp beta2-microglobulin. Chen W, Chu F, Peng H, Zhang J, Qi J, Jiang F, Xia C, Gao F. Acta Crystallogr Sect F Struct Biol Cryst Commun 64 200-202 (2008)
  39. The effects of rigid motions on elastic network model force constants. Lezon TR. Proteins 80 1133-1142 (2012)
  40. Covalent Labeling with Diethylpyrocarbonate for Studying Protein Higher-Order Structure by Mass Spectrometry. Kirsch ZJ, Arden BG, Vachet RW, Limpikirati P. J Vis Exp (2021)


Reviews citing this publication (12)

  1. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. Stefani M, Dobson CM. J Mol Med (Berl) 81 678-699 (2003)
  2. How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase. Jurneczko E, Barran PE. Analyst 136 20-28 (2011)
  3. The systemic amyloidoses. Buxbaum JN. Curr Opin Rheumatol 16 67-75 (2004)
  4. Mechanism of amyloidogenesis: nucleation-dependent fibrillation versus double-concerted fibrillation. Bhak G, Choe YJ, Paik SR. BMB Rep 42 541-551 (2009)
  5. Advances in ion mobility spectrometry-mass spectrometry reveal key insights into amyloid assembly. Woods LA, Radford SE, Ashcroft AE. Biochim Biophys Acta 1834 1257-1268 (2013)
  6. Beta-2 microglobulin in ESRD: an in-depth review. Winchester JF, Salsberg JA, Levin NW. Adv Ren Replace Ther 10 279-309 (2003)
  7. beta(2)-microglobulin: from physiology to amyloidosis. Heegaard NH. Amyloid 16 151-173 (2009)
  8. Solid-state NMR spectroscopy of amyloid proteins. Heise H. Chembiochem 9 179-189 (2008)
  9. Camelid single-domain antibody fragments: Uses and prospects to investigate protein misfolding and aggregation, and to treat diseases associated with these phenomena. Pain C, Dumont J, Dumoulin M. Biochimie 111 82-106 (2015)
  10. Fast real-time NMR methods for characterizing short-lived molecular states. Rennella E, Brutscher B. Chemphyschem 14 3059-3070 (2013)
  11. Amyloidogenicity at a Distance: How Distal Protein Regions Modulate Aggregation in Disease. Lucato CM, Lupton CJ, Halls ML, Ellisdon AM. J Mol Biol 429 1289-1304 (2017)
  12. Oxidative protein labeling with analysis by mass spectrometry for the study of structure, folding, and dynamics. Liuni P, Zhu S, Wilson DJ. Antioxid Redox Signal 21 497-510 (2014)

Articles citing this publication (80)

  1. Amyloid formation under physiological conditions proceeds via a native-like folding intermediate. Jahn TR, Parker MJ, Homans SW, Radford SE. Nat Struct Mol Biol 13 195-201 (2006)
  2. POLE Proofreading Mutations Elicit an Antitumor Immune Response in Endometrial Cancer. van Gool IC, Eggink FA, Freeman-Mills L, Stelloo E, Marchi E, de Bruyn M, Palles C, Nout RA, de Kroon CD, Osse EM, Klenerman P, Creutzberg CL, Tomlinson IP, Smit VT, Nijman HW, Bosse T, Church DN. Clin Cancer Res 21 3347-3355 (2015)
  3. A native to amyloidogenic transition regulated by a backbone trigger. Eakin CM, Berman AJ, Miranker AD. Nat Struct Mol Biol 13 202-208 (2006)
  4. Conformational conversion during amyloid formation at atomic resolution. Eichner T, Kalverda AP, Thompson GS, Homans SW, Radford SE. Mol Cell 41 161-172 (2011)
  5. Amyloid-forming peptides from beta2-microglobulin-Insights into the mechanism of fibril formation in vitro. Jones S, Manning J, Kad NM, Radford SE. J Mol Biol 325 249-257 (2003)
  6. A systematic investigation into the effect of protein destabilisation on beta 2-microglobulin amyloid formation. Smith DP, Jones S, Serpell LC, Sunde M, Radford SE. J Mol Biol 330 943-954 (2003)
  7. Monitoring copopulated conformational states during protein folding events using electrospray ionization-ion mobility spectrometry-mass spectrometry. Smith DP, Giles K, Bateman RH, Radford SE, Ashcroft AE. J Am Soc Mass Spectrom 18 2180-2190 (2007)
  8. Dynamics in the unfolded state of beta2-microglobulin studied by NMR. Platt GW, McParland VJ, Kalverda AP, Homans SW, Radford SE. J Mol Biol 346 279-294 (2005)
  9. Fibril growth kinetics reveal a region of beta2-microglobulin important for nucleation and elongation of aggregation. Platt GW, Routledge KE, Homans SW, Radford SE. J Mol Biol 378 251-263 (2008)
  10. Atomic structure of a nanobody-trapped domain-swapped dimer of an amyloidogenic beta2-microglobulin variant. Domanska K, Vanderhaegen S, Srinivasan V, Pardon E, Dupeux F, Marquez JA, Giorgetti S, Stoppini M, Wyns L, Bellotti V, Steyaert J. Proc Natl Acad Sci U S A 108 1314-1319 (2011)
  11. A regulatable switch mediates self-association in an immunoglobulin fold. Calabrese MF, Eakin CM, Wang JM, Miranker AD. Nat Struct Mol Biol 15 965-971 (2008)
  12. The structure of a β2-microglobulin fibril suggests a molecular basis for its amyloid polymorphism. Iadanza MG, Silvers R, Boardman J, Smith HI, Karamanos TK, Debelouchina GT, Su Y, Griffin RG, Ranson NA, Radford SE. Nat Commun 9 4517 (2018)
  13. A generic mechanism of beta2-microglobulin amyloid assembly at neutral pH involving a specific proline switch. Eichner T, Radford SE. J Mol Biol 386 1312-1326 (2009)
  14. Magic angle spinning NMR analysis of beta2-microglobulin amyloid fibrils in two distinct morphologies. Debelouchina GT, Platt GW, Bayro MJ, Radford SE, Griffin RG. J Am Chem Soc 132 10414-10423 (2010)
  15. The controlling roles of Trp60 and Trp95 in beta2-microglobulin function, folding and amyloid aggregation properties. Esposito G, Ricagno S, Corazza A, Rennella E, Gümral D, Mimmi MC, Betto E, Pucillo CE, Fogolari F, Viglino P, Raimondi S, Giorgetti S, Bolognesi B, Merlini G, Stoppini M, Bolognesi M, Bellotti V. J Mol Biol 378 887-897 (2008)
  16. Anastellin, an FN3 fragment with fibronectin polymerization activity, resembles amyloid fibril precursors. Briknarová K, Akerman ME, Hoyt DW, Ruoslahti E, Ely KR. J Mol Biol 332 205-215 (2003)
  17. Globular tetramers of beta(2)-microglobulin assemble into elaborate amyloid fibrils. White HE, Hodgkinson JL, Jahn TR, Cohen-Krausz S, Gosal WS, Müller S, Orlova EV, Radford SE, Saibil HR. J Mol Biol 389 48-57 (2009)
  18. Crystal structure of the novel complex formed between zinc alpha2-glycoprotein (ZAG) and prolactin-inducible protein (PIP) from human seminal plasma. Hassan MI, Bilgrami S, Kumar V, Singh N, Yadav S, Kaur P, Singh TP. J Mol Biol 384 663-672 (2008)
  19. Intermolecular alignment in β2-microglobulin amyloid fibrils. Debelouchina GT, Platt GW, Bayro MJ, Radford SE, Griffin RG. J Am Chem Soc 132 17077-17079 (2010)
  20. Beta edge strands in protein structure prediction and aggregation. Siepen JA, Radford SE, Westhead DR. Protein Sci 12 2348-2359 (2003)
  21. K3 fragment of amyloidogenic beta(2)-microglobulin forms ion channels: implication for dialysis related amyloidosis. Mustata M, Capone R, Jang H, Arce FT, Ramachandran S, Lal R, Nussinov R. J Am Chem Soc 131 14938-14945 (2009)
  22. Role of the N and C-terminal strands of beta 2-microglobulin in amyloid formation at neutral pH. Jones S, Smith DP, Radford SE. J Mol Biol 330 935-941 (2003)
  23. Increase in the conformational flexibility of beta 2-microglobulin upon copper binding: a possible role for copper in dialysis-related amyloidosis. Villanueva J, Hoshino M, Katou H, Kardos J, Hasegawa K, Naiki H, Goto Y. Protein Sci 13 797-809 (2004)
  24. Structural insights into the pre-amyloid tetramer of β-2-microglobulin from covalent labeling and mass spectrometry. Mendoza VL, Barón-Rodríguez MA, Blanco C, Vachet RW. Biochemistry 50 6711-6722 (2011)
  25. A single disulfide bond differentiates aggregation pathways of beta2-microglobulin. Chen Y, Dokholyan NV. J Mol Biol 354 473-482 (2005)
  26. DE loop mutations affect beta2-microglobulin stability and amyloid aggregation. Ricagno S, Colombo M, de Rosa M, Sangiovanni E, Giorgetti S, Raimondi S, Bellotti V, Bolognesi M. Biochem Biophys Res Commun 377 146-150 (2008)
  27. Both the cis-trans equilibrium and isomerization dynamics of a single proline amide modulate β2-microglobulin amyloid assembly. Torbeev VY, Hilvert D. Proc Natl Acad Sci U S A 110 20051-20056 (2013)
  28. Secondary structure in the core of amyloid fibrils formed from human β₂m and its truncated variant ΔN6. Su Y, Sarell CJ, Eddy MT, Debelouchina GT, Andreas LB, Pashley CL, Radford SE, Griffin RG. J Am Chem Soc 136 6313-6325 (2014)
  29. HDX-ESI-MS reveals enhanced conformational dynamics of the amyloidogenic protein beta(2)-microglobulin upon release from the MHC-1. Hodkinson JP, Jahn TR, Radford SE, Ashcroft AE. J Am Soc Mass Spectrom 20 278-286 (2009)
  30. Comparing Hydrogen Deuterium Exchange and Fast Photochemical Oxidation of Proteins: a Structural Characterisation of Wild-Type and ΔN6 β2-Microglobulin. Cornwell O, Radford SE, Ashcroft AE, Ault JR. J Am Soc Mass Spectrom 29 2413-2426 (2018)
  31. Molecular mechanisms of the cytotoxicity of human α-lactalbumin made lethal to tumor cells (HAMLET) and other protein-oleic acid complexes. Nakamura T, Aizawa T, Kariya R, Okada S, Demura M, Kawano K, Makabe K, Kuwajima K. J Biol Chem 288 14408-14416 (2013)
  32. Human beta-2 microglobulin W60V mutant structure: Implications for stability and amyloid aggregation. Ricagno S, Raimondi S, Giorgetti S, Bellotti V, Bolognesi M. Biochem Biophys Res Commun 380 543-547 (2009)
  33. A simulated intermediate state for folding and aggregation provides insights into ΔN6 β2-microglobulin amyloidogenic behavior. Estácio SG, Krobath H, Vila-Viçosa D, Machuqueiro M, Shakhnovich EI, Faísca PF. PLoS Comput Biol 10 e1003606 (2014)
  34. Assembly of the yeast prion Ure2p into protein fibrils. Thermodynamic and kinetic characterization. Fay N, Inoue Y, Bousset L, Taguchi H, Melki R. J Biol Chem 278 30199-30205 (2003)
  35. Oligomeric states along the folding pathways of β2-microglobulin: kinetics, thermodynamics, and structure. Rennella E, Cutuil T, Schanda P, Ayala I, Gabel F, Forge V, Corazza A, Esposito G, Brutscher B. J Mol Biol 425 2722-2736 (2013)
  36. The role of conformational flexibility in β2-microglobulin amyloid fibril formation at neutral pH. Hodkinson JP, Radford SE, Ashcroft AE. Rapid Commun Mass Spectrom 26 1783-1792 (2012)
  37. X-ray Crystallographic Structures of Oligomers of Peptides Derived from β2-Microglobulin. Spencer RK, Kreutzer AG, Salveson PJ, Li H, Nowick JS. J Am Chem Soc 137 6304-6311 (2015)
  38. beta2-microglobulin H31Y variant 3D structure highlights the protein natural propensity towards intermolecular aggregation. Rosano C, Zuccotti S, Mangione P, Giorgetti S, Bellotti V, Pettirossi F, Corazza A, Viglino P, Esposito G, Bolognesi M. J Mol Biol 335 1051-1064 (2004)
  39. Beta2-microglobulin amyloidosis: insights from conservation analysis and fibril modelling by protein docking techniques. Benyamini H, Gunasekaran K, Wolfson H, Nussinov R. J Mol Biol 330 159-174 (2003)
  40. 4-Fluoroprolines: Conformational Analysis and Effects on the Stability and Folding of Peptides and Proteins. Newberry RW, Raines RT. Top Heterocycl Chem 48 1-25 (2017)
  41. A Population Shift between Sparsely Populated Folding Intermediates Determines Amyloidogenicity. Karamanos TK, Pashley CL, Kalverda AP, Thompson GS, Mayzel M, Orekhov VY, Radford SE. J Am Chem Soc 138 6271-6280 (2016)
  42. Can small hydrophobic gold nanoparticles inhibit β₂-microglobulin fibrillation? Brancolini G, Toroz D, Corni S. Nanoscale 6 7903-7911 (2014)
  43. Dynamics of free versus complexed β2-microglobulin and the evolution of interfaces in MHC class I molecules. Hee CS, Beerbaum M, Loll B, Ballaschk M, Schmieder P, Uchanska-Ziegler B, Ziegler A. Immunogenetics 65 157-172 (2013)
  44. Structure, stability, and aggregation of β-2 microglobulin mutants: insights from a Fourier transform infrared study in solution and in the crystalline state. Ami D, Ricagno S, Bolognesi M, Bellotti V, Doglia SM, Natalello A. Biophys J 102 1676-1684 (2012)
  45. A recurrent D-strand association interface is observed in β-2 microglobulin oligomers. Colombo M, de Rosa M, Bellotti V, Ricagno S, Bolognesi M. FEBS J 279 1131-1143 (2012)
  46. A Stable Mutant Predisposes Antibody Domains to Amyloid Formation through Specific Non-Native Interactions. Nokwe CN, Hora M, Zacharias M, Yagi H, Peschek J, Reif B, Goto Y, Buchner J. J Mol Biol 428 1315-1332 (2016)
  47. Native-state heterogeneity of β(2)-microglobulin as revealed by kinetic folding and real-time NMR experiments. Mukaiyama A, Nakamura T, Makabe K, Maki K, Goto Y, Kuwajima K. J Mol Biol 425 257-272 (2013)
  48. The Antibody Light-Chain Linker Is Important for Domain Stability and Amyloid Formation. Nokwe CN, Hora M, Zacharias M, Yagi H, John C, Reif B, Goto Y, Buchner J. J Mol Biol 427 3572-3586 (2015)
  49. The molten globule of β(2)-microglobulin accumulated at pH 4 and its role in protein folding. Mukaiyama A, Nakamura T, Makabe K, Maki K, Goto Y, Kuwajima K. J Mol Biol 425 273-291 (2013)
  50. N-terminal truncation of an isolated human IgG1 CH2 domain significantly increases its stability and aggregation resistance. Gong R, Wang Y, Ying T, Feng Y, Streaker E, Prabakaran P, Dimitrov DS. Mol Pharm 10 2642-2652 (2013)
  51. D-strand perturbation and amyloid propensity in beta-2 microglobulin. Azinas S, Colombo M, Barbiroli A, Santambrogio C, Giorgetti S, Raimondi S, Bonomi F, Grandori R, Bellotti V, Ricagno S, Bolognesi M. FEBS J 278 2349-2358 (2011)
  52. Energetics and mechanism of the normal-to-amyloidogenic isomerization of β2-microglobulin: on-the-fly string method calculations. Stober ST, Abrams CF. J Phys Chem B 116 9371-9375 (2012)
  53. Molecular cloning and characterization of sea bass (Dicentrarchus labrax, L.) MHC class I heavy chain and β2-microglobulin. Pinto RD, Randelli E, Buonocore F, Pereira PJ, dos Santos NM. Dev Comp Immunol 39 234-254 (2013)
  54. Separation and characterisation of beta2-microglobulin folding conformers by ion-exchange liquid chromatography and ion-exchange liquid chromatography-mass spectrometry. Bertoletti L, Regazzoni L, Aldini G, Colombo R, Abballe F, Caccialanza G, De Lorenzi E. Anal Chim Acta 771 108-114 (2013)
  55. Single-chain antibody fragment-based adsorbent for the extracorporeal removal of beta2-microglobulin. Grovender EA, Kellogg B, Singh J, Blom D, Ploegh H, Wittrup KD, Langer RS, Ameer GA. Kidney Int 65 310-322 (2004)
  56. Computational design of cyclic peptides for the customized oriented immobilization of globular proteins. Soler MA, Rodriguez A, Russo A, Adedeji AF, Dongmo Foumthuim CJ, Cantarutti C, Ambrosetti E, Casalis L, Corazza A, Scoles G, Marasco D, Laio A, Fortuna S. Phys Chem Chem Phys 19 2740-2748 (2017)
  57. Oxidation of protein disulfide bonds by singlet oxygen gives rise to glutathionylated proteins. Jiang S, Carroll L, Rasmussen LM, Davies MJ. Redox Biol 38 101822 (2021)
  58. Structural and Thermodynamic Characteristics of Amyloidogenic Intermediates of β-2-Microglobulin. Chong SH, Hong J, Lim S, Cho S, Lee J, Ham S. Sci Rep 5 13631 (2015)
  59. A tale of two tails: The importance of unstructured termini in the aggregation pathway of β2-microglobulin. Loureiro RJS, Vila-Viçosa D, Machuqueiro M, Shakhnovich EI, Faísca PFN. Proteins 85 2045-2057 (2017)
  60. Collagen I Weakly Interacts with the β-Sheets of β2-Microglobulin and Enhances Conformational Exchange To Induce Amyloid Formation. Hoop CL, Zhu J, Bhattacharya S, Tobita CA, Radford SE, Baum J. J Am Chem Soc 142 1321-1331 (2020)
  61. Molecular characterization and expression analysis of beta2-microglobulin in large yellow croaker Pseudosciaena crocea. Yu S, Chen X, Ao J. Mol Biol Rep 36 1715-1723 (2009)
  62. A new HLA-A1 mutation: a novel, null variant allele. Henry JB, Hubbell CA, Davis MC, Fernandez-Vina MA, Yunis EJ, Shrimpton AE. Am J Clin Pathol 122 185-192 (2004)
  63. A Novel MHC-I Surface Targeted for Binding by the MCMV m06 Immunoevasin Revealed by Solution NMR. Sgourakis NG, May NA, Boyd LF, Ying J, Bax A, Margulies DH. J Biol Chem 290 28857-28868 (2015)
  64. Beta2-microglobulin causes abnormal phosphatidylserine exposure in human red blood cells. Pavone B, Bucci S, Sirolli V, Merlini G, Del Boccio P, Di Rienzo M, Felaco P, Amoroso L, Sacchetta P, Di Ilio C, Federici G, Urbani A, Bonomini M. Mol Biosyst 7 651-658 (2011)
  65. Morphology and mechanical properties of multi-stranded amyloid fibrils probed by atomistic and coarse-grained simulations. Yoon G, Lee M, Kim K, Kim JI, Chang HJ, Baek I, Eom K, Na S. Phys Biol 12 066021 (2015)
  66. Screening of fibrillogenesis inhibitors of β2-microglobulin: integrated strategies by mass spectrometry capillary electrophoresis and in silico simulations. Regazzoni L, Colombo R, Bertoletti L, Vistoli G, Aldini G, Serra M, Carini M, Facino RM, Giorgetti S, Stoppini M, Caccialanza G, De Lorenzi E. Anal Chim Acta 685 153-161 (2011)
  67. Thermal denaturation of a blue-copper laccase: formation of a compact denatured state with residual structure linked to pH changes in the region of histidine protonation. Toledo-Núñez C, López-Cruz JI, Hernández-Arana A. Biophys Chem 167 36-42 (2012)
  68. Comparison of the aggregation of homologous β2-microglobulin variants reveals protein solubility as a key determinant of amyloid formation. Pashley CL, Hewitt EW, Radford SE. J Mol Biol 428 631-643 (2016)
  69. Assessment of the stability of an immunoadsorbent for the extracorporeal removal of Beta-2-microglobulin from blood. Daniels CM, Woolverton EM, Sprague SM, Ameer GA. Blood Purif 23 287-297 (2005)
  70. Dynamics and dimension of an amyloidogenic disordered state of human β(2)-microglobulin. Narang D, Sharma PK, Mukhopadhyay S. Eur Biophys J 42 767-776 (2013)
  71. Intermediate conformation between native β-sheet and non-native α-helix is a precursor of trifluoroethanol-induced aggregation of human carbonic anhydrase-II. Gupta P, Deep S. Biochem Biophys Res Commun 449 126-131 (2014)
  72. Loosening of Side-Chain Packing Associated with Perturbations in Peripheral Dynamics Induced by the D76N Mutation of β2-Microglobulin Revealed by Pressure-NMR and Molecular Dynamic Simulations. Sakurai K, Tomiyama R, Shiraki T, Yonezawa Y. Biomolecules 9 E491 (2019)
  73. Removal of intact β2-microglobulin at neutral ph by using seed-conjugated polymer beads prepared with β2-microglobulin-derived peptide (58-67). Kang S, Yang JE, Kim J, Ahn M, Koo HJ, Kim M, Lee YS, Paik SR. Biotechnol Prog 27 521-529 (2011)
  74. Single-molecule mechanical unfolding of amyloidogenic beta2-microglobulin: the force-spectroscopy approach. Sorce B, Sabella S, Sandal M, Samorì B, Santino A, Cingolani R, Rinaldi R, Pompa PP. Chemphyschem 10 1471-1477 (2009)
  75. Structural modeling and biochemical studies reveal insights into the molecular basis of the recognition of beta-2-microglobulin by antibody BBM.1. Du J, Yang H, Peng B, Ding J. J Mol Recognit 22 465-473 (2009)
  76. Letter Effect of xuezhikang on alpha1- and beta2-microglobulin in patients with essential hypertension. Ye P, Wu C, Sheng L, Li H. J Hum Hypertens 23 72-74 (2009)
  77. Predicting stable binding modes from simulated dimers of the D76N mutant of β 2-microglobulin. Oliveira NFB, Rodrigues FEP, Vitorino JNM, Loureiro RJS, Faísca PFN, Machuqueiro M. Comput Struct Biotechnol J 19 5160-5169 (2021)
  78. Design of Beta-2 Microglobulin Adsorbent Protein Nanoparticles. Miller JE, Castells-Graells R, Arbing MA, Munoz A, Jiang YX, Espinoza CT, Nguyen B, Moroz P, Yeates TO. Biomolecules 13 1122 (2023)
  79. Disease-relevant β2-microglobulin variants share a common amyloid fold. Wilkinson M, Gallardo RU, Martinez RM, Guthertz N, So M, Aubrey LD, Radford SE, Ranson NA. Nat Commun 14 1190 (2023)
  80. Interfacial Dynamics and Growth Modes of β2-Microglobulin Dimers. Oliveira NFB, Rodrigues FEP, Vitorino JNM, Faísca PFN, Machuqueiro M. J Chem Inf Model 63 4447-4457 (2023)