1l1l Citations

The crystal structure of class II ribonucleotide reductase reveals how an allosterically regulated monomer mimics a dimer.

Nat. Struct. Biol. 9 293-300 (2002)
Cited: 76 times
EuropePMC logo PMID: 11875520


Ribonucleotide reductases (RNRs) catalyze the conversion of ribonucleotides to deoxyribonucleotides, an essential step in DNA biosynthesis and repair. Here we present the crystal structure of class II (coenzyme B12-dependent) ribonucleoside triphosphate reductase (RTPR) from Lactobacillus leichmannii in the apo enzyme form and in complex with the B12 analog adeninylpentylcobalamin at 1.75 and 2.0 A resolution, respectively. This monomeric, allosterically regulated class II RNR retains all the key structural features associated with the catalytic and regulatory machinery of oligomeric RNRs. Surprisingly, the dimer interface responsible for effector binding in class I RNR is preserved through a single 130-residue insertion in the class II structure. Thus, L. leichmannii RNR is a paradigm for the simplest structural entity capable of ribonucleotide reduction, a reaction linking the RNA and DNA worlds.

Reviews citing this publication (21)

  1. The organohalide-respiring bacterium Sulfurospirillum multivorans: a natural source for unusual cobamides. Schubert T. World J. Microbiol. Biotechnol. 33 93 (2017)
  2. The origin and evolution of ribonucleotide reduction. Lundin D, Berggren G, Logan DT, Sjöberg BM. Life (Basel) 5 604-636 (2015)
  3. Molecular architectures and functions of radical enzymes and their (re)activating proteins. Shibata N, Toraya T. J. Biochem. 158 271-292 (2015)
  4. Phylogenetic analysis of vitamin B12-related metabolism in Mycobacterium tuberculosis. Young DB, Comas I, de Carvalho LP. Front Mol Biosci 2 6 (2015)
  5. Ribonucleotide reductases: essential enzymes for bacterial life. Torrents E. Front Cell Infect Microbiol 4 52 (2014)
  6. Relating localized protein motions to the reaction coordinate in coenzyme B₁₂-dependent enzymes. Jones AR, Levy C, Hay S, Scrutton NS. FEBS J. 280 2997-3008 (2013)
  7. Controlling the delicate balance of tetrapyrrole biosynthesis. Yin L, Bauer CE. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 368 20120262 (2013)
  8. DNA building blocks: keeping control of manufacture. Hofer A, Crona M, Logan DT, Sjöberg BM. Crit. Rev. Biochem. Mol. Biol. 47 50-63 (2012)
  9. Role of vitamin B12 on methylmalonyl-CoA mutase activity. Takahashi-Iñiguez T, García-Hernandez E, Arreguín-Espinosa R, Flores ME. J Zhejiang Univ Sci B 13 423-437 (2012)
  10. The prototypic class Ia ribonucleotide reductase from Escherichia coli: still surprising after all these years. Brignole EJ, Ando N, Zimanyi CM, Drennan CL. Biochem. Soc. Trans. 40 523-530 (2012)
  11. Radical use of Rossmann and TIM barrel architectures for controlling coenzyme B12 chemistry. Dowling DP, Croft AK, Drennan CL. Annu Rev Biophys 41 403-427 (2012)
  12. Adenosylcobalamin enzymes: theory and experiment begin to converge. Marsh EN, Meléndez GD. Biochim. Biophys. Acta 1824 1154-1164 (2012)
  13. Metal use in ribonucleotide reductase R2, di-iron, di-manganese and heterodinuclear--an intricate bioinorganic workaround to use different metals for the same reaction. Högbom M. Metallomics 3 110-120 (2011)
  14. Vitamin B12-derivatives-enzyme cofactors and ligands of proteins and nucleic acids. Gruber K, Puffer B, Kräutler B. Chem Soc Rev 40 4346-4363 (2011)
  15. Catalysis of methyl group transfers involving tetrahydrofolate and B(12). Ragsdale SW. Vitam. Horm. 79 293-324 (2008)
  16. The enzymatic activation of coenzyme B12. Brown KL. Dalton Trans 1123-1133 (2006)
  17. Ribonucleotide reductases. Nordlund P, Reichard P. Annu. Rev. Biochem. 75 681-706 (2006)
  18. Radical enzymes in anaerobes. Buckel W, Golding BT. Annu. Rev. Microbiol. 60 27-49 (2006)
  19. Biosynthesis of the 7-deazaguanosine hypermodified nucleosides of transfer RNA. Iwata-Reuyl D. Bioorg. Chem. 31 24-43 (2003)
  20. Diversity of protein-protein interactions. Nooren IM, Thornton JM. EMBO J. 22 3486-3492 (2003)
  21. The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes. Banerjee R, Ragsdale SW. Annu. Rev. Biochem. 72 209-247 (2003)

Articles citing this publication (55)

  1. A predictive model for transcriptional control of physiology in a free living cell. Bonneau R, Facciotti MT, Reiss DJ, Schmid AK, Pan M, Kaur A, Thorsson V, Shannon P, Johnson MH, Bare JC, Longabaugh W, Vuthoori M, Whitehead K, Madar A, Suzuki L, Mori T, Chang DE, Diruggiero J, Johnson CH, Hood L, Baliga NS. Cell 131 1354-1365 (2007)
  2. The structure of Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter. Borths EL, Locher KP, Lee AT, Rees DC. Proc. Natl. Acad. Sci. U.S.A. 99 16642-16647 (2002)
  3. Directed evolution of protein switches and their application to the creation of ligand-binding proteins. Guntas G, Mansell TJ, Kim JR, Ostermeier M. Proc. Natl. Acad. Sci. U.S.A. 102 11224-11229 (2005)
  4. Phosphatidylinositol-5-phosphate activation and conserved substrate specificity of the myotubularin phosphatidylinositol 3-phosphatases. Schaletzky J, Dove SK, Short B, Lorenzo O, Clague MJ, Barr FA. Curr. Biol. 13 504-509 (2003)
  5. Structural basis for allosteric regulation of human ribonucleotide reductase by nucleotide-induced oligomerization. Fairman JW, Wijerathna SR, Ahmad MF, Xu H, Nakano R, Jha S, Prendergast J, Welin RM, Flodin S, Roos A, Nordlund P, Li Z, Walz T, Dealwis CG. Nat. Struct. Mol. Biol. 18 316-322 (2011)
  6. Creation of an allosteric enzyme by domain insertion. Guntas G, Ostermeier M. J. Mol. Biol. 336 263-273 (2004)
  7. The role played by viruses in the evolution of their hosts: a view based on informational protein phylogenies. Filée J, Forterre P, Laurent J. Res. Microbiol. 154 237-243 (2003)
  8. The crystal structure of coenzyme B12-dependent glycerol dehydratase in complex with cobalamin and propane-1,2-diol. Yamanishi M, Yunoki M, Tobimatsu T, Sato H, Matsui J, Dokiya A, Iuchi Y, Oe K, Suto K, Shibata N, Morimoto Y, Yasuoka N, Toraya T. Eur. J. Biochem. 269 4484-4494 (2002)
  9. Structural mechanism of allosteric substrate specificity regulation in a ribonucleotide reductase. Larsson KM, Jordan A, Eliasson R, Reichard P, Logan DT, Nordlund P. Nat. Struct. Mol. Biol. 11 1142-1149 (2004)
  10. Structures of eukaryotic ribonucleotide reductase I provide insights into dNTP regulation. Xu H, Faber C, Uchiki T, Fairman JW, Racca J, Dealwis C. Proc. Natl. Acad. Sci. U.S.A. 103 4022-4027 (2006)
  11. The Escherichia coli outer membrane cobalamin transporter BtuB: structural analysis of calcium and substrate binding, and identification of orthologous transporters by sequence/structure conservation. Chimento DP, Kadner RJ, Wiener MC. J. Mol. Biol. 332 999-1014 (2003)
  12. Crystal structures of ethanolamine ammonia-lyase complexed with coenzyme B12 analogs and substrates. Shibata N, Tamagaki H, Hieda N, Akita K, Komori H, Shomura Y, Terawaki S, Mori K, Yasuoka N, Higuchi Y, Toraya T. J. Biol. Chem. 285 26484-26493 (2010)
  13. Alternative oxygen-dependent and oxygen-independent ribonucleotide reductases in Streptomyces: cross-regulation and physiological role in response to oxygen limitation. Borovok I, Gorovitz B, Yanku M, Schreiber R, Gust B, Chater K, Aharonowitz Y, Cohen G. Mol. Microbiol. 54 1022-1035 (2004)
  14. Ribonucleotide reduction - horizontal transfer of a required function spans all three domains. Lundin D, Gribaldo S, Torrents E, Sjöberg BM, Poole AM. BMC Evol. Biol. 10 383 (2010)
  15. The first holocomplex structure of ribonucleotide reductase gives new insight into its mechanism of action. Uppsten M, Färnegårdh M, Domkin V, Uhlin U. J. Mol. Biol. 359 365-377 (2006)
  16. Structures of eukaryotic ribonucleotide reductase I define gemcitabine diphosphate binding and subunit assembly. Xu H, Faber C, Uchiki T, Racca J, Dealwis C. Proc. Natl. Acad. Sci. U.S.A. 103 4028-4033 (2006)
  17. Structure of the monomeric isocitrate dehydrogenase: evidence of a protein monomerization by a domain duplication. Yasutake Y, Watanabe S, Yao M, Takada Y, Fukunaga N, Tanaka I. Structure 10 1637-1648 (2002)
  18. Structure of the large subunit of class Ib ribonucleotide reductase from Salmonella typhimurium and its complexes with allosteric effectors. Uppsten M, Färnegårdh M, Jordan A, Eliasson R, Eklund H, Uhlin U. J. Mol. Biol. 330 87-97 (2003)
  19. Turning on ribonucleotide reductase by light-initiated amino acid radical generation. Chang MC, Yee CS, Stubbe J, Nocera DG. Proc. Natl. Acad. Sci. U.S.A. 101 6882-6887 (2004)
  20. NrdH-redoxin protein mediates high enzyme activity in manganese-reconstituted ribonucleotide reductase from Bacillus anthracis. Crona M, Torrents E, Røhr AK, Hofer A, Furrer E, Tomter AB, Andersson KK, Sahlin M, Sjöberg BM. J. Biol. Chem. 286 33053-33060 (2011)
  21. Structure of coenzyme F420H2 oxidase (FprA), a di-iron flavoprotein from methanogenic Archaea catalyzing the reduction of O2 to H2O. Seedorf H, Hagemeier CH, Shima S, Thauer RK, Warkentin E, Ermler U. FEBS J. 274 1588-1599 (2007)
  22. Function of the diiron cluster of Escherichia coli class Ia ribonucleotide reductase in proton-coupled electron transfer. Wörsdörfer B, Conner DA, Yokoyama K, Livada J, Seyedsayamdost M, Jiang W, Silakov A, Stubbe J, Bollinger JM, Krebs C. J. Am. Chem. Soc. 135 8585-8593 (2013)
  23. Cobalamin- and corrinoid-dependent enzymes. Matthews RG. Met Ions Life Sci 6 53-114 (2009)
  24. The Zn center of the anaerobic ribonucleotide reductase from E. coli. Luttringer F, Mulliez E, Dublet B, Lemaire D, Fontecave M. J. Biol. Inorg. Chem. 14 923-933 (2009)
  25. Conformational control of cofactors in nature - the influence of protein-induced macrocycle distortion on the biological function of tetrapyrroles. Senge MO, MacGowan SA, O'Brien JM. Chem. Commun. (Camb.) 51 17031-17063 (2015)
  26. The genome, proteome and phylogenetic analysis of Sinorhizobium meliloti phage ΦM12, the founder of a new group of T4-superfamily phages. Brewer TE, Stroupe ME, Jones KM. Virology 450-451 84-97 (2014)
  27. The class III ribonucleotide reductase from Neisseria bacilliformis can utilize thioredoxin as a reductant. Wei Y, Funk MA, Rosado LA, Baek J, Drennan CL, Stubbe J. Proc. Natl. Acad. Sci. U.S.A. 111 E3756-65 (2014)
  28. Isolation of the gene for the B12-dependent ribonucleotide reductase from Anabaena sp. strain PCC 7120 and expression in Escherichia coli. Gleason FK, Olszewski NE. J. Bacteriol. 184 6544-6550 (2002)
  29. Homocoenzyme B12 and bishomocoenzyme B12: covalent structural mimics for homolyzed, enzyme-bound coenzyme B12. Gschösser S, Hannak RB, Konrat R, Gruber K, Mikl C, Kratky C, Kräutler B. Chemistry 11 81-93 (2004)
  30. Biochemistry. A never-ending story. Sjöberg BM. Science 329 1475-1476 (2010)
  31. Mechanism-based inactivation of coenzyme B12-dependent diol dehydratase by 3-unsaturated 1,2-diols and thioglycerol. Toraya T, Tamura N, Watanabe T, Yamanishi M, Hieda N, Mori K. J. Biochem. 144 437-446 (2008)
  32. Rare group I intron with insertion sequence element in a bacterial ribonucleotide reductase gene. Meng Q, Zhang Y, Liu XQ. J. Bacteriol. 189 2150-2154 (2007)
  33. The enantioselectivities of the active and allosteric sites of mammalian ribonucleotide reductase. He J, Roy B, Périgaud C, Kashlan OB, Cooperman BS. FEBS J. 272 1236-1242 (2005)
  34. A rare combination of ribonucleotide reductases in the social amoeba Dictyostelium discoideum. Crona M, Avesson L, Sahlin M, Lundin D, Hinas A, Klose R, Söderbom F, Sjöberg BM. J. Biol. Chem. 288 8198-8208 (2013)
  35. Homoadenosylcobalamins as probes for exploring the active sites of coenzyme B12-dependent diol dehydratase and ethanolamine ammonia-lyase. Fukuoka M, Nakanishi Y, Hannak RB, Kräutler B, Toraya T. FEBS J. 272 4787-4796 (2005)
  36. The case for an early biological origin of DNA. Poole AM, Horinouchi N, Catchpole RJ, Si D, Hibi M, Tanaka K, Ogawa J. J. Mol. Evol. 79 204-212 (2014)
  37. Crystallographic studies on B12 binding proteins in eukaryotes and prokaryotes. Sukumar N. Biochimie 95 976-988 (2013)
  38. Targeting the Large Subunit of Human Ribonucleotide Reductase for Cancer Chemotherapy. Wijerathna SR, Ahmad MF, Xu H, Fairman JW, Zhang A, Kaushal PS, Wan Q, Kiser J, Dealwis CG. Pharmaceuticals (Basel) 4 1328-1354 (2011)
  39. Coordination chemistry and biological activity of 5'-OH modified quinoline-B12 derivatives. Zelenka K, Brandl H, Spingler B, Zelder F. Dalton Trans 40 9665-9667 (2011)
  40. Cobalt substitution of mouse R2 ribonucleotide reductase as a model for the reactive diferrous state: spectroscopic and structural evidence for a ferromagnetically coupled dinuclear cobalt cluster. Strand KR, Karlsen S, Andersson KK. J. Biol. Chem. 277 34229-34238 (2002)
  41. Comment Closing the circle on ribonucleotide reductases. Logan DT. Nat. Struct. Mol. Biol. 18 251-253 (2011)
  42. Engineering allosteric regulation into the hinge region of a circularly permuted TEM-1 beta-lactamase. Mathieu V, Fastrez J, Soumillion P. Protein Eng. Des. Sel. 23 699-709 (2010)
  43. Solution structure, enzymatic, and non-enzymatic reactivity of 3-isoadenosylcobalamin, a structural isomer of coenzyme B12 with surprising coenzymic activity. Brown KL, Zou X, Chen G, Xia Z, Marques HM. J. Inorg. Biochem. 98 287-300 (2004)
  44. Inactivation of Lactobacillus leichmannii ribonucleotide reductase by 2',2'-difluoro-2'-deoxycytidine 5'-triphosphate: adenosylcobalamin destruction and formation of a nucleotide-based radical. Lohman GJ, Gerfen GJ, Stubbe J. Biochemistry 49 1396-1403 (2010)
  45. Two distinct pools of B12 analogs reveal community interdependencies in the ocean. Heal KR, Qin W, Ribalet F, Bertagnolli AD, Coyote-Maestas W, Hmelo LR, Moffett JW, Devol AH, Armbrust EV, Stahl DA, Ingalls AE. Proc. Natl. Acad. Sci. U.S.A. 114 364-369 (2017)
  46. Biochemical Characterization of the Split Class II Ribonucleotide Reductase from Pseudomonas aeruginosa. Crona M, Hofer A, Astorga-Wells J, Sjöberg BM, Tholander F. PLoS ONE 10 e0134293 (2015)
  47. The Crystal Structure of Thermotoga maritima Class III Ribonucleotide Reductase Lacks a Radical Cysteine Pre-Positioned in the Active Site. Aurelius O, Johansson R, Bågenholm V, Lundin D, Tholander F, Balhuizen A, Beck T, Sahlin M, Sjöberg BM, Mulliez E, Logan DT. PLoS ONE 10 e0128199 (2015)
  48. B12-retro-riboswitches: guanosyl-induced constitutional switching of B12 coenzymes. Gschösser S, Kräutler B. Chemistry 14 3605-3619 (2008)
  49. Mechanistic insight into the substrate specificity of 1,2-β-oligoglucan phosphorylase from Lachnoclostridium phytofermentans. Nakajima M, Tanaka N, Furukawa N, Nihira T, Kodutsumi Y, Takahashi Y, Sugimoto N, Miyanaga A, Fushinobu S, Taguchi H, Nakai H. Sci Rep 7 42671 (2017)
  50. MtrA of the sodium ion pumping methyltransferase binds cobalamin in a unique mode. Wagner T, Ermler U, Shima S. Sci Rep 6 28226 (2016)
  51. A DinB Ortholog Enables Mycobacterial Growth under dTTP-Limiting Conditions Induced by the Expression of a Mycobacteriophage-Derived Ribonucleotide Reductase Gene. Ghosh S, Samaddar S, Kirtania P, Das Gupta SK. J. Bacteriol. 198 352-362 (2016)
  52. Non-enzymatic ribonucleotide reduction in the prebiotic context. Dragičević I, Barić D, Kovačević B, Golding BT, Smith DM. Chemistry 21 6132-6143 (2015)
  53. NMR observations of 13C-enriched coenzyme B12 bound to the ribonucleotide reductase from Lactobacillus leichmannii. Brown KL, Li J, Zou X. Inorg Chem 45 9172-9174 (2006)
  54. A compound QM/MM procedure: comparative performance on a pyruvate formate-lyase model system. Condic-Jurkic K, Zipse H, Smith DM. J Comput Chem 31 1024-1035 (2010)
  55. Engineering an allosteric binding site for aminoglycosides into TEM1-β-Lactamase. Volkov AN, Barrios H, Mathonet P, Evrard C, Ubbink M, Declercq JP, Soumillion P, Fastrez J. Chembiochem 12 904-913 (2011)