1kgs Citations

Evidence of intradomain and interdomain flexibility in an OmpR/PhoB homolog from Thermotoga maritima.

Structure 10 153-64 (2002)
Cited: 64 times
EuropePMC logo PMID: 11839301

Abstract

Two-component systems, the predominant signal transduction strategy used by prokaryotes, involve phosphorelay from a sensor histidine kinase (HK) to an intracellular response regulator protein (RR) that typically acts as a transcription regulator. RRs are modular proteins, usually composed of a conserved regulatory domain, which functions as a phosphorylation-activated switch, and an attached DNA binding effector domain. The crystal structure of a Thermotoga maritima transcription factor, DrrD, has been determined at 1.5 A resolution, providing the first structural information for a full-length member of the OmpR/PhoB subfamily of RRs. A small interdomain interface occurs between alpha 5 of the regulatory domain and an antiparallel sheet of the effector domain. The lack of an extensive interface in the unphosphorylated protein distinguishes DrrD from other structurally characterized multidomain RRs and suggests a different mode of interdomain regulation.

Articles - 1kgs mentioned but not cited (7)

  1. Crystal structure of the response regulator 02 receiver domain, the essential YycF two-component system of Streptococcus pneumoniae in both complexed and native states. Bent CJ, Isaacs NW, Mitchell TJ, Riboldi-Tunnicliffe A. J. Bacteriol. 186 2872-2879 (2004)
  2. Hysteretic and graded responses in bacterial two-component signal transduction. Igoshin OA, Alves R, Savageau MA. Mol. Microbiol. 68 1196-1215 (2008)
  3. The JCSG MR pipeline: optimized alignments, multiple models and parallel searches. Schwarzenbacher R, Godzik A, Jaroszewski L. Acta Crystallogr. D Biol. Crystallogr. 64 133-140 (2008)
  4. A novel member of the YchN-like fold: solution structure of the hypothetical protein Tm0979 from Thermotoga maritima. Gaspar JA, Liu C, Vassall KA, Meglei G, Stephen R, Stathopulos PB, Pineda-Lucena A, Wu B, Yee A, Arrowsmith CH, Meiering EM. Protein Sci. 14 216-223 (2005)
  5. A structural model of the E. coli PhoB dimer in the transcription initiation complex. Tung CS, McMahon BH. BMC Struct. Biol. 12 3 (2012)
  6. Structure of the response regulator VicR DNA-binding domain. Trinh CH, Liu Y, Phillips SE, Phillips-Jones MK. Acta Crystallogr. D Biol. Crystallogr. 63 266-269 (2007)
  7. Targeting multiple response regulators of Mycobacterium tuberculosis augments the host immune response to infection. Banerjee SK, Kumar M, Alokam R, Sharma AK, Chatterjee A, Kumar R, Sahu SK, Jana K, Singh R, Yogeeswari P, Sriram D, Basu J, Kundu M. Sci Rep 6 25851 (2016)


Reviews citing this publication (7)

  1. Prokaryotic 2-component systems and the OmpR/PhoB superfamily. Nguyen MP, Yoon JM, Cho MH, Lee SW. Can. J. Microbiol. 61 799-810 (2015)
  2. Regulation of transcription by eukaryotic-like serine-threonine kinases and phosphatases in Gram-positive bacterial pathogens. Wright DP, Ulijasz AT. Virulence 5 863-885 (2014)
  3. Receptor domains of two-component signal transduction systems. Perry J, Koteva K, Wright G. Mol Biosyst 7 1388-1398 (2011)
  4. Molecular strategies for phosphorylation-mediated regulation of response regulator activity. Gao R, Stock AM. Curr. Opin. Microbiol. 13 160-167 (2010)
  5. Diversity of structure and function of response regulator output domains. Galperin MY. Curr. Opin. Microbiol. 13 150-159 (2010)
  6. Receiver domain structure and function in response regulator proteins. Bourret RB. Curr. Opin. Microbiol. 13 142-149 (2010)
  7. Bacterial response regulators: versatile regulatory strategies from common domains. Gao R, Mack TR, Stock AM. Trends Biochem. Sci. 32 225-234 (2007)

Articles citing this publication (50)

  1. Biological insights from structures of two-component proteins. Gao R, Stock AM. Annu. Rev. Microbiol. 63 133-154 (2009)
  2. Structural analysis and solution studies of the activated regulatory domain of the response regulator ArcA: a symmetric dimer mediated by the alpha4-beta5-alpha5 face. Toro-Roman A, Mack TR, Stock AM. J. Mol. Biol. 349 11-26 (2005)
  3. Mechanism of activation for transcription factor PhoB suggested by different modes of dimerization in the inactive and active states. Bachhawat P, Swapna GV, Montelione GT, Stock AM. Structure 13 1353-1363 (2005)
  4. Universally applicable methods for monitoring response regulator aspartate phosphorylation both in vitro and in vivo using Phos-tag-based reagents. Barbieri CM, Stock AM. Anal. Biochem. 376 73-82 (2008)
  5. Structural analysis of the domain interface in DrrB, a response regulator of the OmpR/PhoB subfamily. Robinson VL, Wu T, Stock AM. J. Bacteriol. 185 4186-4194 (2003)
  6. A common dimerization interface in bacterial response regulators KdpE and TorR. Toro-Roman A, Wu T, Stock AM. Protein Sci. 14 3077-3088 (2005)
  7. Domain orientation in the inactive response regulator Mycobacterium tuberculosis MtrA provides a barrier to activation. Friedland N, Mack TR, Yu M, Hung LW, Terwilliger TC, Waldo GS, Stock AM. Biochemistry 46 6733-6743 (2007)
  8. Kinetic buffering of cross talk between bacterial two-component sensors. Groban ES, Clarke EJ, Salis HM, Miller SM, Voigt CA. J. Mol. Biol. 390 380-393 (2009)
  9. Crystal structures of the receiver domain of the response regulator PhoP from Escherichia coli in the absence and presence of the phosphoryl analog beryllofluoride. Bachhawat P, Stock AM. J. Bacteriol. 189 5987-5995 (2007)
  10. The crystal structure of the phosphorylation domain in PhoP reveals a functional tandem association mediated by an asymmetric interface. Birck C, Chen Y, Hulett FM, Samama JP. J. Bacteriol. 185 254-261 (2003)
  11. Structure of the DNA-binding domain of the response regulator PhoP from Mycobacterium tuberculosis. Wang S, Engohang-Ndong J, Smith I. Biochemistry 46 14751-14761 (2007)
  12. Regulation of response regulator autophosphorylation through interdomain contacts. Barbieri CM, Mack TR, Robinson VL, Miller MT, Stock AM. J. Biol. Chem. 285 32325-32335 (2010)
  13. Structure of the response regulator PhoP from Mycobacterium tuberculosis reveals a dimer through the receiver domain. Menon S, Wang S. Biochemistry 50 5948-5957 (2011)
  14. Crystal structures of the response regulator DosR from Mycobacterium tuberculosis suggest a helix rearrangement mechanism for phosphorylation activation. Wisedchaisri G, Wu M, Sherman DR, Hol WG. J. Mol. Biol. 378 227-242 (2008)
  15. An active-like structure in the unphosphorylated StyR response regulator suggests a phosphorylation- dependent allosteric activation mechanism. Milani M, Leoni L, Rampioni G, Zennaro E, Ascenzi P, Bolognesi M. Structure 13 1289-1297 (2005)
  16. Distinct single amino acid replacements in the control of virulence regulator protein differentially impact streptococcal pathogenesis. Horstmann N, Sahasrabhojane P, Suber B, Kumaraswami M, Olsen RJ, Flores A, Musser JM, Brennan RG, Shelburne SA. PLoS Pathog. 7 e1002311 (2011)
  17. A search for amino acid substitutions that universally activate response regulators. Smith JG, Latiolais JA, Guanga GP, Pennington JD, Silversmith RE, Bourret RB. Mol. Microbiol. 51 887-901 (2004)
  18. PhoP-PhoP interaction at adjacent PhoP binding sites is influenced by protein phosphorylation. Sinha A, Gupta S, Bhutani S, Pathak A, Sarkar D. J. Bacteriol. 190 1317-1328 (2008)
  19. The X-ray crystal structures of two constitutively active mutants of the Escherichia coli PhoB receiver domain give insights into activation. Arribas-Bosacoma R, Kim SK, Ferrer-Orta C, Blanco AG, Pereira PJ, Gomis-Rüth FX, Wanner BL, Coll M, Solà M. J. Mol. Biol. 366 626-641 (2007)
  20. NMR structure of the pseudo-receiver domain of CikA. Gao T, Zhang X, Ivleva NB, Golden SS, LiWang A. Protein Sci. 16 465-475 (2007)
  21. Transcriptional activation by Bacillus subtilis ResD: tandem binding to target elements and phosphorylation-dependent and -independent transcriptional activation. Geng H, Nakano S, Nakano MM. J. Bacteriol. 186 2028-2037 (2004)
  22. Structure of the biliverdin cofactor in the Pfr state of bathy and prototypical phytochromes. Salewski J, Escobar FV, Kaminski S, von Stetten D, Keidel A, Rippers Y, Michael N, Scheerer P, Piwowarski P, Bartl F, Frankenberg-Dinkel N, Ringsdorf S, Gärtner W, Lamparter T, Mroginski MA, Hildebrandt P. J. Biol. Chem. 288 16800-16814 (2013)
  23. Activation of the global gene regulator PrrA (RegA) from Rhodobacter sphaeroides. Laguri C, Stenzel RA, Donohue TJ, Phillips-Jones MK, Williamson MP. Biochemistry 45 7872-7881 (2006)
  24. Insights into signal transduction revealed by the low resolution structure of the FixJ response regulator. Birck C, Malfois M, Svergun D, Samama J. J. Mol. Biol. 321 447-457 (2002)
  25. The receiver domain of hybrid histidine kinase VirA: an enhancing factor for vir gene expression in Agrobacterium tumefaciens. Wise AA, Fang F, Lin YH, He F, Lynn DG, Binns AN. J. Bacteriol. 192 1534-1542 (2010)
  26. The FxRxHrS motif: a conserved region essential for DNA binding of the VirR response regulator from Clostridium perfringens. McGowan S, Lucet IS, Cheung JK, Awad MM, Whisstock JC, Rood JI. J. Mol. Biol. 322 997-1011 (2002)
  27. Residues required for Bacillus subtilis PhoP DNA binding or RNA polymerase interaction: alanine scanning of PhoP effector domain transactivation loop and alpha helix 3. Chen Y, Abdel-Fattah WR, Hulett FM. J. Bacteriol. 186 1493-1502 (2004)
  28. Crystal structure of a ribose-5-phosphate isomerase RpiB (TM1080) from Thermotoga maritima at 1.90 A resolution. Xu Q, Schwarzenbacher R, McMullan D, von Delft F, Brinen LS, Canaves JM, Dai X, Deacon AM, Elsliger MA, Eshagi S, Floyd R, Godzik A, Grittini C, Grzechnik SK, Jaroszewski L, Karlak C, Klock HE, Koesema E, Kovarik JS, Kreusch A, Kuhn P, Lesley SA, Levin I, McPhillips TM, Miller MD, Morse A, Moy K, Ouyang J, Page R, Quijano K, Robb A, Spraggon G, Stevens RC, van den Bedem H, Velasquez J, Vincent J, Wang X, West B, Wolf G, Hodgson KO, Wooley J, Wilson IA. Proteins 56 171-175 (2004)
  29. Mycobacterium tuberculosis PhoP recognizes two adjacent direct-repeat sequences to form head-to-head dimers. Gupta S, Pathak A, Sinha A, Sarkar D. J. Bacteriol. 191 7466-7476 (2009)
  30. CASP5 target classification. Kinch LN, Qi Y, Hubbard TJ, Grishin NV. Proteins 53 Suppl 6 340-351 (2003)
  31. Evolutionary analysis and lateral gene transfer of two-component regulatory systems associated with heavy-metal tolerance in bacteria. Bouzat JL, Hoostal MJ. J. Mol. Evol. 76 267-279 (2013)
  32. Chloroplast His-to-Asp signal transduction: a potential mechanism for plastid gene regulation in Heterosigma akashiwo (Raphidophyceae). Duplessis MR, Karol KG, Adman ET, Choi LY, Jacobs MA, Cattolico RA. BMC Evol. Biol. 7 70 (2007)
  33. Domain structure of virulence-associated response regulator PhoP of Mycobacterium tuberculosis: role of the linker region in regulator-promoter interaction(s). Pathak A, Goyal R, Sinha A, Sarkar D. J. Biol. Chem. 285 34309-34318 (2010)
  34. First structure of the polymyxin resistance proteins. Fu W, Yang F, Kang X, Zhang X, Li Y, Xia B, Jin C. Biochem. Biophys. Res. Commun. 361 1033-1037 (2007)
  35. Structural analysis of the DNA-binding domain of the Helicobacter pylori response regulator ArsR. Gupta SS, Borin BN, Cover TL, Krezel AM. J. Biol. Chem. 284 6536-6545 (2009)
  36. Structural basis of a physical blockage mechanism for the interaction of response regulator PmrA with connector protein PmrD from Klebsiella pneumoniae. Luo SC, Lou YC, Rajasekaran M, Chang YW, Hsiao CD, Chen C. J. Biol. Chem. 288 25551-25561 (2013)
  37. Atypical response regulator ChxR from Chlamydia trachomatis is structurally poised for DNA binding. Barta ML, Hickey JM, Anbanandam A, Dyer K, Hammel M, Hefty PS. PLoS ONE 9 e91760 (2014)
  38. Phosphorylation-induced activation of the response regulator VraR from Staphylococcus aureus: insights from hydrogen exchange mass spectrometry. Liu YH, Belcheva A, Konermann L, Golemi-Kotra D. J. Mol. Biol. 391 149-163 (2009)
  39. The aspartate-less receiver (ALR) domains: distribution, structure and function. Maule AF, Wright DP, Weiner JJ, Han L, Peterson FC, Volkman BF, Silvaggi NR, Ulijasz AT. PLoS Pathog. 11 e1004795 (2015)
  40. Solution structure and tandem DNA recognition of the C-terminal effector domain of PmrA from Klebsiella pneumoniae. Lou YC, Wang I, Rajasekaran M, Kao YF, Ho MR, Hsu ST, Chou SH, Wu SH, Chen C. Nucleic Acids Res. 42 4080-4093 (2014)
  41. Branched signal wiring of an essential bacterial cell-cycle phosphotransfer protein. Blair JA, Xu Q, Childers WS, Mathews II, Kern JW, Eckart M, Deacon AM, Shapiro L. Structure 21 1590-1601 (2013)
  42. The dimeric form of the unphosphorylated response regulator BaeR. Choudhury HG, Beis K. Protein Sci. 22 1287-1293 (2013)
  43. Molecular cloning, sequence analysis and structure modeling of OmpR, the response regulator of Aeromonas hydrophila. Chhabra G, Upadhyaya T, Dixit A. Mol. Biol. Rep. 39 41-50 (2012)
  44. Genetic analysis of the Salmonella transcription factor HilA. Daly RA, Lostroh CP. Can. J. Microbiol. 54 854-860 (2008)
  45. Structure and dynamics of polymyxin-resistance-associated response regulator PmrA in complex with promoter DNA. Lou YC, Weng TH, Li YC, Kao YF, Lin WF, Peng HL, Chou SH, Hsiao CD, Chen C. Nat Commun 6 8838 (2015)
  46. Antioxidant Defense by Thioredoxin Can Occur Independently of Canonical Thiol-Disulfide Oxidoreductase Enzymatic Activity. Song M, Kim JS, Liu L, Husain M, Vázquez-Torres A. Cell Rep 14 2901-2911 (2016)
  47. Structure of the DNA-binding domain of the response regulator SaeR from Staphylococcus aureus. Fan X, Zhang X, Zhu Y, Niu L, Teng M, Sun B, Li X. Acta Crystallogr. D Biol. Crystallogr. 71 1768-1776 (2015)
  48. Conformational Dynamics of Response Regulator RegX3 from Mycobacterium tuberculosis. Ahmad A, Cai Y, Chen X, Shuai J, Han A. PLoS ONE 10 e0133389 (2015)
  49. Advances In Mycobacterium Tuberculosis Therapeutics Discovery Utlizing Structural Biology. Chim N, Owens CP, Contreras H, Goulding CW. Infect Disord Drug Targets (2012)
  50. Structure of the Response Regulator NsrR from Streptococcus agalactiae, Which Is Involved in Lantibiotic Resistance. Khosa S, Hoeppner A, Gohlke H, Schmitt L, Smits SH. PLoS ONE 11 e0149903 (2016)