1k4c Citations

Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution.

Nature 414 43-8 (2001)
Cited: 838 times
EuropePMC logo PMID: 11689936


Ion transport proteins must remove an ion's hydration shell to coordinate the ion selectively on the basis of its size and charge. To discover how the K+ channel solves this fundamental aspect of ion conduction, we solved the structure of the KcsA K+ channel in complex with a monoclonal Fab antibody fragment at 2.0 A resolution. Here we show how the K+ channel displaces water molecules around an ion at its extracellular entryway, and how it holds a K+ ion in a square antiprism of water molecules in a cavity near its intracellular entryway. Carbonyl oxygen atoms within the selectivity filter form a very similar square antiprism around each K+ binding site, as if to mimic the waters of hydration. The selectivity filter changes its ion coordination structure in low K+ solutions. This structural change is crucial to the operation of the selectivity filter in the cellular context, where the K+ ion concentration near the selectivity filter varies in response to channel gating.

Reviews - 1k4c mentioned but not cited (5)

  1. Bacterial intelligence: imitation games, time-sharing, and long-range quantum coherence. Majumdar S, Pal S. J Cell Commun Signal (2017)
  2. Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. Lundbaek JA, Collingwood SA, Ingólfsson HI, Kapoor R, Andersen OS. J R Soc Interface 7 373-395 (2010)
  3. The gates of ion channels and enzymes. Zhou HX, McCammon JA. Trends Biochem. Sci. 35 179-185 (2010)
  4. Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins. Bahar I, Lezon TR, Bakan A, Shrivastava IH. Chem. Rev. 110 1463-1497 (2010)
  5. Computational analysis of membrane proteins: the largest class of drug targets. Arinaminpathy Y, Khurana E, Engelman DM, Gerstein MB. Drug Discov. Today 14 1130-1135 (2009)

Articles - 1k4c mentioned but not cited (42)

  1. A gating charge transfer center in voltage sensors. Tao X, Lee A, Limapichat W, Dougherty DA, MacKinnon R. Science 328 67-73 (2010)
  2. NMDA receptor structures reveal subunit arrangement and pore architecture. Lee CH, Lü W, Michel JC, Goehring A, Du J, Song X, Gouaux E. Nature 511 191-197 (2014)
  3. Molecular mechanism of pH sensing in KcsA potassium channels. Thompson AN, Posson DJ, Parsa PV, Nimigean CM. Proc. Natl. Acad. Sci. U.S.A. 105 6900-6905 (2008)
  4. Reliable B cell epitope predictions: impacts of method development and improved benchmarking. Kringelum JV, Lundegaard C, Lund O, Nielsen M. PLoS Comput. Biol. 8 e1002829 (2012)
  5. Bilayer deformation by the Kv channel voltage sensor domain revealed by self-assembly simulations. Bond PJ, Sansom MS. Proc. Natl. Acad. Sci. U.S.A. 104 2631-2636 (2007)
  6. Structural models for the KCNQ1 voltage-gated potassium channel. Smith JA, Vanoye CG, George AL, Meiler J, Sanders CR. Biochemistry 46 14141-14152 (2007)
  7. Hg1, novel peptide inhibitor specific for Kv1.3 channels from first scorpion Kunitz-type potassium channel toxin family. Chen ZY, Hu YT, Yang WS, He YW, Feng J, Wang B, Zhao RM, Ding JP, Cao ZJ, Li WX, Wu YL. J. Biol. Chem. 287 13813-13821 (2012)
  8. Neutralization of a single arginine residue gates open a two-pore domain, alkali-activated K+ channel. Niemeyer MI, González-Nilo FD, Zúñiga L, González W, Cid LP, Sepúlveda FV. Proc. Natl. Acad. Sci. U.S.A. 104 666-671 (2007)
  9. Prediction of transmembrane helix orientation in polytopic membrane proteins. Adamian L, Liang J. BMC Struct. Biol. 6 13 (2006)
  10. Lipid-binding surfaces of membrane proteins: evidence from evolutionary and structural analysis. Adamian L, Naveed H, Liang J. Biochim. Biophys. Acta 1808 1092-1102 (2011)
  11. Domain-swapped chain connectivity and gated membrane access in a Fab-mediated crystal of the human TRAAK K+ channel. Brohawn SG, Campbell EB, MacKinnon R. Proc. Natl. Acad. Sci. U.S.A. 110 2129-2134 (2013)
  12. Algorithms for incorporating prior topological information in HMMs: application to transmembrane proteins. Bagos PG, Liakopoulos TD, Hamodrakas SJ. BMC Bioinformatics 7 189 (2006)
  13. Protein-protein docking using region-based 3D Zernike descriptors. Venkatraman V, Yang YD, Sael L, Kihara D. BMC Bioinformatics 10 407 (2009)
  14. A specific two-pore domain potassium channel blocker defines the structure of the TASK-1 open pore. Streit AK, Netter MF, Kempf F, Walecki M, Rinné S, Bollepalli MK, Preisig-Müller R, Renigunta V, Daut J, Baukrowitz T, Sansom MS, Stansfeld PJ, Decher N. J. Biol. Chem. 286 13977-13984 (2011)
  15. On the functional significance of soft modes predicted by coarse-grained models for membrane proteins. Bahar I. J. Gen. Physiol. 135 563-573 (2010)
  16. Intrinsic electrostatic potential in the BK channel pore: role in determining single channel conductance and block. Carvacho I, Gonzalez W, Torres YP, Brauchi S, Alvarez O, Gonzalez-Nilo FD, Latorre R. J. Gen. Physiol. 131 147-161 (2008)
  17. New roles for a key glycine and its neighboring residue in potassium channel gating. Rosenhouse-Dantsker A, Logothetis DE. Biophys. J. 91 2860-2873 (2006)
  18. Potassium-selective block of barium permeation through single KcsA channels. Piasta KN, Theobald DL, Miller C. J. Gen. Physiol. 138 421-436 (2011)
  19. Structural determinants of the closed KCa3.1 channel pore in relation to channel gating: results from a substituted cysteine accessibility analysis. Klein H, Garneau L, Banderali U, Simoes M, Parent L, Sauvé R. J. Gen. Physiol. 129 299-315 (2007)
  20. A unified hydrophobicity scale for multispan membrane proteins. Koehler J, Woetzel N, Staritzbichler R, Sanders CR, Meiler J. Proteins 76 13-29 (2009)
  21. The selectivity, voltage-dependence and acid sensitivity of the tandem pore potassium channel TASK-1: contributions of the pore domains. Yuill KH, Stansfeld PJ, Ashmole I, Sutcliffe MJ, Stanfield PR. Pflugers Arch. 455 333-348 (2007)
  22. S1 constrains S4 in the voltage sensor domain of Kv7.1 K+ channels. Haitin Y, Yisharel I, Malka E, Shamgar L, Schottelndreier H, Peretz A, Paas Y, Attali B. PLoS ONE 3 e1935 (2008)
  23. Multiple approaches converge on the structure of the integrin alphaIIb/beta3 transmembrane heterodimer. Metcalf DG, Kulp DW, Bennett JS, DeGrado WF. J. Mol. Biol. 392 1087-1101 (2009)
  24. Structural changes during HCN channel gating defined by high affinity metal bridges. Kwan DC, Prole DL, Yellen G. J. Gen. Physiol. 140 279-291 (2012)
  25. Timothy mutation disrupts the link between activation and inactivation in Ca(V)1.2 protein. Depil K, Beyl S, Stary-Weinzinger A, Hohaus A, Timin E, Hering S. J. Biol. Chem. 286 31557-31564 (2011)
  26. An electrostatic interaction between TEA and an introduced pore aromatic drives spring-in-the-door inactivation in Shaker potassium channels. Ahern CA, Eastwood AL, Dougherty DA, Horn R. J. Gen. Physiol. 134 461-469 (2009)
  27. Inter-α/β subunits coupling mediating pre-inactivation and augmented activation of BKCa(β2). Hou P, Zeng W, Gan G, Lv C, Guo X, Zhang Z, Liu H, Wu Y, Yao J, Wei AD, Wang S, Ding J. Sci Rep 3 1666 (2013)
  28. An Efficient Labelling Approach to Harness Backbone and Side-Chain Protons in (1) H-Detected Solid-State NMR Spectroscopy. Mance D, Sinnige T, Kaplan M, Narasimhan S, Daniëls M, Houben K, Baldus M, Weingarth M. Angew. Chem. Int. Ed. Engl. 54 15799-15803 (2015)
  29. Structural basis for calcium and magnesium regulation of a large conductance calcium-activated potassium channel with β1 subunits. Liu HW, Hou PP, Guo XY, Zhao ZW, Hu B, Li X, Wang LY, Ding JP, Wang S. J. Biol. Chem. 289 16914-16923 (2014)
  30. Chemical shift anisotropy of imino 15N nuclei in Watson-Crick base pairs from magic angle spinning liquid crystal NMR and nuclear spin relaxation. Grishaev A, Yao L, Ying J, Pardi A, Bax A. J. Am. Chem. Soc. 131 9490-9491 (2009)
  31. Instantaneous ion configurations in the K+ ion channel selectivity filter revealed by 2D IR spectroscopy. Kratochvil HT, Carr JK, Matulef K, Annen AW, Li H, Maj M, Ostmeyer J, Serrano AL, Raghuraman H, Moran SD, Skinner JL, Perozo E, Roux B, Valiyaveetil FI, Zanni MT. Science 353 1040-1044 (2016)
  32. Probing binding sites and mechanisms of action of an I(Ks) activator by computations and experiments. Xu Y, Wang Y, Zhang M, Jiang M, Rosenhouse-Dantsker A, Wassenaar T, Tseng GN. Biophys. J. 108 62-75 (2015)
  33. A KcsA/MloK1 chimeric ion channel has lipid-dependent ligand-binding energetics. McCoy JG, Rusinova R, Kim DM, Kowal J, Banerjee S, Jaramillo Cartagena A, Thompson AN, Kolmakova-Partensky L, Stahlberg H, Andersen OS, Nimigean CM. J. Biol. Chem. 289 9535-9546 (2014)
  34. Characterizing the fatty acid binding site in the cavity of potassium channel KcsA. Smithers N, Bolivar JH, Lee AG, East JM. Biochemistry 51 7996-8002 (2012)
  35. Multiple binding sites for fatty acids on the potassium channel KcsA. Bolivar JH, Smithers N, East JM, Marsh D, Lee AG. Biochemistry 51 2889-2898 (2012)
  36. (1) H-Detected Solid-State NMR Studies of Water-Inaccessible Proteins In Vitro and In Situ. Medeiros-Silva J, Mance D, Daniëls M, Jekhmane S, Houben K, Baldus M, Weingarth M. Angew. Chem. Int. Ed. Engl. 55 13606-13610 (2016)
  37. IFACEwat: the interfacial water-implemented re-ranking algorithm to improve the discrimination of near native structures for protein rigid docking. Su C, Nguyen TD, Zheng J, Kwoh CK. BMC Bioinformatics 15 Suppl 16 S9 (2014)
  38. The Context-Dependence of Mutations: A Linkage of Formalisms. Poelwijk FJ, Krishna V, Ranganathan R. PLoS Comput. Biol. 12 e1004771 (2016)
  39. Integrative Approach for Computationally Inferring Interactions between the Alpha and Beta Subunits of the Calcium-Activated Potassium Channel (BK): a Docking Study. González J, Gálvez A, Morales L, Barreto GE, Capani F, Sierra O, Torres Y. Bioinform Biol Insights 7 73-82 (2013)
  40. Structural and functional characterization of a calcium-activated cation channel from Tsukamurella paurometabola. Dhakshnamoorthy B, Rohaim A, Rui H, Blachowicz L, Roux B. Nat Commun 7 12753 (2016)
  41. Improved prediction of trans-membrane spans in proteins using an Artificial Neural Network. Koehler J, Mueller R, Meiler J. IEEE Symp Comput Intell Bioinforma Comput Biol Proc 2009 68-74 (2009)
  42. Probing the Effects of Gating on the Ion Occupancy of the K+ Channel Selectivity Filter Using Two-Dimensional Infrared Spectroscopy. Kratochvil HT, Maj M, Matulef K, Annen AW, Ostmeyer J, Perozo E, Roux B, Valiyaveetil FI, Zanni MT. J. Am. Chem. Soc. 139 8837-8845 (2017)

Reviews citing this publication (154)

  1. ASIC and ENaC type sodium channels: conformational states and the structures of the ion selectivity filters. Hanukoglu I. FEBS J. 284 525-545 (2017)
  2. Ion channels and ion selectivity. Roux B. Essays Biochem. 61 201-209 (2017)
  3. Development of Safe Drugs: The hERG Challenge. Kalyaanamoorthy S, Barakat KH. Med Res Rev (2017)
  4. The chemical basis for electrical signaling. Catterall WA, Wisedchaisri G, Zheng N. Nat. Chem. Biol. 13 455-463 (2017)
  5. Antibodies: From novel repertoires to defining and refining the structure of biologically important targets. Conroy PJ, Law RH, Caradoc-Davies TT, Whisstock JC. Methods 116 12-22 (2017)
  6. Voltage-gated sodium channels viewed through a structural biology lens. Clairfeuille T, Xu H, Koth CM, Payandeh J. Curr. Opin. Struct. Biol. 45 74-84 (2017)
  7. Potassium channels in the heart: structure, function and regulation. Grandi E, Sanguinetti MC, Bartos DC, Bers DM, Chen-Izu Y, Chiamvimonvat N, Colecraft HM, Delisle BP, Heijman J, Navedo MF, Noskov S, Proenza C, Vandenberg JI, Yarov-Yarovoy V. J. Physiol. (Lond.) 595 2209-2228 (2017)
  8. Membrane Desalination: Where Are We, and What Can We Learn from Fundamentals? Imbrogno J, Belfort G. Annu Rev Chem Biomol Eng 7 29-64 (2016)
  9. Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels. Diaz-Franulic I, Poblete H, Miño-Galaz G, González C, Latorre R. Annu Rev Biophys 45 371-398 (2016)
  10. Membrane proteins: always an insoluble problem? Rawlings AE. Biochem. Soc. Trans. 44 790-795 (2016)
  11. Gating, Regulation, and Structure in K2P K+ Channels: In Varietate Concordia? Niemeyer MI, Cid LP, González W, Sepúlveda FV. Mol. Pharmacol. 90 309-317 (2016)
  12. Molecular Basis of Cardiac Delayed Rectifier Potassium Channel Function and Pharmacology. Wu W, Sanguinetti MC. Card Electrophysiol Clin 8 275-284 (2016)
  13. Bacterial voltage-gated sodium channels (BacNa(V)s) from the soil, sea, and salt lakes enlighten molecular mechanisms of electrical signaling and pharmacology in the brain and heart. Payandeh J, Minor DL. J. Mol. Biol. 427 3-30 (2015)
  14. Development of the field of structural physiology. Fujiyoshi Y. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 91 447-468 (2015)
  15. How to resolve microsecond current fluctuations in single ion channels: the power of beta distributions. Schroeder I. Channels (Austin) 9 262-280 (2015)
  16. Structural insights into aquaporin selectivity and regulation. Kreida S, Törnroth-Horsefield S. Curr. Opin. Struct. Biol. 33 126-134 (2015)
  17. How ion channels sense mechanical force: insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2. Brohawn SG. Ann. N. Y. Acad. Sci. 1352 20-32 (2015)
  18. Deciphering voltage-gated Na(+) and Ca(2+) channels by studying prokaryotic ancestors. Catterall WA, Zheng N. Trends Biochem. Sci. 40 526-534 (2015)
  19. Structure and gating of CLC channels and exchangers. Accardi A. J. Physiol. (Lond.) 593 4129-4138 (2015)
  20. Surface-enhanced IR absorption spectroscopy of the KcsA potassium channel upon application of an electric field. Yamakata A, Shimizu H, Oiki S. Phys Chem Chem Phys 17 21104-21111 (2015)
  21. Determinants of cation transport selectivity: Equilibrium binding and transport kinetics. Lockless SW. J. Gen. Physiol. 146 3-13 (2015)
  22. Structure of potassium channels. Kuang Q, Purhonen P, Hebert H. Cell. Mol. Life Sci. 72 3677-3693 (2015)
  23. Nanobodies and recombinant binders in cell biology. Helma J, Cardoso MC, Muyldermans S, Leonhardt H. J. Cell Biol. 209 633-644 (2015)
  24. EPR Studies of Gating Mechanisms in Ion Channels. Chakrapani S. Meth. Enzymol. 557 279-306 (2015)
  25. Theoretical and simulation studies on voltage-gated sodium channels. Li Y, Gong H. Protein Cell 6 413-422 (2015)
  26. Channel function reconstitution and re-animation: a single-channel strategy in the postcrystal age. Oiki S. J. Physiol. (Lond.) 593 2553-2573 (2015)
  27. Atom-by-atom engineering of voltage-gated ion channels: magnified insights into function and pharmacology. Pless SA, Kim RY, Ahern CA, Kurata HT. J. Physiol. (Lond.) 593 2627-2634 (2015)
  28. Molecular aspects of structure, gating, and physiology of pH-sensitive background K2P and Kir K+-transport channels. Sepúlveda FV, Pablo Cid L, Teulon J, Niemeyer MI. Physiol. Rev. 95 179-217 (2015)
  29. The nicotinic acetylcholine receptor and its prokaryotic homologues: Structure, conformational transitions & allosteric modulation. Cecchini M, Changeux JP. Neuropharmacology 96 137-149 (2015)
  30. TASK-2 K₂p K⁺ channel: thoughts about gating and its fitness to physiological function. López-Cayuqueo KI, Peña-Münzenmayer G, Niemeyer MI, Sepúlveda FV, Cid LP. Pflugers Arch. 467 1043-1053 (2015)
  31. Structure and function of voltage-gated sodium channels at atomic resolution. Catterall WA. Exp. Physiol. 99 35-51 (2014)
  32. Recent advances in magic angle spinning solid state NMR of membrane proteins. Wang S, Ladizhansky V. Prog Nucl Magn Reson Spectrosc 82 1-26 (2014)
  33. Recent progress on the structure and function of the TrkH/KtrB ion channel. Levin EJ, Zhou M. Curr. Opin. Struct. Biol. 27 95-101 (2014)
  34. Membrane protein synthesis in cell-free systems: from bio-mimetic systems to bio-membranes. Sachse R, Dondapati SK, Fenz SF, Schmidt T, Kubick S. FEBS Lett. 588 2774-2781 (2014)
  35. Patch-clamp fluorometry: electrophysiology meets fluorescence. Kusch J, Zifarelli G. Biophys. J. 106 1250-1257 (2014)
  36. Solid-state NMR spectroscopy to study protein-lipid interactions. Huster D. Biochim. Biophys. Acta 1841 1146-1160 (2014)
  37. Functional dynamics of cell surface membrane proteins. Nishida N, Osawa M, Takeuchi K, Imai S, Stampoulis P, Kofuku Y, Ueda T, Shimada I. J. Magn. Reson. 241 86-96 (2014)
  38. Isothermal titration calorimetry in membrane protein research. Draczkowski P, Matosiuk D, Jozwiak K. J Pharm Biomed Anal 87 313-325 (2014)
  39. Influence of lipids on protein-mediated transmembrane transport. Denning EJ, Beckstein O. Chem. Phys. Lipids 169 57-71 (2013)
  40. Side-effects of protein kinase inhibitors on ion channels. Son YK, Park H, Firth AL, Park WS. J. Biosci. 38 937-949 (2013)
  41. K(+) and Na(+) conduction in selective and nonselective ion channels via molecular dynamics simulations. Furini S, Domene C. Biophys. J. 105 1737-1745 (2013)
  42. The structure and regulation of magnesium selective ion channels. Payandeh J, Pfoh R, Pai EF. Biochim. Biophys. Acta 1828 2778-2792 (2013)
  43. Structural correlates of selectivity and inactivation in potassium channels. McCoy JG, Nimigean CM. Biochim. Biophys. Acta 1818 272-285 (2012)
  44. Physiological importance of poly-(R)-3-hydroxybutyrates. Reusch RN. Chem. Biodivers. 9 2343-2366 (2012)
  45. Ion channel associated diseases: overview of molecular mechanisms. Zaydman MA, Silva JR, Cui J. Chem. Rev. 112 6319-6333 (2012)
  46. Antibody-enabled small-molecule drug discovery. Lawson AD. Nat Rev Drug Discov 11 519-525 (2012)
  47. NMR spectroscopy of G-quadruplexes. Adrian M, Heddi B, Phan AT. Methods 57 11-24 (2012)
  48. [Physiology, pharmacology and modelling of potassium channels: focus on SK channels]. Dilly S, Poncin S, Lamy C, Liégeois JF, Seutin V. Med Sci (Paris) 28 395-402 (2012)
  49. Voltage-gated sodium channels at 60: structure, function and pathophysiology. Catterall WA. J. Physiol. (Lond.) 590 2577-2589 (2012)
  50. The impact of assay technology as applied to safety assessment in reducing compound attrition in drug discovery. Thomas CE, Will Y. Expert Opin Drug Discov 7 109-122 (2012)
  51. Transferring knowledge towards understanding the pore stabilizing variations in K(+) channels: pore stability in K(+) channels. Raja M, Olrichs NK, Vales E, Schrempf H. J. Bioenerg. Biomembr. 44 199-205 (2012)
  52. Membrane protein structure and dynamics from NMR spectroscopy. Hong M, Zhang Y, Hu F. Annu Rev Phys Chem 63 1-24 (2012)
  53. Mechanisms of closed-state inactivation in voltage-gated ion channels. Bähring R, Covarrubias M. J. Physiol. (Lond.) 589 461-479 (2011)
  54. First crystal structures of Na+,K+-ATPase: new light on the oldest ion pump. Toyoshima C, Kanai R, Cornelius F. Structure 19 1732-1738 (2011)
  55. Crystallizing membrane proteins using lipidic bicelles. Ujwal R, Bowie JU. Methods 55 337-341 (2011)
  56. The significance of G protein-coupled receptor crystallography for drug discovery. Salon JA, Lodowski DT, Palczewski K. Pharmacol. Rev. 63 901-937 (2011)
  57. Extracellular pH in restricted domains as a gating signal for ion channels involved in transepithelial transport. Sandoval M, Burgos J, Sepúlveda FV, Cid LP. Biol. Pharm. Bull. 34 803-809 (2011)
  58. Transmembrane communication: general principles and lessons from the structure and function of the M2 proton channel, K⁺ channels, and integrin receptors. Grigoryan G, Moore DT, DeGrado WF. Annu. Rev. Biochem. 80 211-237 (2011)
  59. Thermodynamics of ion selectivity in the KcsA K+ channel. Dixit PD, Asthagiri D. J. Gen. Physiol. 137 427-433 (2011)
  60. Origins of ion selectivity in potassium channels from the perspective of channel block. Nimigean CM, Allen TW. J. Gen. Physiol. 137 405-413 (2011)
  61. Structural studies of ion selectivity in tetrameric cation channels. Alam A, Jiang Y. J. Gen. Physiol. 137 397-403 (2011)
  62. Structural physiology based on electron crystallography. Fujiyoshi Y. Protein Sci. 20 806-817 (2011)
  63. A method for solution NMR structural studies of large integral membrane proteins: reverse micelle encapsulation. Kielec JM, Valentine KG, Wand AJ. Biochim. Biophys. Acta 1798 150-160 (2010)
  64. Studies of ion channels using expressed protein ligation. Focke PJ, Valiyaveetil FI. Curr Opin Chem Biol 14 797-802 (2010)
  65. Use of Kv1.3 blockers for inflammatory skin conditions. Nguyen W, Howard BL, Neale DS, Thompson PE, White PJ, Wulff H, Manallack DT. Curr. Med. Chem. 17 2882-2896 (2010)
  66. Glutamate receptor ion channels: structure, regulation, and function. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Pharmacol. Rev. 62 405-496 (2010)
  67. Structures of membrane proteins. Vinothkumar KR, Henderson R. Q. Rev. Biophys. 43 65-158 (2010)
  68. The outer vestibule of the Na+ channel-toxin receptor and modulator of permeation as well as gating. Cervenka R, Zarrabi T, Lukacs P, Todt H. Mar Drugs 8 1373-1393 (2010)
  69. Mechanosensitivity of ion channels based on protein-lipid interactions. Yoshimura K, Sokabe M. J R Soc Interface 7 Suppl 3 S307-20 (2010)
  70. A synergistic approach to protein crystallization: combination of a fixed-arm carrier with surface entropy reduction. Moon AF, Mueller GA, Zhong X, Pedersen LC. Protein Sci. 19 901-913 (2010)
  71. CLC channels and transporters: proteins with borderline personalities. Accardi A, Picollo A. Biochim. Biophys. Acta 1798 1457-1464 (2010)
  72. Engineered voltage-responsive nanopores. Siwy ZS, Howorka S. Chem Soc Rev 39 1115-1132 (2010)
  73. Large conductance, Ca2+-activated K+ channels (BKCa) and arteriolar myogenic signaling. Hill MA, Yang Y, Ella SR, Davis MJ, Braun AP. FEBS Lett. 584 2033-2042 (2010)
  74. Gating in CNGA1 channels. Mazzolini M, Marchesi A, Giorgetti A, Torre V. Pflugers Arch. 459 547-555 (2010)
  75. Crystal structures of all-alpha type membrane proteins. McLuskey K, Roszak AW, Zhu Y, Isaacs NW. Eur. Biophys. J. 39 723-755 (2010)
  76. On the origin of ion selectivity in the Cys-loop receptor family. Sine SM, Wang HL, Hansen S, Taylor P. J. Mol. Neurosci. 40 70-76 (2010)
  77. Chemical tools for K(+) channel biology. Ahern CA, Kobertz WR. Biochemistry 48 517-526 (2009)
  78. Structure-functional intimacies of transient receptor potential channels. Latorre R, Zaelzer C, Brauchi S. Q. Rev. Biophys. 42 201-246 (2009)
  79. Engineering of recombinant crystallization chaperones. Koide S. Curr. Opin. Struct. Biol. 19 449-457 (2009)
  80. Mimicking biopolymers on a molecular scale: nano(bio)technology based on engineered proteins. Grunwald I, Rischka K, Kast SM, Scheibel T, Bargel H. Philos Trans A Math Phys Eng Sci 367 1727-1747 (2009)
  81. Ion channels versus ion pumps: the principal difference, in principle. Gadsby DC. Nat. Rev. Mol. Cell Biol. 10 344-352 (2009)
  82. K+ transport in plants: physiology and molecular biology. Szczerba MW, Britto DT, Kronzucker HJ. J. Plant Physiol. 166 447-466 (2009)
  83. K+ channel modulators for the treatment of neurological disorders and autoimmune diseases. Wulff H, Zhorov BS. Chem. Rev. 108 1744-1773 (2008)
  84. Structure, function, and modification of the voltage sensor in voltage-gated ion channels. Börjesson SI, Elinder F. Cell Biochem. Biophys. 52 149-174 (2008)
  85. Chaperone-assisted crystallography with DARPins. Sennhauser G, Grütter MG. Structure 16 1443-1453 (2008)
  86. Ion channels in microbes. Martinac B, Saimi Y, Kung C. Physiol. Rev. 88 1449-1490 (2008)
  87. Pore stability and gating in voltage-activated calcium channels. Hering S, Beyl S, Stary A, Kudrnac M, Hohaus A, Guy HR, Timin E. Channels (Austin) 2 61-69 (2008)
  88. Overcoming the challenges of membrane protein crystallography. Carpenter EP, Beis K, Cameron AD, Iwata S. Curr. Opin. Struct. Biol. 18 581-586 (2008)
  89. Life among the axons. Armstrong CM. Annu. Rev. Physiol. 69 1-18 (2007)
  90. The K+-translocating KdpFABC complex from Escherichia coli: a P-type ATPase with unique features. Greie JC, Altendorf K. J. Bioenerg. Biomembr. 39 397-402 (2007)
  91. Solution NMR of membrane proteins in bilayer mimics: small is beautiful, but sometimes bigger is better. Poget SF, Girvin ME. Biochim. Biophys. Acta 1768 3098-3106 (2007)
  92. Expression of recombinant G-protein coupled receptors for structural biology. Mancia F, Hendrickson WA. Mol Biosyst 3 723-734 (2007)
  93. The membrane protein universe: what's out there and why bother? von Heijne G. J. Intern. Med. 261 543-557 (2007)
  94. Magnetic resonance in the solid state: applications to protein folding, amyloid fibrils and membrane proteins. Baldus M. Eur. Biophys. J. 36 Suppl 1 S37-48 (2007)
  95. Metals in membranes. Liang X, Campopiano DJ, Sadler PJ. Chem Soc Rev 36 968-992 (2007)
  96. The neurobiologist's guide to structural biology: a primer on why macromolecular structure matters and how to evaluate structural data. Minor DL. Neuron 54 511-533 (2007)
  97. Importance of hydration and dynamics on the selectivity of the KcsA and NaK channels. Noskov SY, Roux B. J. Gen. Physiol. 129 135-143 (2007)
  98. Mechanism of chloride permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. Linsdell P. Exp. Physiol. 91 123-129 (2006)
  99. Understanding ion channel selectivity and gating and their role in cellular signalling. Corry B. Mol Biosyst 2 527-535 (2006)
  100. Molecular diversification in spider venoms: a web of combinatorial peptide libraries. Escoubas P. Mol. Divers. 10 545-554 (2006)
  101. Molecular mechanisms for drug interactions with hERG that cause long QT syndrome. Stansfeld PJ, Sutcliffe MJ, Mitcheson JS. Expert Opin Drug Metab Toxicol 2 81-94 (2006)
  102. Ion selectivity in potassium channels. Noskov SY, Roux B. Biophys. Chem. 124 279-291 (2006)
  103. Properties of microsolvated ions: from the microenvironment of chromophore and alkali metal ions in proteins to negative ions in water clusters. Nielsen SB, Andersen LH. Biophys. Chem. 124 229-237 (2006)
  104. hERG potassium channels and cardiac arrhythmia. Sanguinetti MC, Tristani-Firouzi M. Nature 440 463-469 (2006)
  105. Permeation and selectivity of TRP channels. Owsianik G, Talavera K, Voets T, Nilius B. Annu. Rev. Physiol. 68 685-717 (2006)
  106. A structural interpretation of voltage-gated potassium channel inactivation. Kurata HT, Fedida D. Prog. Biophys. Mol. Biol. 92 185-208 (2006)
  107. Biomolecular rods and tubes in nanotechnology. Bittner AM. Naturwissenschaften 92 51-64 (2005)
  108. How lipids and proteins interact in a membrane: a molecular approach. Lee AG. Mol Biosyst 1 203-212 (2005)
  109. Potassium channels as targets for therapeutic intervention. Garcia ML, Kaczorowski GJ. Sci. STKE 2005 pe46 (2005)
  110. Potassium channels: complete and undistorted. Grottesi A, Sands ZA, Sansom MS. Curr. Biol. 15 R771-4 (2005)
  111. Shedding light on membrane proteins. Gandhi CS, Isacoff EY. Trends Neurosci. 28 472-479 (2005)
  112. Prokaryotic K(+) channels: from crystal structures to diversity. Kuo MM, Haynes WJ, Loukin SH, Kung C, Saimi Y. FEMS Microbiol. Rev. 29 961-985 (2005)
  113. Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources. Lipman NS, Jackson LR, Trudel LJ, Weis-Garcia F. ILAR J 46 258-268 (2005)
  114. Ion conduction and selectivity in K(+) channels. Roux B. Annu Rev Biophys Biomol Struct 34 153-171 (2005)
  115. Voltage-gated sodium and calcium channels in nerve, muscle, and heart. French RJ, Zamponi GW. IEEE Trans Nanobioscience 4 58-69 (2005)
  116. Potassium channels. Korn SJ, Trapani JG. IEEE Trans Nanobioscience 4 21-33 (2005)
  117. Fifty years of progress in ion channel research. Jordan PC. IEEE Trans Nanobioscience 4 3-9 (2005)
  118. Modulation of plant ion channels by oxidizing and reducing agents. Scholz-Starke J, Gambale F, Carpaneto A. Arch. Biochem. Biophys. 434 43-50 (2005)
  119. Molecular diversity and regulation of renal potassium channels. Hebert SC, Desir G, Giebisch G, Wang W. Physiol. Rev. 85 319-371 (2005)
  120. Axonal excitability revisited. Clay JR. Prog. Biophys. Mol. Biol. 88 59-90 (2005)
  121. Mapping domain structures in silks from insects and spiders related to protein assembly. Bini E, Knight DP, Kaplan DL. J. Mol. Biol. 335 27-40 (2004)
  122. Toward linking structure with function in ATP-sensitive K+ channels. Bryan J, Vila-Carriles WH, Zhao G, Babenko AP, Aguilar-Bryan L. Diabetes 53 Suppl 3 S104-12 (2004)
  123. Towards a structural view of gating in potassium channels. Swartz KJ. Nat. Rev. Neurosci. 5 905-916 (2004)
  124. The role of lipids in membrane insertion and translocation of bacterial proteins. van Dalen A, de Kruijff B. Biochim. Biophys. Acta 1694 97-109 (2004)
  125. The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Yu FH, Catterall WA. Sci. STKE 2004 re15 (2004)
  126. Maltoporin: sugar for physics and biology. Ranquin A, Van Gelder P. Res. Microbiol. 155 611-616 (2004)
  127. Energy transduction in transmembrane ion pumps. Facciotti MT, Rouhani-Manshadi S, Glaeser RM. Trends Biochem. Sci. 29 445-451 (2004)
  128. Computational studies of membrane channels. Roux B, Schulten K. Structure 12 1343-1351 (2004)
  129. Channels in microbes: so many holes to fill. Kung C, Blount P. Mol. Microbiol. 53 373-380 (2004)
  130. Critical assessment of a proposed model of Shaker. Lainé M, Papazian DM, Roux B. FEBS Lett. 564 257-263 (2004)
  131. Structural basis for ion conduction and gating in ClC chloride channels. Dutzler R. FEBS Lett. 564 229-233 (2004)
  132. [Molecular and pharmacological bases for the gating regulation of L-type voltage-dependent Ca2+ channels]. Adachi-Akahane S. Nippon Yakurigaku Zasshi 123 197-209 (2004)
  133. Structure and function of glutamate receptor ion channels. Mayer ML, Armstrong N. Annu. Rev. Physiol. 66 161-181 (2004)
  134. Mechanism of rectification in inward-rectifier K+ channels. Lu Z. Annu. Rev. Physiol. 66 103-129 (2004)
  135. Permeation and selectivity in calcium channels. Sather WA, McCleskey EW. Annu. Rev. Physiol. 65 133-159 (2003)
  136. Ion channel gating: insights via molecular simulations. Beckstein O, Biggin PC, Bond P, Bright JN, Domene C, Grottesi A, Holyoake J, Sansom MS. FEBS Lett. 555 85-90 (2003)
  137. Selectivity and conductance among the glycerol and water conducting aquaporin family of channels. Stroud RM, Savage D, Miercke LJ, Lee JK, Khademi S, Harries W. FEBS Lett. 555 79-84 (2003)
  138. Potassium channels. MacKinnon R. FEBS Lett. 555 62-65 (2003)
  139. Merging functional studies with structures of inward-rectifier K(+) channels. Bichet D, Haass FA, Jan LY. Nat. Rev. Neurosci. 4 957-967 (2003)
  140. Gating of GIRK channels: details of an intricate, membrane-delimited signaling complex. Sadja R, Alagem N, Reuveny E. Neuron 39 9-12 (2003)
  141. Voltage-gated K channels. Armstrong CM. Sci. STKE 2003 re10 (2003)
  142. Meeting of the minds: metalloneurochemistry. Burdette SC, Lippard SJ. Proc. Natl. Acad. Sci. U.S.A. 100 3605-3610 (2003)
  143. Proteins, channels and crowded ions. Eisenberg B. Biophys. Chem. 100 507-517 (2003)
  144. Ion channels: frozen motion. Sansom MS, Shrivastava IH. Curr. Biol. 12 R65-7 (2002)
  145. The search is on for the voltage sensor-to-gate coupling. Larsson HP. J. Gen. Physiol. 120 475-481 (2002)
  146. Structure-function relationships in Ca(2+) cycling proteins. MacLennan DH, Abu-Abed M, Kang C. J. Mol. Cell. Cardiol. 34 897-918 (2002)
  147. Elucidating the structural basis of membrane transport protein function: light at the end of the channel? Yu AS. Curr. Opin. Nephrol. Hypertens. 11 523-526 (2002)
  148. A calcium pump made visible. Lee AG. Curr. Opin. Struct. Biol. 12 547-554 (2002)
  149. CLC chloride channels: correlating structure with function. Estévez R, Jentsch TJ. Curr. Opin. Struct. Biol. 12 531-539 (2002)
  150. Crystallisation of membrane proteins mediated by antibody fragments. Hunte C, Michel H. Curr. Opin. Struct. Biol. 12 503-508 (2002)
  151. The alpha-helix and the organization and gating of channels. Spencer RH, Rees DC. Annu Rev Biophys Biomol Struct 31 207-233 (2002)
  152. Membrane protein complexes. Byrne B, Iwata S. Curr. Opin. Struct. Biol. 12 239-243 (2002)
  153. Theoretical and computational models of ion channels. Roux B. Curr. Opin. Struct. Biol. 12 182-189 (2002)
  154. Potassium channel mechanics. Sigworth FJ. Neuron 32 555-556 (2001)

Articles citing this publication (637)

  1. X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Hilf RJ, Dutzler R. Nature 452 375-379 (2008)
  2. Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Hilf RJ, Dutzler R. Nature 457 115-118 (2009)
  3. TRPV1 structures in distinct conformations reveal activation mechanisms. Cao E, Liao M, Cheng Y, Julius D. Nature 504 113-118 (2013)
  4. Molecular determinants of gating at the potassium-channel selectivity filter. Cordero-Morales JF, Cuello LG, Zhao Y, Jogini V, Cortes DM, Roux B, Perozo E. Nat. Struct. Mol. Biol. 13 311-318 (2006)
  5. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Noskov SY, Bernèche S, Roux B. Nature 431 830-834 (2004)
  6. Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Gonzales EB, Kawate T, Gouaux E. Nature 460 599-604 (2009)
  7. Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Lange A, Giller K, Hornig S, Martin-Eauclaire MF, Pongs O, Becker S, Baldus M. Nature 440 959-962 (2006)
  8. Structural mechanism of C-type inactivation in K(+) channels. Cuello LG, Jogini V, Cortes DM, Perozo E. Nature 466 203-208 (2010)
  9. Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 A resolution. Nishida M, MacKinnon R. Cell 111 957-965 (2002)
  10. Energetics of pore opening in a voltage-gated K(+) channel. Yifrach O, MacKinnon R. Cell 111 231-239 (2002)
  11. Coupling between voltage sensors and activation gate in voltage-gated K+ channels. Lu Z, Klem AM, Ramu Y. J. Gen. Physiol. 120 663-676 (2002)
  12. The occupancy of ions in the K+ selectivity filter: charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. Zhou Y, MacKinnon R. J. Mol. Biol. 333 965-975 (2003)
  13. Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 A resolution. Tao X, Avalos JL, Chen J, MacKinnon R. Science 326 1668-1674 (2009)
  14. Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. Nishida M, Cadene M, Chait BT, MacKinnon R. EMBO J. 26 4005-4015 (2007)
  15. Crystal structure of the calcium release-activated calcium channel Orai. Hou X, Pedi L, Diver MM, Long SB. Science 338 1308-1313 (2012)
  16. The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Oxenoid K, Chou JJ. Proc. Natl. Acad. Sci. U.S.A. 102 10870-10875 (2005)
  17. Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein. Dong C, Beis K, Nesper J, Brunkan-Lamontagne AL, Clarke BR, Whitfield C, Naismith JH. Nature 444 226-229 (2006)
  18. Crystal structure of a heterotetrameric NMDA receptor ion channel. Karakas E, Furukawa H. Science 344 992-997 (2014)
  19. Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement. Chanda B, Asamoah OK, Blunck R, Roux B, Bezanilla F. Nature 436 852-856 (2005)
  20. Structural basis for the coupling between activation and inactivation gates in K(+) channels. Cuello LG, Jogini V, Cortes DM, Pan AC, Gagnon DG, Dalmas O, Cordero-Morales JF, Chakrapani S, Roux B, Perozo E. Nature 466 272-275 (2010)
  21. Crystal structure of the potassium form of an Oxytricha nova G-quadruplex. Haider S, Parkinson GN, Neidle S. J. Mol. Biol. 320 189-200 (2002)
  22. Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Brohawn SG, del Mármol J, MacKinnon R. Science 335 436-441 (2012)
  23. Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation. Inaba K, Murakami S, Suzuki M, Nakagawa A, Yamashita E, Okada K, Ito K. Cell 127 789-801 (2006)
  24. Ultrasound-induced cell membrane porosity. Deng CX, Sieling F, Pan H, Cui J. Ultrasound Med Biol 30 519-526 (2004)
  25. Organic compatible solutes of halotolerant and halophilic microorganisms. Roberts MF. Saline Syst. 1 5 (2005)
  26. Molecular driving forces determining potassium channel slow inactivation. Cordero-Morales JF, Jogini V, Lewis A, Vásquez V, Cortes DM, Roux B, Perozo E. Nat. Struct. Mol. Biol. 14 1062-1069 (2007)
  27. A coarse-grained normal mode approach for macromolecules: an efficient implementation and application to Ca(2+)-ATPase. Li G, Cui Q. Biophys. J. 83 2457-2474 (2002)
  28. Crystal structure of the human two-pore domain potassium channel K2P1. Miller AN, Long SB. Science 335 432-436 (2012)
  29. A microscopic view of ion conduction through the K+ channel. Bernèche S, Roux B. Proc. Natl. Acad. Sci. U.S.A. 100 8644-8648 (2003)
  30. Principles of conduction and hydrophobic gating in K+ channels. Jensen MØ, Borhani DW, Lindorff-Larsen K, Maragakis P, Jogini V, Eastwood MP, Dror RO, Shaw DE. Proc. Natl. Acad. Sci. U.S.A. 107 5833-5838 (2010)
  31. Atomic structure of a Na+- and K+-conducting channel. Shi N, Ye S, Alam A, Chen L, Jiang Y. Nature 440 570-574 (2006)
  32. The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors. Yohannan S, Faham S, Yang D, Whitelegge JP, Bowie JU. Proc. Natl. Acad. Sci. U.S.A. 101 959-963 (2004)
  33. Structure of the transmembrane regions of a bacterial cyclic nucleotide-regulated channel. Clayton GM, Altieri S, Heginbotham L, Unger VM, Morais-Cabral JH. Proc. Natl. Acad. Sci. U.S.A. 105 1511-1515 (2008)
  34. Crystal structure of full-length KcsA in its closed conformation. Uysal S, Vásquez V, Tereshko V, Esaki K, Fellouse FA, Sidhu SS, Koide S, Perozo E, Kossiakoff A. Proc. Natl. Acad. Sci. U.S.A. 106 6644-6649 (2009)
  35. A gate in the selectivity filter of potassium channels. Bernèche S, Roux B. Structure 13 591-600 (2005)
  36. Current-dependent block of rabbit sino-atrial node I(f) channels by ivabradine. Bucchi A, Baruscotti M, DiFrancesco D. J. Gen. Physiol. 120 1-13 (2002)
  37. MOLE: a Voronoi diagram-based explorer of molecular channels, pores, and tunnels. Petrek M, Kosinová P, Koca J, Otyepka M. Structure 15 1357-1363 (2007)
  38. The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores. Beckstein O, Sansom MS. Phys Biol 1 42-52 (2004)
  39. Properties of integral membrane protein structures: derivation of an implicit membrane potential. Ulmschneider MB, Sansom MS, Di Nola A. Proteins 59 252-265 (2005)
  40. A ring of eight conserved negatively charged amino acids doubles the conductance of BK channels and prevents inward rectification. Brelidze TI, Niu X, Magleby KL. Proc. Natl. Acad. Sci. U.S.A. 100 9017-9022 (2003)
  41. Control of ion selectivity in LeuT: two Na+ binding sites with two different mechanisms. Noskov SY, Roux B. J. Mol. Biol. 377 804-818 (2008)
  42. Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Mäser P, Hosoo Y, Goshima S, Horie T, Eckelman B, Yamada K, Yoshida K, Bakker EP, Shinmyo A, Oiki S, Schroeder JI, Uozumi N. Proc. Natl. Acad. Sci. U.S.A. 99 6428-6433 (2002)
  43. Structural and thermodynamic properties of selective ion binding in a K+ channel. Lockless SW, Zhou M, MacKinnon R. PLoS Biol. 5 e121 (2007)
  44. Initial structural and dynamic characterization of the M2 protein transmembrane and amphipathic helices in lipid bilayers. Tian C, Gao PF, Pinto LH, Lamb RA, Cross TA. Protein Sci. 12 2597-2605 (2003)
  45. Structure determination of a membrane protein with two trans-membrane helices in aligned phospholipid bicelles by solid-state NMR spectroscopy. De Angelis AA, Howell SC, Nevzorov AA, Opella SJ. J. Am. Chem. Soc. 128 12256-12267 (2006)
  46. A hydrophobic gate in an ion channel: the closed state of the nicotinic acetylcholine receptor. Beckstein O, Sansom MS. Phys Biol 3 147-159 (2006)
  47. A gating hinge in Na+ channels; a molecular switch for electrical signaling. Zhao Y, Yarov-Yarovoy V, Scheuer T, Catterall WA. Neuron 41 859-865 (2004)
  48. NMR study of the tetrameric KcsA potassium channel in detergent micelles. Chill JH, Louis JM, Miller C, Bax A. Protein Sci. 15 684-698 (2006)
  49. Mouse bestrophin-2 is a bona fide Cl(-) channel: identification of a residue important in anion binding and conduction. Qu Z, Fischmeister R, Hartzell C. J. Gen. Physiol. 123 327-340 (2004)
  50. Domain reorientation and rotation of an intracellular assembly regulate conduction in Kir potassium channels. Clarke OB, Caputo AT, Hill AP, Vandenberg JI, Smith BJ, Gulbis JM. Cell 141 1018-1029 (2010)
  51. Modeling the structure of agitoxin in complex with the Shaker K+ channel: a computational approach based on experimental distance restraints extracted from thermodynamic mutant cycles. Eriksson MA, Roux B. Biophys. J. 83 2595-2609 (2002)
  52. n-->pi* interactions in proteins. Bartlett GJ, Choudhary A, Raines RT, Woolfson DN. Nat. Chem. Biol. 6 615-620 (2010)
  53. Structural basis of TEA blockade in a model potassium channel. Lenaeus MJ, Vamvouka M, Focia PJ, Gross A. Nat. Struct. Mol. Biol. 12 454-459 (2005)
  54. Tuning ion coordination architectures to enable selective partitioning. Varma S, Rempe SB. Biophys. J. 93 1093-1099 (2007)
  55. Voltage-dependent gating at the KcsA selectivity filter. Cordero-Morales JF, Cuello LG, Perozo E. Nat. Struct. Mol. Biol. 13 319-322 (2006)
  56. K(+) versus Na(+) ions in a K channel selectivity filter: a simulation study. Shrivastava IH, Tieleman DP, Biggin PC, Sansom MS. Biophys. J. 83 633-645 (2002)
  57. Novel insights into K+ selectivity from high-resolution structures of an open K+ channel pore. Ye S, Li Y, Jiang Y. Nat. Struct. Mol. Biol. 17 1019-1023 (2010)
  58. Gating the pore of P2X receptor channels. Li M, Chang TH, Silberberg SD, Swartz KJ. Nat. Neurosci. 11 883-887 (2008)
  59. A yeast genetic screen reveals a critical role for the pore helix domain in TRP channel gating. Myers BR, Bohlen CJ, Julius D. Neuron 58 362-373 (2008)
  60. On the importance of atomic fluctuations, protein flexibility, and solvent in ion permeation. Allen TW, Andersen OS, Roux B. J. Gen. Physiol. 124 679-690 (2004)
  61. Na+ block and permeation in a K+ channel of known structure. Nimigean CM, Miller C. J. Gen. Physiol. 120 323-335 (2002)
  62. Detection of the opening of the bundle crossing in KcsA with fluorescence lifetime spectroscopy reveals the existence of two gates for ion conduction. Blunck R, Cordero-Morales JF, Cuello LG, Perozo E, Bezanilla F. J. Gen. Physiol. 128 569-581 (2006)
  63. Open structure of the Ca2+ gating ring in the high-conductance Ca2+-activated K+ channel. Yuan P, Leonetti MD, Hsiung Y, MacKinnon R. Nature 481 94-97 (2011)
  64. Selectivity in K+ channels is due to topological control of the permeant ion's coordinated state. Bostick DL, Brooks CL. Proc. Natl. Acad. Sci. U.S.A. 104 9260-9265 (2007)
  65. A mechanism of regulating transmembrane potassium flux through a ligand-mediated conformational switch. Roosild TP, Miller S, Booth IR, Choe S. Cell 109 781-791 (2002)
  66. Binding of anionic lipids to at least three nonannular sites on the potassium channel KcsA is required for channel opening. Marius P, Zagnoni M, Sandison ME, East JM, Morgan H, Lee AG. Biophys. J. 94 1689-1698 (2008)
  67. Ion transport through membrane-spanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations. Peter C, Hummer G. Biophys. J. 89 2222-2234 (2005)
  68. Crystal structures of a ligand-free MthK gating ring: insights into the ligand gating mechanism of K+ channels. Ye S, Li Y, Chen L, Jiang Y. Cell 126 1161-1173 (2006)
  69. A structural link between inactivation and block of a K+ channel. Ader C, Schneider R, Hornig S, Velisetty P, Wilson EM, Lange A, Giller K, Ohmert I, Martin-Eauclaire MF, Trauner D, Becker S, Pongs O, Baldus M. Nat. Struct. Mol. Biol. 15 605-612 (2008)
  70. Structural basis of two-stage voltage-dependent activation in K+ channels. Silverman WR, Roux B, Papazian DM. Proc. Natl. Acad. Sci. U.S.A. 100 2935-2940 (2003)
  71. Structure of a pore-blocking toxin in complex with a eukaryotic voltage-dependent K(+) channel. Banerjee A, Lee A, Campbell E, Mackinnon R. Elife 2 e00594 (2013)
  72. High-resolution structure of the open NaK channel. Alam A, Jiang Y. Nat. Struct. Mol. Biol. 16 30-34 (2009)
  73. A structural basis for Mg2+ homeostasis and the CorA translocation cycle. Payandeh J, Pai EF. EMBO J. 25 3762-3773 (2006)
  74. Crystal structures of apocalmodulin and an apocalmodulin/SK potassium channel gating domain complex. Schumacher MA, Crum M, Miller MC. Structure 12 849-860 (2004)
  75. Dipolar waves map the structure and topology of helices in membrane proteins. Mesleh MF, Lee S, Veglia G, Thiriot DS, Marassi FM, Opella SJ. J. Am. Chem. Soc. 125 8928-8935 (2003)
  76. Electric field-controlled water permeation coupled to ion transport through a nanopore. Dzubiella J, Allen RJ, Hansen JP. J Chem Phys 120 5001-5004 (2004)
  77. Intermittent permeation of cylindrical nanopores by water. Allen R, Melchionna S, Hansen JP. Phys. Rev. Lett. 89 175502 (2002)
  78. Mechanism of potassium-channel selectivity revealed by Na(+) and Li(+) binding sites within the KcsA pore. Thompson AN, Kim I, Panosian TD, Iverson TM, Allen TW, Nimigean CM. Nat. Struct. Mol. Biol. 16 1317-1324 (2009)
  79. Conformational dynamics of the KcsA potassium channel governs gating properties. Baker KA, Tzitzilonis C, Kwiatkowski W, Choe S, Riek R. Nat. Struct. Mol. Biol. 14 1089-1095 (2007)
  80. A mutant KcsA K(+) channel with altered conduction properties and selectivity filter ion distribution. Zhou M, MacKinnon R. J. Mol. Biol. 338 839-846 (2004)
  81. Computational design of water-soluble analogues of the potassium channel KcsA. Slovic AM, Kono H, Lear JD, Saven JG, DeGrado WF. Proc. Natl. Acad. Sci. U.S.A. 101 1828-1833 (2004)
  82. Electroosmotic enhancement of the binding of a neutral molecule to a transmembrane pore. Gu LQ, Cheley S, Bayley H. Proc. Natl. Acad. Sci. U.S.A. 100 15498-15503 (2003)
  83. Structural basis for ion permeation mechanism in pentameric ligand-gated ion channels. Sauguet L, Poitevin F, Murail S, Van Renterghem C, Moraga-Cid G, Malherbe L, Thompson AW, Koehl P, Corringer PJ, Baaden M, Delarue M. EMBO J. 32 728-741 (2013)
  84. PDBTM: Protein Data Bank of transmembrane proteins after 8 years. Kozma D, Simon I, Tusnády GE. Nucleic Acids Res. 41 D524-9 (2013)
  85. Common mechanism of pore opening shared by five different potassium channels. Shrivastava IH, Bahar I. Biophys. J. 90 3929-3940 (2006)
  86. Mechanism of block of hEag1 K+ channels by imipramine and astemizole. García-Ferreiro RE, Kerschensteiner D, Major F, Monje F, Stühmer W, Pardo LA. J. Gen. Physiol. 124 301-317 (2004)
  87. MtsslWizard: In Silico Spin-Labeling and Generation of Distance Distributions in PyMOL. Hagelueken G, Ward R, Naismith JH, Schiemann O. Appl Magn Reson 42 377-391 (2012)
  88. Principles underlying energetic coupling along an allosteric communication trajectory of a voltage-activated K+ channel. Sadovsky E, Yifrach O. Proc. Natl. Acad. Sci. U.S.A. 104 19813-19818 (2007)
  89. Investigating the putative glycine hinge in Shaker potassium channel. Ding S, Ingleby L, Ahern CA, Horn R. J. Gen. Physiol. 126 213-226 (2005)
  90. Helical packing patterns in membrane and soluble proteins. Gimpelev M, Forrest LR, Murray D, Honig B. Biophys. J. 87 4075-4086 (2004)
  91. Mechanism of aquaporin-4's fast and highly selective water conduction and proton exclusion. Tani K, Mitsuma T, Hiroaki Y, Kamegawa A, Nishikawa K, Tanimura Y, Fujiyoshi Y. J. Mol. Biol. 389 694-706 (2009)
  92. A quantitative description of KcsA gating I: macroscopic currents. Chakrapani S, Cordero-Morales JF, Perozo E. J. Gen. Physiol. 130 465-478 (2007)
  93. TPK1, a Ca(2+)-regulated Arabidopsis vacuole two-pore K(+) channel is activated by 14-3-3 proteins. Latz A, Becker D, Hekman M, Müller T, Beyhl D, Marten I, Eing C, Fischer A, Dunkel M, Bertl A, Rapp UR, Hedrich R. Plant J. 52 449-459 (2007)
  94. Ion-binding properties of the ClC chloride selectivity filter. Lobet S, Dutzler R. EMBO J. 25 24-33 (2006)
  95. Modeling diverse range of potassium channels with Brownian dynamics. Chung SH, Allen TW, Kuyucak S. Biophys. J. 83 263-277 (2002)
  96. Coherence resonance in a single-walled carbon nanotube ion channel. Lee CY, Choi W, Han JH, Strano MS. Science 329 1320-1324 (2010)
  97. Interactions of phospholipids with the potassium channel KcsA. Williamson IM, Alvis SJ, East JM, Lee AG. Biophys. J. 83 2026-2038 (2002)
  98. Lighting up single ion channels. Selvin PR. Biophys. J. 84 1-2 (2003)
  99. Subangstrom resolution X-ray structure details aquaporin-water interactions. Eriksson UK, Fischer G, Friemann R, Enkavi G, Tajkhorshid E, Neutze R. Science 340 1346-1349 (2013)
  100. Crystal structure of a potassium ion transporter, TrkH. Cao Y, Jin X, Huang H, Derebe MG, Levin EJ, Kabaleeswaran V, Pan Y, Punta M, Love J, Weng J, Quick M, Ye S, Kloss B, Bruni R, Martinez-Hackert E, Hendrickson WA, Rost B, Javitch JA, Rajashankar KR, Jiang Y, Zhou M. Nature 471 336-340 (2011)
  101. Global twisting motion of single molecular KcsA potassium channel upon gating. Shimizu H, Iwamoto M, Konno T, Nihei A, Sasaki YC, Oiki S. Cell 132 67-78 (2008)
  102. The predominant role of coordination number in potassium channel selectivity. Thomas M, Jayatilaka D, Corry B. Biophys. J. 93 2635-2643 (2007)
  103. Lipid-protein interactions of integral membrane proteins: a comparative simulation study. Deol SS, Bond PJ, Domene C, Sansom MS. Biophys. J. 87 3737-3749 (2004)
  104. Origin of 1/f(alpha) noise in membrane channel currents. Siwy Z, Fuliński A. Phys. Rev. Lett. 89 158101 (2002)
  105. PoreWalker: a novel tool for the identification and characterization of channels in transmembrane proteins from their three-dimensional structure. Pellegrini-Calace M, Maiwald T, Thornton JM. PLoS Comput. Biol. 5 e1000440 (2009)
  106. Three-dimensional structure of I(to); Kv4.2-KChIP2 ion channels by electron microscopy at 21 Angstrom resolution. Kim LA, Furst J, Gutierrez D, Butler MH, Xu S, Goldstein SA, Grigorieff N. Neuron 41 513-519 (2004)
  107. Mechanism of rectification in inward-rectifier K+ channels. Guo D, Ramu Y, Klem AM, Lu Z. J. Gen. Physiol. 121 261-275 (2003)
  108. Cross talk between activation and slow inactivation gates of Shaker potassium channels. Panyi G, Deutsch C. J. Gen. Physiol. 128 547-559 (2006)
  109. Constitutive activation of the Shaker Kv channel. Sukhareva M, Hackos DH, Swartz KJ. J. Gen. Physiol. 122 541-556 (2003)
  110. Dynamics of K+ ion conduction through Kv1.2. Khalili-Araghi F, Tajkhorshid E, Schulten K. Biophys. J. 91 L72-4 (2006)
  111. K+/Na+ selectivity in K channels and valinomycin: over-coordination versus cavity-size constraints. Varma S, Sabo D, Rempe SB. J. Mol. Biol. 376 13-22 (2008)
  112. Grand canonical Monte Carlo simulations of water in protein environments. Woo HJ, Dinner AR, Roux B. J Chem Phys 121 6392-6400 (2004)
  113. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels. Shaya D, Findeisen F, Abderemane-Ali F, Arrigoni C, Wong S, Nurva SR, Loussouarn G, Minor DL. J. Mol. Biol. 426 467-483 (2014)
  114. Gating at the selectivity filter in cyclic nucleotide-gated channels. Contreras JE, Srikumar D, Holmgren M. Proc. Natl. Acad. Sci. U.S.A. 105 3310-3314 (2008)
  115. Detection of dynamic water molecules in a microcrystalline sample of the SH3 domain of alpha-spectrin by MAS solid-state NMR. Chevelkov V, Faelber K, Diehl A, Heinemann U, Oschkinat H, Reif B. J. Biomol. NMR 31 295-310 (2005)
  116. Density-dependent changes of the pore properties of the P2X2 receptor channel. Fujiwara Y, Kubo Y. J. Physiol. (Lond.) 558 31-43 (2004)
  117. Activation-coupled inactivation in the bacterial potassium channel KcsA. Gao L, Mi X, Paajanen V, Wang K, Fan Z. Proc. Natl. Acad. Sci. U.S.A. 102 17630-17635 (2005)
  118. Status of the intracellular gate in the activated-not-open state of shaker K+ channels. del Camino D, Kanevsky M, Yellen G. J. Gen. Physiol. 126 419-428 (2005)
  119. Epithelial Na+ channel subunit stoichiometry. Staruschenko A, Adams E, Booth RE, Stockand JD. Biophys. J. 88 3966-3975 (2005)
  120. Glycine as a D-amino acid surrogate in the K(+)-selectivity filter. Valiyaveetil FI, Sekedat M, Mackinnon R, Muir TW. Proc. Natl. Acad. Sci. U.S.A. 101 17045-17049 (2004)
  121. Pore-opening mechanism in trimeric P2X receptor channels. Li M, Kawate T, Silberberg SD, Swartz KJ. Nat Commun 1 44 (2010)
  122. Models of the structure and voltage-gating mechanism of the shaker K+ channel. Durell SR, Shrivastava IH, Guy HR. Biophys. J. 87 2116-2130 (2004)
  123. Recovery from slow inactivation in K+ channels is controlled by water molecules. Ostmeyer J, Chakrapani S, Pan AC, Perozo E, Roux B. Nature 501 121-124 (2013)
  124. Coupling of activation and inactivation gate in a K+-channel: potassium and ligand sensitivity. Ader C, Schneider R, Hornig S, Velisetty P, Vardanyan V, Giller K, Ohmert I, Becker S, Pongs O, Baldus M. EMBO J. 28 2825-2834 (2009)
  125. Interaction mechanisms between polyamines and IRK1 inward rectifier K+ channels. Guo D, Lu Z. J. Gen. Physiol. 122 485-500 (2003)
  126. C-type inactivation of voltage-gated K+ channels: pore constriction or dilation? Hoshi T, Armstrong CM. J. Gen. Physiol. 141 151-160 (2013)
  127. Structural analysis of ion selectivity in the NaK channel. Alam A, Jiang Y. Nat. Struct. Mol. Biol. 16 35-41 (2009)
  128. Electrostatics of the intracellular vestibule of K+ channels. Jogini V, Roux B. J. Mol. Biol. 354 272-288 (2005)
  129. Potassium channel, ions, and water: simulation studies based on the high resolution X-ray structure of KcsA. Domene C, Sansom MS. Biophys. J. 85 2787-2800 (2003)
  130. Concerted action of two cation filters in the aquaporin water channel. Wu B, Steinbronn C, Alsterfjord M, Zeuthen T, Beitz E. EMBO J. 28 2188-2194 (2009)
  131. A quantitative description of KcsA gating II: single-channel currents. Chakrapani S, Cordero-Morales JF, Perozo E. J. Gen. Physiol. 130 479-496 (2007)
  132. Development and crystallization of a minimal thermostabilised G protein-coupled receptor. Warne T, Serrano-Vega MJ, Tate CG, Schertler GF. Protein Expr. Purif. 65 204-213 (2009)
  133. Two mechanisms of ion selectivity in protein binding sites. Yu H, Noskov SY, Roux B. Proc. Natl. Acad. Sci. U.S.A. 107 20329-20334 (2010)
  134. Structural basis underlying the dual gate properties of KcsA. Imai S, Osawa M, Takeuchi K, Shimada I. Proc. Natl. Acad. Sci. U.S.A. 107 6216-6221 (2010)
  135. The ligand-sensitive gate of a potassium channel lies close to the selectivity filter. Proks P, Antcliff JF, Ashcroft FM. EMBO Rep. 4 70-75 (2003)
  136. Membrane protein structure determination using crystallography and lipidic mesophases: recent advances and successes. Caffrey M, Li D, Dukkipati A. Biochemistry 51 6266-6288 (2012)
  137. A multipoint hydrogen-bond network underlying KcsA C-type inactivation. Cordero-Morales JF, Jogini V, Chakrapani S, Perozo E. Biophys. J. 100 2387-2393 (2011)
  138. Drug block of the hERG potassium channel: insight from modeling. Stansfeld PJ, Gedeck P, Gosling M, Cox B, Mitcheson JS, Sutcliffe MJ. Proteins 68 568-580 (2007)
  139. Polarization effects and charge transfer in the KcsA potassium channel. Bucher D, Raugei S, Guidoni L, Dal Peraro M, Rothlisberger U, Carloni P, Klein ML. Biophys. Chem. 124 292-301 (2006)
  140. The pore helix dipole has a minor role in inward rectifier channel function. Chatelain FC, Alagem N, Xu Q, Pancaroglu R, Reuveny E, Minor DL. Neuron 47 833-843 (2005)
  141. A model of the putative pore region of the cardiac ryanodine receptor channel. Welch W, Rheault S, West DJ, Williams AJ. Biophys. J. 87 2335-2351 (2004)
  142. Structure of a KirBac potassium channel with an open bundle crossing indicates a mechanism of channel gating. Bavro VN, De Zorzi R, Schmidt MR, Muniz JR, Zubcevic L, Sansom MS, Vénien-Bryan C, Tucker SJ. Nat. Struct. Mol. Biol. 19 158-163 (2012)
  143. Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites. Derebe MG, Sauer DB, Zeng W, Alam A, Shi N, Jiang Y. Proc. Natl. Acad. Sci. U.S.A. 108 598-602 (2011)
  144. Pulsed electron-electron double-resonance determination of spin-label distances and orientations on the tetrameric potassium ion channel KcsA. Endeward B, Butterwick JA, MacKinnon R, Prisner TF. J. Am. Chem. Soc. 131 15246-15250 (2009)
  145. Selective reciprocity in antimicrobial activity versus cytotoxicity of hBD-2 and crotamine. Yount NY, Kupferwasser D, Spisni A, Dutz SM, Ramjan ZH, Sharma S, Waring AJ, Yeaman MR. Proc. Natl. Acad. Sci. U.S.A. 106 14972-14977 (2009)
  146. A two-state homology model of the hERG K+ channel: application to ligand binding. Rajamani R, Tounge BA, Li J, Reynolds CH. Bioorg. Med. Chem. Lett. 15 1737-1741 (2005)
  147. Intrinsic flexibility and gating mechanism of the potassium channel KcsA. Shen Y, Kong Y, Ma J. Proc. Natl. Acad. Sci. U.S.A. 99 1949-1953 (2002)
  148. The twins K+ and Na+ in plants. Benito B, Haro R, Amtmann A, Cuin TA, Dreyer I. J. Plant Physiol. 171 723-731 (2014)
  149. Catalysis of Na+ permeation in the bacterial sodium channel Na(V)Ab. Chakrabarti N, Ing C, Payandeh J, Zheng N, Catterall WA, Pomès R. Proc. Natl. Acad. Sci. U.S.A. 110 11331-11336 (2013)
  150. Ion selectivity of the KcsA channel: a perspective from multi-ion free energy landscapes. Egwolf B, Roux B. J. Mol. Biol. 401 831-842 (2010)
  151. An ion selectivity filter in the extracellular domain of Cys-loop receptors reveals determinants for ion conductance. Hansen SB, Wang HL, Taylor P, Sine SM. J. Biol. Chem. 283 36066-36070 (2008)
  152. K channel subconductance levels result from heteromeric pore conformations. Chapman ML, VanDongen AM. J. Gen. Physiol. 126 87-103 (2005)
  153. Beyond the diffusion limit: Water flow through the empty bacterial potassium channel. Saparov SM, Pohl P. Proc. Natl. Acad. Sci. U.S.A. 101 4805-4809 (2004)
  154. The outer pore of the glutamate receptor channel has 2-fold rotational symmetry. Sobolevsky AI, Yelshansky MV, Wollmuth LP. Neuron 41 367-378 (2004)
  155. Filter flexibility in a mammalian K channel: models and simulations of Kir6.2 mutants. Capener CE, Proks P, Ashcroft FM, Sansom MS. Biophys. J. 84 2345-2356 (2003)
  156. Relationship between pore occupancy and gating in BK potassium channels. Piskorowski RA, Aldrich RW. J. Gen. Physiol. 127 557-576 (2006)
  157. Filter flexibility and distortion in a bacterial inward rectifier K+ channel: simulation studies of KirBac1.1. Domene C, Grottesi A, Sansom MS. Biophys. J. 87 256-267 (2004)
  158. Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7). Bai Y, Li M, Hwang TC. J. Gen. Physiol. 138 495-507 (2011)
  159. On the structural basis of modal gating behavior in K(+) channels. Chakrapani S, Cordero-Morales JF, Jogini V, Pan AC, Cortes DM, Roux B, Perozo E. Nat. Struct. Mol. Biol. 18 67-74 (2011)
  160. Atypical mechanism of conduction in potassium channels. Furini S, Domene C. Proc. Natl. Acad. Sci. U.S.A. 106 16074-16077 (2009)
  161. Homology modeling and molecular dynamics simulations of transmembrane domain structure of human neuronal nicotinic acetylcholine receptor. Saladino AC, Xu Y, Tang P. Biophys. J. 88 1009-1017 (2005)
  162. A cysteine scan of the inner vestibule of cyclic nucleotide-gated channels reveals architecture and rearrangement of the pore. Flynn GE, Zagotta WN. J. Gen. Physiol. 121 563-582 (2003)
  163. Separate gating mechanisms mediate the regulation of K2P potassium channel TASK-2 by intra- and extracellular pH. Niemeyer MI, Cid LP, Peña-Münzenmayer G, Sepúlveda FV. J. Biol. Chem. 285 16467-16475 (2010)
  164. TRPV4 enhances the cellular uptake of aminoglycoside antibiotics. Karasawa T, Wang Q, Fu Y, Cohen DM, Steyger PS. J. Cell. Sci. 121 2871-2879 (2008)
  165. Sodium channels: ionic model of slow inactivation and state-dependent drug binding. Tikhonov DB, Zhorov BS. Biophys. J. 93 1557-1570 (2007)
  166. Measurement of 15N relaxation in the detergent-solubilized tetrameric KcsA potassium channel. Chill JH, Louis JM, Baber JL, Bax A. J. Biomol. NMR 36 123-136 (2006)
  167. Voltage-dependent hydration and conduction properties of the hydrophobic pore of the mechanosensitive channel of small conductance. Spronk SA, Elmore DE, Dougherty DA. Biophys. J. 90 3555-3569 (2006)
  168. Rapid intracellular TEA block of the KcsA potassium channel. Kutluay E, Roux B, Heginbotham L. Biophys. J. 88 1018-1029 (2005)
  169. Fast gating in the Shaker K+ channel and the energy landscape of activation. Sigg D, Bezanilla F, Stefani E. Proc. Natl. Acad. Sci. U.S.A. 100 7611-7615 (2003)
  170. Tail end of the s6 segment: role in permeation in shaker potassium channels. Ding S, Horn R. J. Gen. Physiol. 120 87-97 (2002)
  171. Ion permeation in K⁺ channels occurs by direct Coulomb knock-on. Köpfer DA, Song C, Gruene T, Sheldrick GM, Zachariae U, de Groot BL. Science 346 352-355 (2014)
  172. Conformational dynamics in the selectivity filter of KcsA in response to potassium ion concentration. Bhate MP, Wylie BJ, Tian L, McDermott AE. J. Mol. Biol. 401 155-166 (2010)
  173. Membrane domain structures of three classes of histidine kinase receptors by cell-free expression and rapid NMR analysis. Maslennikov I, Klammt C, Hwang E, Kefala G, Okamura M, Esquivies L, Mörs K, Glaubitz C, Kwiatkowski W, Jeon YH, Choe S. Proc. Natl. Acad. Sci. U.S.A. 107 10902-10907 (2010)
  174. The selectivity of K+ ion channels: testing the hypotheses. Fowler PW, Tai K, Sansom MS. Biophys. J. 95 5062-5072 (2008)
  175. Anionic phospholipid interactions with the potassium channel KcsA: simulation studies. Deol SS, Domene C, Bond PJ, Sansom MS. Biophys. J. 90 822-830 (2006)
  176. Probing the geometry of the inner vestibule of BK channels with sugars. Brelidze TI, Magleby KL. J. Gen. Physiol. 126 105-121 (2005)
  177. Water-protein interactions from high-resolution protein crystallography. Nakasako M. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 359 1191-204 (2004)
  178. Effect of phosphatidylserine on unitary conductance and Ba2+ block of the BK Ca2+-activated K+ channel: re-examination of the surface charge hypothesis. Park JB, Kim HJ, Ryu PD, Moczydlowski E. J. Gen. Physiol. 121 375-397 (2003)
  179. On the selective ion binding hypothesis for potassium channels. Kim I, Allen TW. Proc. Natl. Acad. Sci. U.S.A. 108 17963-17968 (2011)
  180. TWIK-1 two-pore domain potassium channels change ion selectivity and conduct inward leak sodium currents in hypokalemia. Ma L, Zhang X, Chen H. Sci Signal 4 ra37 (2011)
  181. Mechanism for selectivity-inactivation coupling in KcsA potassium channels. Cheng WW, McCoy JG, Thompson AN, Nichols CG, Nimigean CM. Proc. Natl. Acad. Sci. U.S.A. 108 5272-5277 (2011)
  182. Bubbles, gating, and anesthetics in ion channels. Roth R, Gillespie D, Nonner W, Eisenberg RE. Biophys. J. 94 4282-4298 (2008)
  183. Gating and inward rectifying properties of the MthK K+ channel with and without the gating ring. Li Y, Berke I, Chen L, Jiang Y. J. Gen. Physiol. 129 109-120 (2007)
  184. Mechanism of intracellular block of the KcsA K+ channel by tetrabutylammonium: insights from X-ray crystallography, electrophysiology and replica-exchange molecular dynamics simulations. Faraldo-Gómez JD, Kutluay E, Jogini V, Zhao Y, Heginbotham L, Roux B. J. Mol. Biol. 365 649-662 (2007)
  185. The pore helix is involved in stabilizing the open state of inwardly rectifying K+ channels. Alagem N, Yesylevskyy S, Reuveny E. Biophys. J. 85 300-312 (2003)
  186. A cation-pi interaction between extracellular TEA and an aromatic residue in potassium channels. Ahern CA, Eastwood AL, Lester HA, Dougherty DA, Horn R. J. Gen. Physiol. 128 649-657 (2006)
  187. Mutation of colocalized residues of the pore helix and transmembrane segments S5 and S6 disrupt deactivation and modify inactivation of KCNQ1 K+ channels. Seebohm G, Westenskow P, Lang F, Sanguinetti MC. J. Physiol. (Lond.) 563 359-368 (2005)
  188. Regulation of K+ flow by a ring of negative charges in the outer pore of BKCa channels. Part I: Aspartate 292 modulates K+ conduction by external surface charge effect. Haug T, Sigg D, Ciani S, Toro L, Stefani E, Olcese R. J. Gen. Physiol. 124 173-184 (2004)
  189. Cryo-electron microscopy structure of the Slo2.2 Na(+)-activated K(+) channel. Hite RK, Yuan P, Li Z, Hsuing Y, Walz T, MacKinnon R. Nature 527 198-203 (2015)
  190. Atomic-level simulation of current-voltage relationships in single-file ion channels. Jensen MØ, Jogini V, Eastwood MP, Shaw DE. J. Gen. Physiol. 141 619-632 (2013)
  191. Direct analysis of cooperativity in multisubunit allosteric proteins. Zandany N, Ovadia M, Orr I, Yifrach O. Proc. Natl. Acad. Sci. U.S.A. 105 11697-11702 (2008)
  192. Functional analysis of Kv1.2 and paddle chimera Kv channels in planar lipid bilayers. Tao X, MacKinnon R. J. Mol. Biol. 382 24-33 (2008)
  193. Open-state conformation of the KcsA K+ channel: Monte Carlo normal mode following simulations. Miloshevsky GV, Jordan PC. Structure 15 1654-1662 (2007)
  194. Mutation-induced blocker permeability and multiion block of the CFTR chloride channel pore. Gong X, Linsdell P. J. Gen. Physiol. 122 673-687 (2003)
  195. Hydration structure of salt solutions from ab initio molecular dynamics. Bankura A, Carnevale V, Klein ML. J Chem Phys 138 014501 (2013)
  196. A structural model for K2P potassium channels based on 23 pairs of interacting sites and continuum electrostatics. Kollewe A, Lau AY, Sullivan A, Roux B, Goldstein SA. J. Gen. Physiol. 134 53-68 (2009)
  197. Crystallographic study of the tetrabutylammonium block to the KcsA K+ channel. Yohannan S, Hu Y, Zhou Y. J. Mol. Biol. 366 806-814 (2007)
  198. Computational simulations of interactions of scorpion toxins with the voltage-gated potassium ion channel. Yu K, Fu W, Liu H, Luo X, Chen KX, Ding J, Shen J, Jiang H. Biophys. J. 86 3542-3555 (2004)
  199. Evolving potassium channels by means of yeast selection reveals structural elements important for selectivity. Bichet D, Lin YF, Ibarra CA, Huang CS, Yi BA, Jan YN, Jan LY. Proc. Natl. Acad. Sci. U.S.A. 101 4441-4446 (2004)
  200. Protons block BK channels by competitive inhibition with K+ and contribute to the limits of unitary currents at high voltages. Brelidze TI, Magleby KL. J. Gen. Physiol. 123 305-319 (2004)
  201. Substrate specificity of nickel/cobalt permeases: insights from mutants altered in transmembrane domains I and II. Degen O, Eitinger T. J. Bacteriol. 184 3569-3577 (2002)
  202. NaChBac: the long lost sodium channel ancestor. Charalambous K, Wallace BA. Biochemistry 50 6742-6752 (2011)
  203. Ligand binding to the voltage-gated Kv1.5 potassium channel in the open state--docking and computer simulations of a homology model. Andér M, Luzhkov VB, Aqvist J. Biophys. J. 94 820-831 (2008)
  204. Molecular determinants and role of an anion binding site in the external mouth of the CFTR chloride channel pore. Gong X, Linsdell P. J. Physiol. (Lond.) 549 387-397 (2003)
  205. Identification of a site involved in the block by extracellular Mg(2+) and Ba(2+) as well as permeation of K(+) in the Kir2.1 K(+) channel. Murata Y, Fujiwara Y, Kubo Y. J. Physiol. (Lond.) 544 665-677 (2002)
  206. Gain-of-function mutations indicate that Escherichia coli Kch forms a functional K+ conduit in vivo. Kuo MM, Saimi Y, Kung C. EMBO J. 22 4049-4058 (2003)
  207. How many Orai's does it take to make a CRAC channel? Thompson JL, Shuttleworth TJ. Sci Rep 3 1961 (2013)
  208. Accurate determination of the binding free energy for KcsA-charybdotoxin complex from the potential of mean force calculations with restraints. Chen PC, Kuyucak S. Biophys. J. 100 2466-2474 (2011)
  209. Prospective validation of a comprehensive in silico hERG model and its applications to commercial compound and drug databases. Doddareddy MR, Klaasse EC, Shagufta, Ijzerman AP, Bender A. ChemMedChem 5 716-729 (2010)
  210. Energetics of glutamate receptor ligand binding domain dimer assembly are modulated by allosteric ions. Chaudhry C, Plested AJ, Schuck P, Mayer ML. Proc. Natl. Acad. Sci. U.S.A. 106 12329-12334 (2009)
  211. Ion selectivity in the KcsA potassium channel from the perspective of the ion binding site. Dixit PD, Merchant S, Asthagiri D. Biophys. J. 96 2138-2145 (2009)
  212. Long-pore electrostatics in inward-rectifier potassium channels. Robertson JL, Palmer LG, Roux B. J. Gen. Physiol. 132 613-632 (2008)
  213. Role of flexibility and polarity as determinants of the hydration of internal cavities and pockets in proteins. Damjanović A, Schlessman JL, Fitch CA, García AE, García-Moreno E B. Biophys. J. 93 2791-2804 (2007)
  214. Structural and functional consequences of an amide-to-ester substitution in the selectivity filter of a potassium channel. Valiyaveetil FI, Sekedat M, MacKinnon R, Muir TW. J. Am. Chem. Soc. 128 11591-11599 (2006)
  215. Voltage-gated K+ channel from mammalian brain: 3D structure at 18A of the complete (alpha)4(beta)4 complex. Orlova EV, Papakosta M, Booy FP, van Heel M, Dolly JO. J. Mol. Biol. 326 1005-1012 (2003)
  216. Self-Learning Adaptive Umbrella Sampling Method for the Determination of Free Energy Landscapes in Multiple Dimensions. Wojtas-Niziurski W, Meng Y, Roux B, Bernèche S. J Chem Theory Comput 9 1885-1895 (2013)
  217. A molecular mechanism for proton-dependent gating in KcsA. Cuello LG, Cortes DM, Jogini V, Sompornpisut A, Perozo E. FEBS Lett. 584 1126-1132 (2010)
  218. Hydration number, topological control, and ion selectivity. Yu H, Noskov SY, Roux B. J Phys Chem B 113 8725-8730 (2009)
  219. Evidence for a deep pore activation gate in small conductance Ca2+-activated K+ channels. Bruening-Wright A, Lee WS, Adelman JP, Maylie J. J. Gen. Physiol. 130 601-610 (2007)
  220. Probing the cavity of the slow inactivated conformation of shaker potassium channels. Panyi G, Deutsch C. J. Gen. Physiol. 129 403-418 (2007)
  221. A model of voltage gating developed using the KvAP channel crystal structure. Shrivastava IH, Durell SR, Guy HR. Biophys. J. 87 2255-2270 (2004)
  222. An antibody library for stabilizing and crystallizing membrane proteins - selecting binders to the citrate carrier CitS. Röthlisberger D, Pos KM, Plückthun A. FEBS Lett. 564 340-348 (2004)
  223. Regulation of Kir channels by intracellular pH and extracellular K(+): mechanisms of coupling. Dahlmann A, Li M, Gao Z, McGarrigle D, Sackin H, Palmer LG. J. Gen. Physiol. 123 441-454 (2004)
  224. Role of the dielectric constants of membrane proteins and channel water in ion permeation. Baştuğ T, Kuyucak S. Biophys. J. 84 2871-2882 (2003)
  225. Structural transitions in ion coordination driven by changes in competition for ligand binding. Varma S, Rempe SB. J. Am. Chem. Soc. 130 15405-15419 (2008)
  226. Influence of pore residues on permeation properties in the Kv2.1 potassium channel. Evidence for a selective functional interaction of K+ with the outer vestibule. Consiglio JF, Andalib P, Korn SJ. J. Gen. Physiol. 121 111-124 (2003)
  227. Amphipathic antenna of an inward rectifier K+ channel responds to changes in the inner membrane leaflet. Iwamoto M, Oiki S. Proc. Natl. Acad. Sci. U.S.A. 110 749-754 (2013)
  228. The p7 protein of hepatitis C virus forms structurally plastic, minimalist ion channels. Chandler DE, Penin F, Schulten K, Chipot C. PLoS Comput. Biol. 8 e1002702 (2012)
  229. Protonation state of E71 in KcsA and its role for channel collapse and inactivation. Bhate MP, McDermott AE. Proc. Natl. Acad. Sci. U.S.A. 109 15265-15270 (2012)
  230. Perspectives on: ion selectivity: design principles for K+ selectivity in membrane transport. Varma S, Rogers DM, Pratt LR, Rempe SB. J. Gen. Physiol. 137 479-488 (2011)
  231. The structure of water in the hydration shell of cations from x-ray Raman and small angle x-ray scattering measurements. Waluyo I, Huang C, Nordlund D, Bergmann U, Weiss TM, Pettersson LG, Nilsson A. J Chem Phys 134 064513 (2011)
  232. Dual-mode phospholipid regulation of human inward rectifying potassium channels. Cheng WW, D'Avanzo N, Doyle DA, Nichols CG. Biophys. J. 100 620-628 (2011)
  233. Molecular dynamics and brownian dynamics investigation of ion permeation and anesthetic halothane effects on a proton-gated ion channel. Cheng MH, Coalson RD, Tang P. J. Am. Chem. Soc. 132 16442-16449 (2010)
  234. Mechanism and energetics of charybdotoxin unbinding from a potassium channel from molecular dynamics simulations. Chen PC, Kuyucak S. Biophys. J. 96 2577-2588 (2009)
  235. The interfacial lipid binding site on the potassium channel KcsA is specific for anionic phospholipids. Marius P, Alvis SJ, East JM, Lee AG. Biophys. J. 89 4081-4089 (2005)
  236. Targeted molecular dynamics of an open-state KcsA channel. Compoint M, Picaud F, Ramseyer C, Girardet C. J Chem Phys 122 134707 (2005)
  237. The external TEA binding site and C-type inactivation in voltage-gated potassium channels. Andalib P, Consiglio JF, Trapani JG, Korn SJ. Biophys. J. 87 3148-3161 (2004)
  238. Mechanisms underlying modulation of neuronal KCNQ2/KCNQ3 potassium channels by extracellular protons. Prole DL, Lima PA, Marrion NV. J. Gen. Physiol. 122 775-793 (2003)
  239. Localization of divalent cation-binding site in the pore of a small conductance Ca(2+)-activated K(+) channel and its role in determining current-voltage relationship. Soh H, Park CS. Biophys. J. 83 2528-2538 (2002)
  240. Inter- and intrasubunit interactions between transmembrane helices in the open state of P2X receptor channels. Heymann G, Dai J, Li M, Silberberg SD, Zhou HX, Swartz KJ. Proc. Natl. Acad. Sci. U.S.A. 110 E4045-54 (2013)
  241. External Ba2+ block of the two-pore domain potassium channel TREK-1 defines conformational transition in its selectivity filter. Ma XY, Yu JM, Zhang SZ, Liu XY, Wu BH, Wei XL, Yan JQ, Sun HL, Yan HT, Zheng JQ. J. Biol. Chem. 286 39813-39822 (2011)
  242. Structural studies of ion permeation and Ca2+ blockage of a bacterial channel mimicking the cyclic nucleotide-gated channel pore. Derebe MG, Zeng W, Li Y, Alam A, Jiang Y. Proc. Natl. Acad. Sci. U.S.A. 108 592-597 (2011)
  243. Exploring the ion selectivity properties of a large number of simplified binding site models. Roux B. Biophys. J. 98 2877-2885 (2010)
  244. Selection of inhibitor-resistant viral potassium channels identifies a selectivity filter site that affects barium and amantadine block. Chatelain FC, Gazzarrini S, Fujiwara Y, Arrigoni C, Domigan C, Ferrara G, Pantoja C, Thiel G, Moroni A, Minor DL. PLoS ONE 4 e7496 (2009)
  245. Nucleotide recognition by CopA, a Cu+-transporting P-type ATPase. Tsuda T, Toyoshima C. EMBO J. 28 1782-1791 (2009)
  246. The molecular mechanism of toxin-induced conformational changes in a potassium channel: relation to C-type inactivation. Zachariae U, Schneider R, Velisetty P, Lange A, Seeliger D, Wacker SJ, Karimi-Nejad Y, Vriend G, Becker S, Pongs O, Baldus M, de Groot BL. Structure 16 747-754 (2008)
  247. Permeant cations and blockers modulate pH gating of ROMK channels. Sackin H, Vasilyev A, Palmer LG, Krambis M. Biophys. J. 84 910-921 (2003)
  248. The link between ion permeation and inactivation gating of Kv4 potassium channels. Shahidullah M, Covarrubias M. Biophys. J. 84 928-941 (2003)
  249. Transmembrane allosteric coupling of the gates in a potassium channel. Wylie BJ, Bhate MP, McDermott AE. Proc. Natl. Acad. Sci. U.S.A. 111 185-190 (2014)
  250. Side pockets provide the basis for a new mechanism of Kv channel-specific inhibition. Marzian S, Stansfeld PJ, Rapedius M, Rinné S, Nematian-Ardestani E, Abbruzzese JL, Steinmeyer K, Sansom MS, Sanguinetti MC, Baukrowitz T, Decher N. Nat. Chem. Biol. 9 507-513 (2013)
  251. The pore of voltage-gated potassium ion channels is strained when closed. Fowler PW, Sansom MS. Nat Commun 4 1872 (2013)
  252. Protein interactions central to stabilizing the K+ channel selectivity filter in a four-sited configuration for selective K+ permeation. Sauer DB, Zeng W, Raghunathan S, Jiang Y. Proc. Natl. Acad. Sci. U.S.A. 108 16634-16639 (2011)
  253. Gating of a pH-sensitive K(2P) potassium channel by an electrostatic effect of basic sensor residues on the selectivity filter. Zúñiga L, Márquez V, González-Nilo FD, Chipot C, Cid LP, Sepúlveda FV, Niemeyer MI. PLoS ONE 6 e16141 (2011)
  254. Modular strategy for the semisynthesis of a K+ channel: investigating interactions of the pore helix. Komarov AG, Linn KM, Devereaux JJ, Valiyaveetil FI. ACS Chem. Biol. 4 1029-1038 (2009)
  255. NMR studies of a channel protein without membranes: structure and dynamics of water-solubilized KcsA. Ma D, Tillman TS, Tang P, Meirovitch E, Eckenhoff R, Carnini A, Xu Y. Proc. Natl. Acad. Sci. U.S.A. 105 16537-16542 (2008)
  256. Local and global structure of the monomeric subunit of the potassium channel KcsA probed by NMR. Chill JH, Louis JM, Delaglio F, Bax A. Biochim. Biophys. Acta 1768 3260-3270 (2007)
  257. Homology modeling and molecular dynamics simulations of the alpha1 glycine receptor reveals different states of the channel. Cheng MH, Cascio M, Coalson RD. Proteins 68 581-593 (2007)
  258. Atomic determinants of state-dependent block of sodium channels by charged local anesthetics and benzocaine. Tikhonov DB, Bruhova I, Zhorov BS. FEBS Lett. 580 6027-6032 (2006)
  259. Crystals of sarcoplasmic reticulum Ca(2+)-ATPase. Sørensen TL, Olesen C, Jensen AM, Møller JV, Nissen P. J. Biotechnol. 124 704-716 (2006)
  260. Functional role and affinity of inorganic cations in stabilizing the tetrameric structure of the KcsA K+ channel. Krishnan MN, Bingham JP, Lee SH, Trombley P, Moczydlowski E. J. Gen. Physiol. 126 271-283 (2005)
  261. Structural basis of the KcsA K(+) channel and agitoxin2 pore-blocking toxin interaction by using the transferred cross-saturation method. Takeuchi K, Yokogawa M, Matsuda T, Sugai M, Kawano S, Kohno T, Nakamura H, Takahashi H, Shimada I. Structure 11 1381-1392 (2003)
  262. Pore- and state-dependent cadmium block of I(Ks) channels formed with MinK-55C and wild-type KCNQ1 subunits. Chen H, Sesti F, Goldstein SA. Biophys. J. 84 3679-3689 (2003)
  263. Analysis of the selectivity filter of the voltage-gated sodium channel Na(v)Rh. Zhang X, Xia M, Li Y, Liu H, Jiang X, Ren W, Wu J, DeCaen P, Yu F, Huang S, He J, Clapham DE, Yan N, Gong H. Cell Res. 23 409-422 (2013)
  264. Molecular template for a voltage sensor in a novel K+ channel. III. Functional reconstitution of a sensorless pore module from a prokaryotic Kv channel. Santos JS, Grigoriev SM, Montal M. J. Gen. Physiol. 132 651-666 (2008)
  265. Determinants within the turret and pore-loop domains of KCNQ3 K+ channels governing functional activity. Zaika O, Hernandez CC, Bal M, Tolstykh GP, Shapiro MS. Biophys. J. 95 5121-5137 (2008)
  266. Models of the structure and gating mechanisms of the pore domain of the NaChBac ion channel. Shafrir Y, Durell SR, Guy HR. Biophys. J. 95 3650-3662 (2008)
  267. A composite model for HERG blockade. Kramer C, Beck B, Kriegl JM, Clark T. ChemMedChem 3 254-265 (2008)
  268. Mechanism of the modulation of Kv4:KChIP-1 channels by external K+. Kaulin YA, De Santiago-Castillo JA, Rocha CA, Covarrubias M. Biophys. J. 94 1241-1251 (2008)
  269. Saturation and microsecond gating of current indicate depletion-induced instability of the MaxiK selectivity filter. Schroeder I, Hansen UP. J. Gen. Physiol. 130 83-97 (2007)
  270. Production and characterization of monoclonal antibodies sensitive to conformation in the 5HT2c serotonin receptor. Mancia F, Brenner-Morton S, Siegel R, Assur Z, Sun Y, Schieren I, Mendelsohn M, Axel R, Hendrickson WA. Proc. Natl. Acad. Sci. U.S.A. 104 4303-4308 (2007)
  271. Locating missing water molecules in protein cavities by the three-dimensional reference interaction site model theory of molecular solvation. Imai T, Hiraoka R, Kovalenko A, Hirata F. Proteins 66 804-813 (2007)
  272. On the origin of asymmetric interactions between permeant anions and the cystic fibrosis transmembrane conductance regulator chloride channel pore. Fatehi M, St Aubin CN, Linsdell P. Biophys. J. 92 1241-1253 (2007)
  273. Ion permeation dynamics in carbon nanotubes. Liu H, Murad S, Jameson CJ. J Chem Phys 125 084713 (2006)
  274. The intrinsic flexibility of the Kv voltage sensor and its implications for channel gating. Sands ZA, Grottesi A, Sansom MS. Biophys. J. 90 1598-1606 (2006)
  275. Coupled K+-water flux through the HERG potassium channel measured by an osmotic pulse method. Ando H, Kuno M, Shimizu H, Muramatsu I, Oiki S. J. Gen. Physiol. 126 529-538 (2005)
  276. A homology model of the pore region of HCN channels. Giorgetti A, Carloni P, Mistrik P, Torre V. Biophys. J. 89 932-944 (2005)
  277. Interactions of anionic phospholipids and phosphatidylethanolamine with the potassium channel KcsA. Alvis SJ, Williamson IM, East JM, Lee AG. Biophys. J. 85 3828-3838 (2003)
  278. Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana. Kintzer AF, Stroud RM. Nature 531 258-262 (2016)
  279. Semisynthetic K+ channels show that the constricted conformation of the selectivity filter is not the C-type inactivated state. Devaraneni PK, Komarov AG, Costantino CA, Devereaux JJ, Matulef K, Valiyaveetil FI. Proc. Natl. Acad. Sci. U.S.A. 110 15698-15703 (2013)
  280. The role of K(+) channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana. Sharma T, Dreyer I, Riedelsberger J. Front Plant Sci 4 224 (2013)
  281. Dynamics, energetics, and selectivity of the low-K+ KcsA channel structure. Domene C, Furini S. J. Mol. Biol. 389 637-645 (2009)
  282. Conformational changes in the selectivity filter of the open-state KcsA channel: an energy minimization study. Miloshevsky GV, Jordan PC. Biophys. J. 95 3239-3251 (2008)
  283. End-point targeted molecular dynamics: large-scale conformational changes in potassium channels. Mashl RJ, Jakobsson E. Biophys. J. 94 4307-4319 (2008)
  284. Normal-mode refinement of anisotropic thermal parameters for potassium channel KcsA at 3.2 A crystallographic resolution. Chen X, Poon BK, Dousis A, Wang Q, Ma J. Structure 15 955-962 (2007)
  285. Ion channels of glutamate receptors: structural modeling. Tikhonov DB. Mol. Membr. Biol. 24 135-147 (2007)
  286. Free energy simulations of single and double ion occupancy in gramicidin A. Baştuğ T, Kuyucak S. J Chem Phys 126 105103 (2007)
  287. Amyloid formation may involve alpha- to beta sheet interconversion via peptide plane flipping. Milner-White JE, Watson JD, Qi G, Hayward S. Structure 14 1369-1376 (2006)
  288. Mimicking solvent shells in the gas phase. II. Solvation of K+. Miller DJ, Lisy JM. J Chem Phys 124 024319 (2006)
  289. Functional influence of the pore helix glutamate in the KcsA K+ channel. Choi H, Heginbotham L. Biophys. J. 86 2137-2144 (2004)
  290. Structure-based discovery of potassium channel blockers from natural products: virtual screening and electrophysiological assay testing. Liu H, Li Y, Song M, Tan X, Cheng F, Zheng S, Shen J, Luo X, Ji R, Yue J, Hu G, Jiang H, Chen K. Chem. Biol. 10 1103-1113 (2003)
  291. Quantitative analysis of the water occupancy around the selectivity filter of a K+ channel in different gating modes. Weingarth M, van der Cruijsen EA, Ostmeyer J, Lievestro S, Roux B, Baldus M. J. Am. Chem. Soc. 136 2000-2007 (2014)
  292. Tetraethylammonium binding to the outer mouth of the KcsA potassium channel: implications for ion permeation. Guidoni L, Carloni P. J. Recept. Signal Transduct. Res. 22 315-331 (2002)
  293. Proton inhibition of unitary currents of vanilloid receptors. Liu B, Yao J, Wang Y, Li H, Qin F. J. Gen. Physiol. 134 243-258 (2009)
  294. Mutations reveal voltage gating of CNGA1 channels in saturating cGMP. Martínez-François JR, Xu Y, Lu Z. J. Gen. Physiol. 134 151-164 (2009)
  295. Structural refinement of membrane proteins by restrained molecular dynamics and solvent accessibility data. Sompornpisut P, Roux B, Perozo E. Biophys. J. 95 5349-5361 (2008)
  296. Polymer-driven crystallization. Nauli S, Farr S, Lee YJ, Kim HY, Faham S, Bowie JU. Protein Sci. 16 2542-2551 (2007)
  297. Conduction properties of KcsA measured using brownian dynamics with flexible carbonyl groups in the selectivity filter. Chung SH, Corry B. Biophys. J. 93 44-53 (2007)
  298. Comment Membrane biology: permutations of permeability. Zagotta WN. Nature 440 427-429 (2006)
  299. Role of conserved glycines in pH gating of Kir1.1 (ROMK). Sackin H, Nanazashvili M, Palmer LG, Li H. Biophys. J. 90 3582-3589 (2006)
  300. Beta1-subunit modulates the Nav1.4 sodium channel by changing the surface charge. Ferrera L, Moran O. Exp Brain Res 172 139-150 (2006)
  301. Pore-lining residues identified by single channel SCAM studies in Cx46 hemichannels. Kronengold J, Trexler EB, Bukauskas FF, Bargiello TA, Verselis VK. Cell Commun. Adhes. 10 193-199 (2003)
  302. PAK paradox: Paramecium appears to have more K(+)-channel genes than humans. Haynes WJ, Ling KY, Saimi Y, Kung C. Eukaryotic Cell 2 737-745 (2003)
  303. Regulation of the fast vacuolar channel by cytosolic and vacuolar potassium. Pottosin II, Martínez-Estévez M. Biophys. J. 84 977-986 (2003)
  304. Pore topology of the hyperpolarization-activated cyclic nucleotide-gated channel from sea urchin sperm. Roncaglia P, Mistrík P, Torre V. Biophys. J. 83 1953-1964 (2002)
  305. Alchembed: A Computational Method for Incorporating Multiple Proteins into Complex Lipid Geometries. Jefferys E, Sands ZA, Shi J, Sansom MS, Fowler PW. J Chem Theory Comput 11 2743-2754 (2015)
  306. A case of severe hyperaldosteronism caused by a de novo mutation affecting a critical salt bridge Kir3.4 residue. Monticone S, Bandulik S, Stindl J, Zilbermint M, Dedov I, Mulatero P, Allgaeuer M, Lee CC, Stratakis CA, Williams TA, Tiulpakov A. J. Clin. Endocrinol. Metab. 100 E114-8 (2015)
  307. Functional capabilities of the earliest peptides and the emergence of life. Milner-White EJ, Russell MJ. Genes (Basel) 2 671-688 (2011)
  308. Structural evidence for functional lipid interactions in the betaine transporter BetP. Koshy C, Schweikhard ES, Gärtner RM, Perez C, Yildiz O, Ziegler C. EMBO J. 32 3096-3105 (2013)
  309. The mechanism of Na⁺/K⁺ selectivity in mammalian voltage-gated sodium channels based on molecular dynamics simulation. Xia M, Liu H, Li Y, Yan N, Gong H. Biophys. J. 104 2401-2409 (2013)
  310. Comparative study of the energetics of ion permeation in Kv1.2 and KcsA potassium channels. Baştuğ T, Kuyucak S. Biophys. J. 100 629-636 (2011)
  311. Voltage-dependent inactivation gating at the selectivity filter of the MthK K+ channel. Thomson AS, Rothberg BS. J. Gen. Physiol. 136 569-579 (2010)
  312. Anionic lipid and cholesterol interactions with alpha4beta2 nAChR: insights from MD simulations. Cheng MH, Xu Y, Tang P. J Phys Chem B 113 6964-6970 (2009)
  313. Coupled and independent contributions of residues in IS6 and IIS6 to activation gating of CaV1.2. Kudrnac M, Beyl S, Hohaus A, Stary A, Peterbauer T, Timin E, Hering S. J. Biol. Chem. 284 12276-12284 (2009)
  314. Differential roles of blocking ions in KirBac1.1 tetramer stability. Wang S, Alimi Y, Tong A, Nichols CG, Enkvetchakul D. J. Biol. Chem. 284 2854-2860 (2009)
  315. Permeation of water through the KcsA K+ channel. Furini S, Beckstein O, Domene C. Proteins 74 437-448 (2009)
  316. Origin of functional diversity among tetrameric voltage-gated channels. Anselmi C, Carloni P, Torre V. Proteins 66 136-146 (2007)
  317. Application of the Poisson-Nernst-Planck theory with space-dependent diffusion coefficients to KcsA. Furini S, Zerbetto F, Cavalcanti S. Biophys. J. 91 3162-3169 (2006)
  318. Electrostatic steering at acetylcholine binding sites. Meltzer RH, Thompson E, Soman KV, Song XZ, Ebalunode JO, Wensel TG, Briggs JM, Pedersen SE. Biophys. J. 91 1302-1314 (2006)
  319. Crown ether-gramicidin hybrid ion channels: dehydration-assisted ion selectivity. Pfeifer JR, Reiss P, Koert U. Angew. Chem. Int. Ed. Engl. 45 501-504 (2006)
  320. Molecular dynamics simulation approaches to K channels: conformational flexibility and physiological function. Grottesi A, Domene C, Haider S, Sansom MS. IEEE Trans Nanobioscience 4 112-120 (2005)
  321. Inhibition of ATP-sensitive potassium channels by haloperidol. Yang SB, Proks P, Ashcroft FM, Rupnik M. Br. J. Pharmacol. 143 960-967 (2004)
  322. A prokaryotic glutamate receptor: homology modelling and molecular dynamics simulations of GluR0. Arinaminpathy Y, Biggin PC, Shrivastava IH, Sansom MS. FEBS Lett. 553 321-327 (2003)
  323. Helix rotation model of the flagellar rotary motor. Schmitt R. Biophys. J. 85 843-852 (2003)
  324. Conotoxins as sensors of local pH and electrostatic potential in the outer vestibule of the sodium channel. Hui K, McIntyre D, French RJ. J. Gen. Physiol. 122 63-79 (2003)
  325. Influence of permeant ions on gating in cyclic nucleotide-gated channels. Holmgren M. J. Gen. Physiol. 121 61-72 (2003)
  326. Kinetics of tethering quaternary ammonium compounds to K(+) channels. Blaustein RO. J. Gen. Physiol. 120 203-216 (2002)
  327. Building KCNQ1/KCNE1 channel models and probing their interactions by molecular-dynamics simulations. Xu Y, Wang Y, Meng XY, Zhang M, Jiang M, Cui M, Tseng GN. Biophys. J. 105 2461-2473 (2013)
  328. Equilibrium selectivity alone does not create K+-selective ion conduction in K+ channels. Liu S, Lockless SW. Nat Commun 4 2746 (2013)
  329. Distinct gating mechanisms revealed by the structures of a multi-ligand gated K(+) channel. Kong C, Zeng W, Ye S, Chen L, Sauer DB, Lam Y, Derebe MG, Jiang Y. Elife 1 e00184 (2012)
  330. The C-terminal helical bundle of the tetrameric prokaryotic sodium channel accelerates the inactivation rate. Irie K, Shimomura T, Fujiyoshi Y. Nat Commun 3 793 (2012)
  331. Designed ankyrin repeat protein binders for the crystallization of AcrB: plasticity of the dominant interface. Monroe N, Sennhauser G, Seeger MA, Briand C, Grütter MG. J. Struct. Biol. 174 269-281 (2011)
  332. Membrane region M2C2 in subunit KtrB of the K+ uptake system KtrAB from Vibrio alginolyticus forms a flexible gate controlling K+ flux: an electron paramagnetic resonance study. Hänelt I, Wunnicke D, Müller-Trimbusch M, Vor der Brüggen M, Kraus I, Bakker EP, Steinhoff HJ. J. Biol. Chem. 285 28210-28219 (2010)
  333. Design and characterization of a constitutively open KcsA. Cuello LG, Jogini V, Cortes DM, Sompornpisut A, Purdy MD, Wiener MC, Perozo E. FEBS Lett. 584 1133-1138 (2010)
  334. Cooperative nature of gating transitions in K(+) channels as seen from dynamic importance sampling calculations. Denning EJ, Woolf TB. Proteins 78 1105-1119 (2010)
  335. Determining the helical tilt of membrane peptides using electron paramagnetic resonance spectroscopy. Newstadt JP, Mayo DJ, Inbaraj JJ, Subbaraman N, Lorigan GA. J. Magn. Reson. 198 1-7 (2009)
  336. Genetic selection of activatory mutations in KcsA. Paynter JJ, Sarkies P, Andres-Enguix I, Tucker SJ. Channels (Austin) 2 413-418 (2008)
  337. ICMRBS founder's medal 2006: biological solid-state NMR, methods and applications. Baldus M. J. Biomol. NMR 39 73-86 (2007)
  338. Locking CNGA1 channels in the open and closed state. Nair AV, Mazzolini M, Codega P, Giorgetti A, Torre V. Biophys. J. 90 3599-3607 (2006)
  339. Selectivity and interactions of Ba2+ and Cs+ with wild-type and mutant TASK1 K+ channels expressed in Xenopus oocytes. O'Connell AD, Morton MJ, Sivaprasadarao A, Hunter M. J. Physiol. (Lond.) 562 687-696 (2005)
  340. Maximization of the rate of chloride conduction in the CFTR channel pore by ion-ion interactions. Gong X, Linsdell P. Arch. Biochem. Biophys. 426 78-82 (2004)
  341. Streptomyces lividans potassium channel KcsA is regulated by the potassium electrochemical gradient. Zakharian E, Reusch RN. Biochem. Biophys. Res. Commun. 316 429-436 (2004)
  342. Structure-activity relationship for extracellular block of K+ channels by tetraalkylammonium ions. Luzhkov VB, Osterberg F, Aqvist J. FEBS Lett. 554 159-164 (2003)
  343. Functional identification of ion binding sites at the internal end of the pore in Shaker K+ channels. Thompson J, Begenisich T. J. Physiol. (Lond.) 549 107-120 (2003)
  344. Control of outer vestibule dynamics and current magnitude in the Kv2.1 potassium channel. Andalib P, Wood MJ, Korn SJ. J. Gen. Physiol. 120 739-755 (2002)
  345. Reactions of cysteines substituted in the amphipathic N-terminal tail of a bacterial potassium channel with hydrophilic and hydrophobic maleimides. Li J, Xu Q, Cortes DM, Perozo E, Laskey A, Karlin A. Proc. Natl. Acad. Sci. U.S.A. 99 11605-11610 (2002)
  346. Increasing the diffraction limit and internal order of a membrane protein crystal by dehydration. Kuo A, Bowler MW, Zimmer J, Antcliff JF, Doyle DA. J. Struct. Biol. 141 97-102 (2003)
  347. Permeation and dynamics of an open-activated TRPV1 channel. Darré L, Furini S, Domene C. J. Mol. Biol. 427 537-549 (2015)
  348. G protein modulation of K2P potassium channel TASK-2 : a role of basic residues in the C terminus domain. Añazco C, Peña-Münzenmayer G, Araya C, Cid LP, Sepúlveda FV, Niemeyer MI. Pflugers Arch. 465 1715-1726 (2013)
  349. Crucial points within the pore as determinants of K⁺ channel conductance and gating. Shi N, Zeng W, Ye S, Li Y, Jiang Y. J. Mol. Biol. 411 27-35 (2011)
  350. Absence of ion-binding affinity in the putatively inactivated low-[K+] structure of the KcsA potassium channel. Boiteux C, Bernèche S. Structure 19 70-79 (2011)
  351. Fast human brain magnetic resonance responses associated with epileptiform spikes. Sundaram P, Wells WM, Mulkern RV, Bubrick EJ, Bromfield EB, Münch M, Orbach DB. Magn Reson Med 64 1728-1738 (2010)
  352. K+ transport characteristics of the plasma membrane tandem-pore channel TPK4 and pore chimeras with its vacuolar homologs. Marcel D, Müller T, Hedrich R, Geiger D. FEBS Lett. 584 2433-2439 (2010)
  353. Electron spin-echo envelope modulation (ESEEM) reveals water and phosphate interactions with the KcsA potassium channel. Cieslak JA, Focia PJ, Gross A. Biochemistry 49 1486-1494 (2010)
  354. Determining k channel activation curves from k channel currents often requires the goldman-hodgkin-katz equation. Clay JR. Front Cell Neurosci 3 20 (2009)
  355. Inactivation of the KcsA potassium channel explored with heterotetramers. Rotem D, Mason A, Bayley H. J. Gen. Physiol. 135 29-42 (2010)
  356. The analysis of desensitizing CNGA1 channels reveals molecular interactions essential for normal gating. Mazzolini M, Anselmi C, Torre V. J. Gen. Physiol. 133 375-386 (2009)
  357. Slow inactivation in Shaker K channels is delayed by intracellular tetraethylammonium. González-Pérez V, Neely A, Tapia C, González-Gutiérrez G, Contreras G, Orio P, Lagos V, Rojas G, Estévez T, Stack K, Naranjo D. J. Gen. Physiol. 132 633-650 (2008)
  358. The geometry of alpha-sheet: Implications for its possible function as amyloid precursor in proteins. Hayward S, Milner-White EJ. Proteins 71 415-425 (2008)
  359. Anti-calmodulins and tricyclic adjuvants in pain therapy block the TRPV1 channel. Oláh Z, Jósvay K, Pecze L, Letoha T, Babai N, Budai D, Otvös F, Szalma S, Vizler C. PLoS ONE 2 e545 (2007)
  360. Ion conductance vs. pore gating and selectivity in KcsA channel: modeling achievements and perspectives. Boiteux C, Kraszewski S, Ramseyer C, Girardet C. J Mol Model 13 699-713 (2007)
  361. Ion hydration in nanopores and the molecular basis of selectivity. Carrillo-Tripp M, San-Román ML, Hernańdez-Cobos J, Saint-Martin H, Ortega-Blake I. Biophys. Chem. 124 243-250 (2006)
  362. Construction of a cyclic nucleotide-gated KcsA K+ channel. Ohndorf UM, MacKinnon R. J. Mol. Biol. 350 857-865 (2005)
  363. K+ activation of kir3.1/kir3.4 and kv1.4 K+ channels is regulated by extracellular charges. Claydon TW, Makary SY, Dibb KM, Boyett MR. Biophys. J. 87 2407-2418 (2004)
  364. Extent of the selectivity filter conferred by the sixth transmembrane region in the CFTR chloride channel pore. Gupta J, Lindsell P. Mol. Membr. Biol. 20 45-52 (2003)
  365. Structural dynamics of potassium-channel gating revealed by single-molecule FRET. Wang S, Vafabakhsh R, Borschel WF, Ha T, Nichols CG. Nat. Struct. Mol. Biol. 23 31-36 (2016)
  366. Solubility and aggregation of Gly(5) in water. Karandur D, Wong KY, Pettitt BM. J Phys Chem B 118 9565-9572 (2014)
  367. Molecular interactions involved in proton-dependent gating in KcsA potassium channels. Posson DJ, Thompson AN, McCoy JG, Nimigean CM. J. Gen. Physiol. 142 613-624 (2013)
  368. The open gate structure of the membrane-embedded KcsA potassium channel viewed from the cytoplasmic side. Sumino A, Sumikama T, Iwamoto M, Dewa T, Oiki S. Sci Rep 3 1063 (2013)
  369. Computational modeling of ion transport through nanopores. Modi N, Winterhalter M, Kleinekathöfer U. Nanoscale 4 6166-6180 (2012)
  370. Basis for allosteric open-state stabilization of voltage-gated potassium channels by intracellular cations. Goodchild SJ, Xu H, Es-Salah-Lamoureux Z, Ahern CA, Fedida D. J. Gen. Physiol. 140 495-511 (2012)
  371. Identification of putative potassium channel homologues in pathogenic protozoa. Prole DL, Marrion NV. PLoS ONE 7 e32264 (2012)
  372. Rapid identification of recombinant Fabs that bind to membrane proteins. Kim J, Stroud RM, Craik CS. Methods 55 303-309 (2011)
  373. Kir4.1 K+ channels are regulated by external cations. Edvinsson JM, Shah AJ, Palmer LG. Channels (Austin) 5 269-279 (2011)
  374. Conversion of scFv peptide-binding specificity for crystal chaperone development. Pai JC, Culver JA, Drury JE, Motani RS, Lieberman RL, Maynard JA. Protein Eng. Des. Sel. 24 419-428 (2011)
  375. Structural models of TREK channels and their gating mechanism. Milac A, Anishkin A, Fatakia SN, Chow CC, Sukharev S, Guy HR. Channels (Austin) 5 23-33 (2011)
  376. Voltage profile along the permeation pathway of an open channel. Contreras JE, Chen J, Lau AY, Jogini V, Roux B, Holmgren M. Biophys. J. 99 2863-2869 (2010)
  377. A molecular switch between the outer and the inner vestibules of the voltage-gated Na+ channel. Zarrabi T, Cervenka R, Sandtner W, Lukacs P, Koenig X, Hilber K, Mille M, Lipkind GM, Fozzard HA, Todt H. J. Biol. Chem. 285 39458-39470 (2010)
  378. The hERG potassium channel and drug trapping: insight from docking studies with propafenone derivatives. Thai KM, Windisch A, Stork D, Weinzinger A, Schiesaro A, Guy RH, Timin EN, Hering S, Ecker GF. ChemMedChem 5 436-442 (2010)
  379. Tetramerization domain mutations in KCNA5 affect channel kinetics and cause abnormal trafficking patterns. Burg ED, Platoshyn O, Tsigelny IF, Lozano-Ruiz B, Rana BK, Yuan JX. Am. J. Physiol., Cell Physiol. 298 C496-509 (2010)
  380. Inhibitors of potassium channels KV1.3 and IK-1 as immunosuppressants. Pegoraro S, Lang M, Dreker T, Kraus J, Hamm S, Meere C, Feurle J, Tasler S, Prütting S, Kuras Z, Visan V, Grissmer S. Bioorg. Med. Chem. Lett. 19 2299-2304 (2009)
  381. The Kv channel blocker 4-aminopyridine enhances Ag+ uptake: a scanning electrochemical microscopy study of single living cells. Zhan D, Fan FR, Bard AJ. Proc. Natl. Acad. Sci. U.S.A. 105 12118-12122 (2008)
  382. Conduction of Na+ and K+ through the NaK channel: molecular and Brownian dynamics studies. Vora T, Bisset D, Chung SH. Biophys. J. 95 1600-1611 (2008)
  383. An investigation into the effect of potassium ions on the folding of silk fibroin studied by generalized two-dimensional NMR-NMR correlation and Raman spectroscopy. Ruan QX, Zhou P, Hu BW, Ji D. FEBS J. 275 219-232 (2008)
  384. Two-dimensional solid-state NMR applied to a chimeric potassium channel. Lange A, Giller K, Pongs O, Becker S, Baldus M. J. Recept. Signal Transduct. Res. 26 379-393 (2006)
  385. Structure of anti-FLAG M2 Fab domain and its use in the stabilization of engineered membrane proteins. Roosild TP, Castronovo S, Choe S. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62 835-839 (2006)
  386. Effects of conducting and blocking ions on the structure and stability of the potassium channel KcsA. Renart ML, Barrera FN, Molina ML, Encinar JA, Poveda JA, Fernández AM, Gómez J, González-Ros JM. J. Biol. Chem. 281 29905-29915 (2006)
  387. Sodium permeability of a cloned small-conductance calcium-activated potassium channel. Shin N, Soh H, Chang S, Kim DH, Park CS. Biophys. J. 89 3111-3119 (2005)
  388. Binding of kappa-conotoxin PVIIA to Shaker K+ channels reveals different K+ and Rb+ occupancies within the ion channel pore. Boccaccio A, Conti F, Olivera BM, Terlau H. J. Gen. Physiol. 124 71-81 (2004)
  389. Comparison of sea anemone and scorpion toxins binding to Kv1 channels: an example of convergent evolution. Gasparini S, Gilquin B, Ménez A. Toxicon 43 901-908 (2004)
  390. Block of Shaker potassium channels by external calcium ions. Gomez-Lagunas F, Melishchuk A, Armstrong CM. Proc. Natl. Acad. Sci. U.S.A. 100 347-351 (2003)
  391. Structures of the Human HCN1 Hyperpolarization-Activated Channel. Lee CH, MacKinnon R. Cell 168 111-120.e11 (2017)
  392. A novel epileptic encephalopathy mutation in KCNB1 disrupts Kv2.1 ion selectivity, expression, and localization. Thiffault I, Speca DJ, Austin DC, Cobb MM, Eum KS, Safina NP, Grote L, Farrow EG, Miller N, Soden S, Kingsmore SF, Trimmer JS, Saunders CJ, Sack JT. J. Gen. Physiol. 146 399-410 (2015)
  393. Conformational dynamics at the inner gate of KcsA during activation. Hulse RE, Sachleben JR, Wen PC, Moradi M, Tajkhorshid E, Perozo E. Biochemistry 53 2557-2559 (2014)
  394. Regulation of ion channel function by the host lipid bilayer examined by a stopped-flow spectrofluorometric assay. Rusinova R, Kim DM, Nimigean CM, Andersen OS. Biophys. J. 106 1070-1078 (2014)
  395. Using protein backbone mutagenesis to dissect the link between ion occupancy and C-type inactivation in K+ channels. Matulef K, Komarov AG, Costantino CA, Valiyaveetil FI. Proc. Natl. Acad. Sci. U.S.A. 110 17886-17891 (2013)
  396. Structural comparison of ColH and ColG collagen-binding domains from Clostridium histolyticum. Bauer R, Wilson JJ, Philominathan ST, Davis D, Matsushita O, Sakon J. J. Bacteriol. 195 318-327 (2013)
  397. Quantifying barriers to monovalent anion transport in narrow non-polar pores. Richards LA, Schäfer AI, Richards BS, Corry B. Phys Chem Chem Phys 14 11633-11638 (2012)
  398. Coupling between the voltage-sensing and pore domains in a voltage-gated potassium channel. Schow EV, Freites JA, Nizkorodov A, White SH, Tobias DJ. Biochim. Biophys. Acta 1818 1726-1736 (2012)
  399. Probing the interaction of lipids with the non-annular binding sites of the potassium channel KcsA by magic-angle spinning NMR. Marius P, de Planque MR, Williamson PT. Biochim. Biophys. Acta 1818 90-96 (2012)
  400. Gating at the selectivity filter of ion channels that conduct Na+ and K+ ions. Furini S, Domene C. Biophys. J. 101 1623-1631 (2011)
  401. Interaction of diverse voltage sensor homologs with lipid bilayers revealed by self-assembly simulations. Mokrab Y, Sansom MS. Biophys. J. 100 875-884 (2011)
  402. Cycle flux algebra for ion and water flux through the KcsA channel single-file pore links microscopic trajectories and macroscopic observables. Oiki S, Iwamoto M, Sumikama T. PLoS ONE 6 e16578 (2011)
  403. Symmetry-restrained molecular dynamics simulations improve homology models of potassium channels. Anishkin A, Milac AL, Guy HR. Proteins 78 932-949 (2010)
  404. Generation, comparison, and merging of pathways between protein conformations: gating in K-channels. Enosh A, Raveh B, Furman-Schueler O, Halperin D, Ben-Tal N. Biophys. J. 95 3850-3860 (2008)
  405. Interaction with the hERG channel and cytotoxicity of amiodarone and amiodarone analogues. Waldhauser KM, Brecht K, Hebeisen S, Ha HR, Konrad D, Bur D, Krähenbühl S. Br. J. Pharmacol. 155 585-595 (2008)
  406. An ion gating mechanism of gastric H,K-ATPase based on molecular dynamics simulations. Law RJ, Munson K, Sachs G, Lightstone FC. Biophys. J. 95 2739-2749 (2008)
  407. Incidence of partial charges on ion selectivity in potassium channels. Huetz P, Boiteux C, Compoint M, Ramseyer C, Girardet C. J Chem Phys 124 044703 (2006)
  408. Molecular Dynamics Simulation of WSK-3, a Computationally Designed, Water-Soluble Variant of the Integral Membrane Protein KcsA. Bronson J, Lee OS, Saven JG. Biophys. J. 90 1156-1163 (2006)
  409. A comparison between two prokaryotic potassium channels (KirBac1.1 and KcsA) in a molecular dynamics (MD) simulation study. Hellgren M, Sandberg L, Edholm O. Biophys. Chem. 120 1-9 (2006)
  410. Quantitative modeling of chloride conductance in yeast TRK potassium transporters. Rivetta A, Slayman C, Kuroda T. Biophys. J. 89 2412-2426 (2005)
  411. Potassium-dependent slow inactivation of Kir1.1 (ROMK) channels. Sackin H, Palmer LG, Krambis M. Biophys. J. 86 2145-2155 (2004)
  412. Molecular dynamics simulations of a K+ channel blocker: Tc1 toxin from Tityus cambridgei. Grottesi A, Sansom MS. FEBS Lett. 535 29-33 (2003)
  413. The carboxyl tail forms a discrete functional domain that blocks closure of the yeast K+ channel. Loukin SH, Lin J, Athar U, Palmer C, Saimi Y. Proc. Natl. Acad. Sci. U.S.A. 99 1926-1930 (2002)
  414. K⁺ channel gating: C-type inactivation is enhanced by calcium or lanthanum outside. Armstrong CM, Hoshi T. J. Gen. Physiol. 144 221-230 (2014)
  415. Research applications of proteolytic enzymes in molecular biology. Mótyán JA, Tóth F, Tőzsér J. Biomolecules 3 923-942 (2013)
  416. Real-time monitoring of membrane-protein reconstitution by isothermal titration calorimetry. Jahnke N, Krylova OO, Hoomann T, Vargas C, Fiedler S, Pohl P, Keller S. Anal. Chem. 86 920-927 (2014)
  417. A computational study of barium blockades in the KcsA potassium channel based on multi-ion potential of mean force calculations and free energy perturbation. Rowley CN, Roux B. J. Gen. Physiol. 142 451-463 (2013)
  418. Preparation of uniformly isotope labeled KcsA for solid state NMR: expression, purification, reconstitution into liposomes and functional assay. Bhate MP, Wylie BJ, Thompson A, Tian L, Nimigean C, McDermott AE. Protein Expr. Purif. 91 119-124 (2013)
  419. Probing the energy landscape of activation gating of the bacterial potassium channel KcsA. Linder T, de Groot BL, Stary-Weinzinger A. PLoS Comput. Biol. 9 e1003058 (2013)
  420. Controlling potassium selectivity and proton blocking in a hybrid biological/solid-state polymer nanoporous membrane. Balme S, Balme S, Picaud F, Kraszewski S, Déjardin P, Janot JM, Lepoitevin M, Capomanes J, Ramseyer C, Henn F. Nanoscale 5 3961-3968 (2013)
  421. Preferential binding of K+ ions in the selectivity filter at equilibrium explains high selectivity of K+ channels. Liu S, Bian X, Lockless SW. J. Gen. Physiol. 140 671-679 (2012)
  422. High-efficiency screening of monoclonal antibodies for membrane protein crystallography. Lim HH, Fang Y, Williams C. PLoS ONE 6 e24653 (2011)
  423. Niflumic acid blocks native and recombinant T-type channels. Balderas E, Ateaga-Tlecuitl R, Rivera M, Gomora JC, Darszon A. J. Cell. Physiol. 227 2542-2555 (2012)
  424. K2P potassium channels, mysterious and paradoxically exciting. Goldstein SA. Sci Signal 4 pe35 (2011)
  425. Extracellular K+ elevates outward currents through Kir2.1 channels by increasing single-channel conductance. Liu TA, Chang HK, Shieh RC. Biochim. Biophys. Acta 1808 1772-1778 (2011)
  426. Mapping the importance of four factors in creating monovalent ion selectivity in biological molecules. Thomas M, Jayatilaka D, Corry B. Biophys. J. 100 60-69 (2011)
  427. Importance of oligo-R-3-hydroxybutyrates to S. lividans KcsA channel structure and function. Negoda A, Negoda E, Reusch RN. Mol Biosyst 6 2249-2255 (2010)
  428. Potassium channel block by a tripartite complex of two cationophilic ligands and a potassium ion. Zimin PI, Garic B, Bodendiek SB, Mahieux C, Wulff H, Zhorov BS. Mol. Pharmacol. 78 588-599 (2010)
  429. Quinidine interaction with Shab K+ channels: pore block and irreversible collapse of the K+ conductance. Gomez-Lagunas F. J. Physiol. (Lond.) 588 2691-2706 (2010)
  430. PoreLogo: a new tool to analyse, visualize and compare channels in transmembrane proteins. Oliva R, Thornton JM, Pellegrini-Calace M. Bioinformatics 25 3183-3184 (2009)
  431. Different pathways for activation and deactivation in CaV1.2: a minimal gating model. Beyl S, Kügler P, Kudrnac M, Hohaus A, Hering S, Timin E. J. Gen. Physiol. 134 231-41 (2009)
  432. Combining electron crystallography and X-ray crystallography to study the MlotiK1 cyclic nucleotide-regulated potassium channel. Clayton GM, Aller SG, Wang J, Unger V, Morais-Cabral JH. J. Struct. Biol. 167 220-226 (2009)
  433. Not only enthalpy: large entropy contribution to ion permeation barriers in single-file channels. Portella G, Hub JS, Vesper MD, de Groot BL. Biophys. J. 95 2275-2282 (2008)
  434. Structures and phase transition of multi-layered water nanotube confined to nanochannels. Tadokoro M, Fukui S, Kitajima T, Nagao Y, Ishimaru S, Kitagawa H, Isobe K, Nakasuji K. Chem. Commun. (Camb.) 1274-1276 (2006)
  435. Two stable, conducting conformations of the selectivity filter in Shaker K+ channels. Thompson J, Begenisich T. J. Gen. Physiol. 125 619-629 (2005)
  436. Kinetic models of ion transport through a nanopore. Piasecki J, Allen RJ, Hansen JP. Phys Rev E Stat Nonlin Soft Matter Phys 70 021105 (2004)
  437. Regulation of K+ flow by a ring of negative charges in the outer pore of BKCa channels. Part II: Neutralization of aspartate 292 reduces long channel openings and gating current slow component. Haug T, Olcese R, Toro L, Stefani E. J. Gen. Physiol. 124 185-197 (2004)
  438. Voltage sensor mutations differentially target misfolded K+ channel subunits to proteasomal and non-proteasomal disposal pathways. Myers MP, Khanna R, Lee EJ, Papazian DM. FEBS Lett. 568 110-116 (2004)
  439. Influence of permeant ions on voltage sensor function in the Kv2.1 potassium channel. Consiglio JF, Korn SJ. J. Gen. Physiol. 123 387-400 (2004)
  440. Modeling the concentration-dependent permeation modes of the KcsA potassium ion channel. Nelson PH. Phys Rev E Stat Nonlin Soft Matter Phys 68 061908 (2003)
  441. Comment Ion channels: an open and shut case. Schumacher M, Adelman JP. Nature 417 501-502 (2002)
  442. Interaction between tetraethylammonium and permeant cations at the inactivation gate of the HERG potassium channel. Shimizu H, Toyoshima C, Oiki S. Jpn. J. Physiol. 53 25-34 (2003)
  443. Ion-binding properties of a K+ channel selectivity filter in different conformations. Liu S, Focke PJ, Matulef K, Bian X, Moënne-Loccoz P, Valiyaveetil FI, Lockless SW. Proc. Natl. Acad. Sci. U.S.A. 112 15096-15100 (2015)
  444. Pore dimensions and the role of occupancy in unitary conductance of Shaker K channels. Díaz-Franulic I, Sepúlveda RV, Navarro-Quezada N, González-Nilo F, Naranjo D. J. Gen. Physiol. 146 133-146 (2015)
  445. Structural basis for ion selectivity revealed by high-resolution crystal structure of Mg2+ channel MgtE. Takeda H, Hattori M, Nishizawa T, Yamashita K, Shah ST, Caffrey M, Maturana AD, Ishitani R, Nureki O. Nat Commun 5 5374 (2014)
  446. Sorption of tylosin on clay minerals. Zhang Q, Yang C, Huang W, Dang Z, Shu X. Chemosphere 93 2180-2186 (2013)
  447. Role of methyl-induced polarization in ion binding. Rossi M, Tkatchenko A, Rempe SB, Varma S. Proc. Natl. Acad. Sci. U.S.A. 110 12978-12983 (2013)
  448. An NMR investigation of the structure, function and role of the hERG channel selectivity filter in the long QT syndrome. Gravel AE, Arnold AA, Dufourc EJ, Marcotte I. Biochim. Biophys. Acta 1828 1494-1502 (2013)
  449. Pore helices play a dynamic role as integrators of domain motion during Kv11.1 channel inactivation gating. Perry MD, Ng CA, Vandenberg JI. J. Biol. Chem. 288 11482-11491 (2013)
  450. Ion conduction through the hERG potassium channel. Ceccarini L, Masetti M, Cavalli A, Recanatini M. PLoS ONE 7 e49017 (2012)
  451. A molecular switch driving inactivation in the cardiac K+ channel HERG. Köpfer DA, Hahn U, Ohmert I, Vriend G, Pongs O, de Groot BL, Zachariae U. PLoS ONE 7 e41023 (2012)
  452. Mechanism of Cd2+ coordination during slow inactivation in potassium channels. Raghuraman H, Cordero-Morales JF, Jogini V, Pan AC, Kollewe A, Roux B, Perozo E. Structure 20 1332-1342 (2012)
  453. A quantum-mechanical description of ion motion within the confining potentials of voltage-gated ion channels. Summhammer J, Salari V, Bernroider G. J. Integr. Neurosci. 11 123-135 (2012)
  454. Ion selectivity and current saturation in inward-rectifier K+ channels. Yang L, Edvinsson J, Sackin H, Palmer LG. J. Gen. Physiol. 139 145-157 (2012)
  455. Combining Bayes classification and point group symmetry under Boolean framework for enhanced protein quaternary structure inference. Mitra P, Pal D. Structure 19 304-312 (2011)
  456. Analyses of gating thermodynamics and effects of deletions in the mechanosensitive channel TREK-1: comparisons with structural models. Maksaev G, Milac A, Anishkin A, Guy HR, Sukharev S. Channels (Austin) 5 34-42 (2011)
  457. Energetics of double-ion occupancy in the gramicidin A channel. Li Y, Andersen OS, Roux B. J Phys Chem B 114 13881-13888 (2010)
  458. Changing Val-76 towards Kir channels drastically influences the folding and gating properties of the bacterial potassium channel KcsA. Raja M, Vales E. Biophys. Chem. 144 95-100 (2009)
  459. Interactions between impermeant blocking ions in the cystic fibrosis transmembrane conductance regulator chloride channel pore: evidence for anion-induced conformational changes. Ge N, Linsdell P. J. Membr. Biol. 210 31-42 (2006)
  460. Allosteric effects of external K+ ions mediated by the aspartate of the GYGD signature sequence in the Kv2.1 K+ channel. Chapman ML, Blanke ML, Krovetz HS, VanDongen AM. Pflugers Arch. 451 776-792 (2006)
  461. Engineering charge selectivity in model ion channels. Lougheed T, Zhang Z, Andrew Woolley G, Borisenko V. Bioorg. Med. Chem. 12 1337-1342 (2004)
  462. Letter Nothing automatic about ion-channel structures. MacKinnon R. Nature 416 261-262 (2002)
  463. Individual Ion Binding Sites in the K(+) Channel Play Distinct Roles in C-type Inactivation and in Recovery from Inactivation. Matulef K, Annen AW, Nix JC, Valiyaveetil FI. Structure 24 750-761 (2016)
  464. The Human Acid-Sensing Ion Channel ASIC1a: Evidence for a Homotetrameric Assembly State at the Cell Surface. van Bemmelen MX, Huser D, Gautschi I, Schild L. PLoS ONE 10 e0135191 (2015)
  465. Lack of negatively charged residues at the external mouth of Kir2.2 channels enable the voltage-dependent block by external Mg2+. Li J, Xie X, Liu J, Yu H, Zhang S, Zhan Y, Zhang H, Logothetis DE, An H. PLoS ONE 9 e111372 (2014)
  466. Cell electrical properties: reconsidering the origin of the electrical potential. Pollack GH. Cell Biol. Int. 39 237-242 (2015)
  467. Structures of KcsA in complex with symmetrical quaternary ammonium compounds reveal a hydrophobic binding site. Lenaeus MJ, Burdette D, Wagner T, Focia PJ, Gross A. Biochemistry 53 5365-5373 (2014)
  468. Na⁺ and K⁺ ion selectivity by size-controlled biomimetic graphene nanopores. Kang Y, Zhang Z, Shi H, Zhang J, Liang L, Wang Q, Ågren H, Tu Y. Nanoscale 6 10666-10672 (2014)
  469. Pore dynamics and conductance of RyR1 transmembrane domain. Shirvanyants D, Ramachandran S, Mei Y, Xu L, Meissner G, Dokholyan NV. Biophys. J. 106 2375-2384 (2014)
  470. Optimization of 3D Poisson-Nernst-Planck model for fast evaluation of diverse protein channels. Dyrka W, Bartuzel MM, Kotulska M. Proteins 81 1802-1822 (2013)
  471. Real-time monitoring of the oxidative response of a membrane-channel biomimetic system to free radicals. Liu Y, Ying YL, Wang HY, Cao C, Li DW, Zhang WQ, Long YT. Chem. Commun. (Camb.) 49 6584-6586 (2013)
  472. Ligand action on sodium, potassium, and calcium channels: role of permeant ions. Zhorov BS, Tikhonov DB. Trends Pharmacol. Sci. 34 154-161 (2013)
  473. Targeted molecular dynamics (TMD) of the full-length KcsA potassium channel: on the role of the cytoplasmic domain in the opening process. Li Y, Barbault F, Delamar M, Zhang R, Hu R. J Mol Model 19 1651-1666 (2013)
  474. High-risk long QT syndrome mutations in the Kv7.1 (KCNQ1) pore disrupt the molecular basis for rapid K(+) permeation. Burgess DE, Bartos DC, Reloj AR, Campbell KS, Johnson JN, Tester DJ, Ackerman MJ, Fressart V, Denjoy I, Guicheney P, Moss AJ, Ohno S, Horie M, Delisle BP. Biochemistry 51 9076-9085 (2012)
  475. Multi-ion distributions in the cytoplasmic domain of inward rectifier potassium channels. Robertson JL, Palmer LG, Roux B. Biophys. J. 103 434-443 (2012)
  476. Bennett's acceptance ratio and histogram analysis methods enhanced by umbrella sampling along a reaction coordinate in configurational space. Kim I, Allen TW. J Chem Phys 136 164103 (2012)
  477. The α-sheet: a missing-in-action secondary structure? Babin V, Roland C, Sagui C. Proteins 79 937-946 (2011)
  478. Semisynthesis of NaK, a Na(+) and K(+) conducting ion channel. Linn KM, Derebe MG, Jiang Y, Valiyaveetil FI. Biochemistry 49 4450-4456 (2010)
  479. P-loop residues critical for selectivity in K channels fail to confer selectivity to rabbit HCN4 channels. D'Avanzo N, Pekhletski R, Backx PH. PLoS ONE 4 e7712 (2009)
  480. Quantum mechanical studies on model alpha-pleated sheets. Wu H, Canfield A, Adhikari J, Huo S. J Comput Chem 31 1216-1223 (2010)
  481. Analysis of students' aptitude to provide meaning to images that represent cellular components at the molecular level. Dahmani HR, Schneeberger P, Kramer IM. CBE Life Sci Educ 8 226-238 (2009)
  482. The evolutionarily conserved residue A653 plays a key role in HERG channel closing. Stepanovic SZ, Potet F, Petersen CI, Smith JA, Meiler J, Balser JR, Kupershmidt S. J. Physiol. (Lond.) 587 2555-2566 (2009)
  483. Heterologous expression and purification systems for structural proteomics of mammalian membrane proteins. Mus-Veteau I. Comp. Funct. Genomics 3 511-517 (2002)
  484. Brownian dynamics study of flux ratios in sodium channels. Vora T, Corry B, Chung SH. Eur. Biophys. J. 38 45-52 (2008)
  485. Stability of the Shab K+ channel conductance in 0 K+ solutions: the role of the membrane potential. Gómez-Lagunas F. Biophys. J. 93 4197-4208 (2007)
  486. Ion pore properties of ionotropic glutamate receptors are modulated by a transplanted potassium channel selectivity filter. Hoffmann J, Gorodetskaia A, Hollmann M. Mol. Cell. Neurosci. 33 335-343 (2006)
  487. A single P-loop glutamate point mutation to either lysine or arginine switches the cation-anion selectivity of the CNGA2 channel. Qu W, Moorhouse AJ, Chandra M, Pierce KD, Lewis TM, Barry PH. J. Gen. Physiol. 127 375-389 (2006)
  488. Hydrophobicity of transmembrane proteins: spatially profiling the distribution. Silverman BD. Protein Sci. 12 586-599 (2003)
  489. Electrophysiological response of cultured trabecular meshwork cells to synthetic ion channels. Fidzinski P, Knoll A, Rosenthal R, Schrey A, Vescovi A, Koert U, Wiederholt M, Strauss O. Chem. Biol. 10 35-43 (2003)
  490. Crystallization of membrane proteins from media composed of connected-bilayer gels. Rouhani S, Facciotti MT, Woodcock G, Cheung V, Cunningham C, Nguyen D, Rad B, Lin CT, Lunde CS, Glaeser RM. Biopolymers 66 300-316 (2002)
  491. Regulation of the K channels by cytoplasmic domains. Choe S, Roosild T. Biopolymers 66 294-299 (2002)
  492. Probing Conformational Changes during the Gating Cycle of a Potassium Channel in Lipid Bilayers. van der Cruijsen EA, Prokofyev AV, Pongs O, Baldus M. Biophys. J. 112 99-108 (2017)
  493. An improved method for the cost-effective expression and purification of large quantities of KcsA. Tilegenova C, Vemulapally S, Cortes DM, Cuello LG. Protein Expr. Purif. 127 53-60 (2016)
  494. Multi-ion free energy landscapes underscore the microscopic mechanism of ion selectivity in the KcsA channel. Medovoy D, Perozo E, Roux B. Biochim. Biophys. Acta 1858 1722-1732 (2016)
  495. Allosteric coupling between proximal C-terminus and selectivity filter is facilitated by the movement of transmembrane segment 4 in TREK-2 channel. Zhuo RG, Peng P, Liu XY, Yan HT, Xu JP, Zheng JQ, Wei XL, Ma XY. Sci Rep 6 21248 (2016)
  496. Calcium ions open a selectivity filter gate during activation of the MthK potassium channel. Posson DJ, Rusinova R, Andersen OS, Nimigean CM. Nat Commun 6 8342 (2015)
  497. Sphingomyelinase D inhibits store-operated Ca2+ entry in T lymphocytes by suppressing ORAI current. Combs DJ, Lu Z. J. Gen. Physiol. 146 161-172 (2015)
  498. What keeps Kv channels small? The molecular physiology of modesty. Sack JT, Tilley DC. J. Gen. Physiol. 146 123-127 (2015)
  499. Potassium stress growth characteristics and energetics in the haloarchaeon Haloarcula marismortui. Jensen MW, Matlock SA, Reinheimer CH, Lawlor CJ, Reinheimer TA, Gorrell A. Extremophiles 19 315-325 (2015)
  500. The conserved potassium channel filter can have distinct ion binding profiles: structural analysis of rubidium, cesium, and barium binding in NaK2K. Lam YL, Zeng W, Sauer DB, Jiang Y. J. Gen. Physiol. 144 181-192 (2014)
  501. MD simulations of the central pore of ryanodine receptors and sequence comparison with 2B protein from coxsackie virus. Schilling R, Fink RH, Fischer WB. Biochim. Biophys. Acta 1838 1122-1131 (2014)
  502. Energetics of Multi-Ion Conduction Pathways in Potassium Ion Channels. Fowler PW, Abad E, Beckstein O, Sansom MS. J Chem Theory Comput 9 5176-5189 (2013)
  503. Inter-subunit interactions across the upper voltage sensing-pore domain interface contribute to the concerted pore opening transition of Kv channels. Shem-Ad T, Irit O, Yifrach O. PLoS ONE 8 e82253 (2013)
  504. Intuitive, but not simple: including explicit water molecules in protein-protein docking simulations improves model quality. Parikh HI, Kellogg GE. Proteins 82 916-932 (2014)
  505. A simple atomic-level hydrophobicity scale reveals protein interfacial structure. Kapcha LH, Rossky PJ. J. Mol. Biol. 426 484-498 (2014)
  506. Biomolecular membrane protein crystallization. Bolla JR, Su CC, Yu EW. Philos Mag (Abingdon) 92 2648-2661 (2012)
  507. Inhibition of ROMK channels by low extracellular K+ and oxidative stress. Frindt G, Li H, Sackin H, Palmer LG. Am. J. Physiol. Renal Physiol. 305 F208-15 (2013)
  508. Stabilization of the conductive conformation of a voltage-gated K+ (Kv) channel: the lid mechanism. Santos JS, Syeda R, Montal M. J. Biol. Chem. 288 16619-16628 (2013)
  509. Nonselective conduction in a mutated NaK channel with three cation-binding sites. Furini S, Domene C. Biophys. J. 103 2106-2114 (2012)
  510. Simulation of the β- to α-sheet transition results in a twisted sheet for antiparallel and an α-nanotube for parallel strands: implications for amyloid formation. Hayward S, Milner-White EJ. Proteins 79 3193-3207 (2011)
  511. An engineered right-handed coiled coil domain imparts extreme thermostability to the KcsA channel. Yuchi Z, Pau VP, Lu BX, Junop M, Yang DS. FEBS J. 276 6236-6246 (2009)
  512. Determination of the charge profile in the KcsA selectivity filter using ab initio calculations and molecular dynamics simulations. Kraszewski S, Boiteux C, Ramseyer C, Girardet C. Phys Chem Chem Phys 11 8606-8613 (2009)
  513. Relevance of quantum mechanics on some aspects of ion channel function. Roy S, Llinás R. C. R. Biol. 332 517-522 (2009)
  514. On a novel rate theory for transport in narrow ion channels and its application to the study of flux optimization via geometric effects. Abad E, Reingruber J, Sansom MS. J Chem Phys 130 085101 (2009)
  515. Intrinsic aqueduct orifices facilitate K+ channel gating. Zhong W, Guo W, Ma S. FEBS Lett. 582 3320-3324 (2008)
  516. Effects of changes in extracellular pH and potassium concentration on Kv1.3 inactivation. Somodi S, Hajdu P, Gáspár R, Panyi G, Varga Z. Eur. Biophys. J. 37 1145-1156 (2008)
  517. Hydropathic analysis and comparison of KcsA and Shaker potassium channels. Peng Y, Scarsdale JN, Kellogg GE. Chem. Biodivers. 4 2578-2592 (2007)
  518. Tuning a potassium channel--the caress of the surroundings. Jordan PC. Biophys. J. 93 1091-1092 (2007)
  519. Non-Michaelis-Menten kinetics model for conductance of low-conductance potassium ion channels. Tolokh IS, Tolokh II, Cho HC, D'Avanzo N, Backx PH, Goldman S, Gray CG. Phys Rev E Stat Nonlin Soft Matter Phys 71 021912 (2005)
  520. Inhibition of the collapse of the Shaker K+ conductance by specific scorpion toxins. Gómez-Lagunas F, Batista CV, Olamendi-Portugal T, Ramírez-Domínguez ME, Possani LD. J. Gen. Physiol. 123 265-279 (2004)
  521. Physical model for the gating mechanism of ionic channels. Ghim CM, Park JM. Phys Rev E Stat Nonlin Soft Matter Phys 66 051910 (2002)
  522. K2P2.1 (TREK-1)-activator complexes reveal a cryptic selectivity filter binding site. Lolicato M, Arrigoni C, Mori T, Sekioka Y, Bryant C, Clark KA, Minor DL. Nature 547 364-368 (2017)
  523. Ion and inhibitor binding of the double-ring ion selectivity filter of the mitochondrial calcium uniporter. Cao C, Wang S, Cui T, Su XC, Chou JJ. Proc. Natl. Acad. Sci. U.S.A. 114 E2846-E2851 (2017)
  524. Hydrophobic interactions between the S5 segment and the pore helix stabilizes the closed state of Slo2.1 potassium channels. Suzuki T, Hansen A, Sanguinetti MC. Biochim. Biophys. Acta 1858 783-792 (2016)
  525. The isoforms generated by alternative translation initiation adopt similar conformation in the selectivity filter in TREK-2. Zhuo RG, Peng P, Liu XY, Zhang SZ, Xu JP, Zheng JQ, Wei XL, Ma XY. J. Physiol. Biochem. 71 601-610 (2015)
  526. A structural, functional, and computational analysis suggests pore flexibility as the base for the poor selectivity of CNG channels. Napolitano LM, Bisha I, De March M, Marchesi A, Arcangeletti M, Demitri N, Mazzolini M, Rodriguez A, Magistrato A, Onesti S, Laio A, Torre V. Proc. Natl. Acad. Sci. U.S.A. 112 E3619-28 (2015)
  527. Ionic interactions of Ba2+ blockades in the MthK K+ channel. Guo R, Zeng W, Cui H, Chen L, Ye S. J. Gen. Physiol. 144 193-200 (2014)
  528. Non-equilibrium dynamics contribute to ion selectivity in the KcsA channel. Ngo V, Stefanovski D, Haas S, Farley RA. PLoS ONE 9 e86079 (2014)
  529. Multiple mechanisms underlying rectification in retinal cyclic nucleotide-gated (CNGA1) channels. Arcangeletti M, Marchesi A, Mazzolini M, Torre V. Physiol Rep 1 e00148 (2013)
  530. The structure of Escherichia coli ExoIX--implications for DNA binding and catalysis in flap endonucleases. Anstey-Gilbert CS, Hemsworth GR, Flemming CS, Hodskinson MR, Zhang J, Sedelnikova SE, Stillman TJ, Sayers JR, Artymiuk PJ. Nucleic Acids Res. 41 8357-8367 (2013)
  531. Pore helix-S6 interactions are critical in governing current amplitudes of KCNQ3 K+ channels. Choveau FS, Bierbower SM, Shapiro MS. Biophys. J. 102 2499-2509 (2012)
  532. Pore determinants of KCNQ3 K+ current expression. Choveau FS, Hernandez CC, Bierbower SM, Shapiro MS. Biophys. J. 102 2489-2498 (2012)
  533. Autonomous transmembrane segment S4 of the voltage sensor domain partitions into the lipid membrane. Tiriveedhi V, Miller M, Butko P, Li M. Biochim. Biophys. Acta 1818 1698-1705 (2012)
  534. The distal C-terminal region of the KcsA potassium channel is a pH-dependent tetramerization domain. Kamnesky G, Shaked H, Chill JH. J. Mol. Biol. 418 237-247 (2012)
  535. A minimalist model for ion partitioning and competition in a K+ channel selectivity filter. Kast SM, Kloss T, Tayefeh S, Thiel G. J. Gen. Physiol. 138 371-373 (2011)
  536. Shared solvation of sodium ions in alcohol-water solutions explains the non-ideality of free energy of solvation. Lange KM, Bergmann U, Hodeck KF, Könnecke R, Schade U, Aziz EF. Phys Chem Chem Phys 13 15423-15427 (2011)
  537. The nature of aqueous solutions: insights into multiple facets of chemistry and biochemistry from freezing-point depressions. Zavitsas AA. Chemistry 16 5942-5960 (2010)
  538. Ion selectivity of the Kat1 K+ channel pore. Nakamura RL, Gaber RF. Mol. Membr. Biol. 26 293-308 (2009)
  539. Mixed modes in opening of KcsA potassium channel from a targeted molecular dynamics simulation. Zhong W, Guo W. Biochem. Biophys. Res. Commun. 388 86-90 (2009)
  540. Interpretation of the Ussing flux ratio from the fluctuation theorem. Hsieh CP. Biophys. Chem. 139 57-62 (2009)
  541. Integration of an electric-metal sensory experience in the Slo1 BK channel. Horrigan FT, Hoshi T. Nat. Struct. Mol. Biol. 15 1130-1132 (2008)
  542. Negatively charged residues located near the external entrance are required for the Kir2.1 channel to function. Hayashi M, Matsuda H. Pflugers Arch. 455 455-464 (2007)
  543. Insight into the origins of the barrier-less knock-on conduction in the KcsA channel: molecular dynamics simulations and ab initio calculations. Kraszewski S, Boiteux C, Langner M, Ramseyer C. Phys Chem Chem Phys 9 1219-1225 (2007)
  544. Pharmacology and surface electrostatics of the K channel outer pore vestibule. Quinn CC, Begenisich T. J. Membr. Biol. 212 51-60 (2006)
  545. Characterization of monoclonal antibodies directed against the rat neurotensin receptor NTS1. Niebauer RT, White JF, Fei Z, Grisshammer R. J. Recept. Signal Transduct. Res. 26 395-415 (2006)
  546. Nonequilibrium molecular dynamics calculation of the conductance of the KcsA potassium ion channel. de Haan HW, Tolokh IS, Gray CG, Goldman S. Phys Rev E Stat Nonlin Soft Matter Phys 74 030905 (2006)
  547. Unified modeling of conductance kinetics for low- and high-conductance potassium ion channels. Tolokh IS, Goldman S, Gray CG. Phys Rev E Stat Nonlin Soft Matter Phys 74 011902 (2006)
  548. Role of water molecules in the KcsA protein channel by molecular dynamics calculations. Compoint M, Boiteux C, Huetz P, Ramseyer C, Girardet C. Phys Chem Chem Phys 7 4138-4145 (2005)
  549. Brownian dynamics simulation for modeling ion permeation across bionanotubes. Krishnamurthy V, Chung SH. IEEE Trans Nanobioscience 4 102-111 (2005)
  550. Symmetry, selectivity, and the 2003 Nobel Prize. Clapham DE. Cell 115 641-646 (2003)
  551. Ion channels: open at last. Sansom MS, Capener CE. Curr. Biol. 12 R566-8 (2002)
  552. Affimer proteins are versatile and renewable affinity reagents. Tiede C, Bedford R, Heseltine SJ, Smith G, Wijetunga I, Ross R, AlQallaf D, Roberts AP, Balls A, Curd A, Hughes RE, Martin H, Needham SR, Zanetti-Domingues LC, Sadigh Y, Peacock TP, Tang AA, Gibson N, Kyle H, Platt GW, Ingram N, Taylor T, Coletta LP, Manfield I, Knowles M, Bell S, Esteves F, Maqbool A, Prasad RK, Drinkhill M, Bon RS, Patel V, Goodchild SA, Martin-Fernandez M, Owens RJ, Nettleship JE, Webb ME, Harrison M, Lippiat JD, Ponnambalam S, Peckham M, Smith A, Ferrigno PK, Johnson M, McPherson MJ, Tomlinson DC. Elife 6 (2017)
  553. Structures of closed and open states of a voltage-gated sodium channel. Lenaeus MJ, Gamal El-Din TM, Ing C, Ramanadane K, Pomès R, Zheng N, Catterall WA. Proc. Natl. Acad. Sci. U.S.A. 114 E3051-E3060 (2017)
  554. Gating energetics of a voltage-dependent K+ channel pore domain. Starek G, Freites JA, Bernèche S, Tobias DJ. J Comput Chem 38 1472-1478 (2017)
  555. Quantitative sodium MR imaging: A review of its evolving role in medicine. Thulborn KR. Neuroimage (2016)
  556. Pore size matters for potassium channel conductance. Naranjo D, Moldenhauer H, Pincuntureo M, Díaz-Franulic I. J. Gen. Physiol. 148 277-291 (2016)
  557. Exploring the Dynamics of the TWIK-1 Channel. Oakes V, Furini S, Pryde D, Domene C. Biophys. J. 111 775-784 (2016)
  558. The Receptor Site and Mechanism of Action of Sodium Channel Blocker Insecticides. Zhang Y, Du Y, Jiang D, Behnke C, Nomura Y, Zhorov BS, Dong K. J. Biol. Chem. 291 20113-20124 (2016)
  559. Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation. Conti L, Renhorn J, Gabrielsson A, Turesson F, Liin SI, Lindahl E, Elinder F. Sci Rep 6 27562 (2016)
  560. Effective pore size and radius of capture for K(+) ions in K-channels. Moldenhauer H, Díaz-Franulic I, González-Nilo F, Naranjo D. Sci Rep 6 19893 (2016)
  561. The Role of the Carboxyl Terminus Helix C-D Linker in Regulating KCNQ3 K+ Current Amplitudes by Controlling Channel Trafficking. Choveau FS, Zhang J, Bierbower SM, Sharma R, Shapiro MS. PLoS ONE 10 e0145367 (2015)
  562. Mechanism for attenuated outward conductance induced by mutations in the cytoplasmic pore of Kir2.1 channels. Chang HK, Iwamoto M, Oiki S, Shieh RC. Sci Rep 5 18404 (2015)
  563. The Hydrophobic Effect Contributes to the Closed State of a Simplified Ion Channel through a Conserved Hydrophobic Patch at the Pore-Helix Crossing. Yonkunas M, Kurnikova M. Front Pharmacol 6 284 (2015)
  564. Designer and natural peptide toxin blockers of the KcsA potassium channel identified by phage display. Zhao R, Dai H, Mendelman N, Cuello LG, Chill JH, Goldstein SA. Proc. Natl. Acad. Sci. U.S.A. 112 E7013-21 (2015)
  565. Selective Permeability of Uranyl Peroxide Nanocages to Different Alkali Ions: Influences from Surface Pores and Hydration Shells. Gao Y, Haso F, Szymanowski JE, Zhou J, Hu L, Burns PC, Liu T. Chemistry 21 18785-18790 (2015)
  566. Competing Lipid-Protein and Protein-Protein Interactions Determine Clustering and Gating Patterns in the Potassium Channel from Streptomyces lividans (KcsA). Molina ML, Giudici AM, Poveda JA, Fernández-Ballester G, Montoya E, Renart ML, Fernández AM, Encinar JA, Riquelme G, Morales A, González-Ros JM. J. Biol. Chem. 290 25745-25755 (2015)
  567. Structural implications of weak Ca2+ block in Drosophila cyclic nucleotide-gated channels. Lam YL, Zeng W, Derebe MG, Jiang Y. J. Gen. Physiol. 146 255-263 (2015)
  568. Complex interactions among residues within pore region determine the K+ dependence of a KAT1-type potassium channel AmKAT1. Yang G, Sentenac H, Véry AA, Su Y. Plant J. 83 401-412 (2015)
  569. Protonated Hexaazamacrocycles as Selective K(+) Receptors. Fraschetti C, Filippi A, Crestoni ME, Marcantoni E, Glucini M, Guarcini L, Montagna M, Guidoni L, Speranza M. J. Am. Soc. Mass Spectrom. 26 1186-1190 (2015)
  570. Disruption of the colonization resistance syndrome in humans in altered habitats and its prevention. Ilyin VK, Kiryukhina NV. Acta Naturae 6 10-18 (2014)
  571. Ruled surface underlying KcsA potassium channels. Yao Z, Olvera de la Cruz M. Soft Matter 10 540-543 (2014)
  572. The open gate of the K(V)1.2 channel: quantum calculations show the key role of hydration. Kariev AM, Njau P, Green ME. Biophys. J. 106 548-555 (2014)
  573. Detailed Examination of a Single Conduction Event in a Potassium Channel. Fowler PW, Beckstein O, Abad E, Sansom MS. J Phys Chem Lett 4 3104-3109 (2013)
  574. 1.2 Å X-ray structure of the renal potassium channel Kv1.3 T1 domain. Kremer W, Weyand M, Winklmeier A, Schreier C, Kalbitzer HR. Protein J. 32 533-542 (2013)
  575. Enhanced potassium selectivity in a bioinspired solid nanopore. Picaud F, Kraszewski S, Ramseyer C, Balme S, Balme S, Déjardin P, Janot JM, Henn F. Phys Chem Chem Phys 15 19601-19607 (2013)
  576. Interaction of local anesthetics with the K (+) channel pore domain: KcsA as a model for drug-dependent tetramer stability. Gray NW, Zhorov BS, Moczydlowski EG. Channels (Austin) 7 182-193 (2013)
  577. A ring of threonines in the inner vestibule of the pore of CNGA1 channels constitutes a binding site for permeating ions. Marchesi A, Mazzolini M, Torre V. J. Physiol. (Lond.) 590 5075-5090 (2012)
  578. Residues at the outer mouth of Kir1.1 determine K-dependent gating. Sackin H, Nanazashvili M, Li H, Palmer LG, Yang L. Biophys. J. 102 2742-2750 (2012)
  579. Sperm GIRK2-containing K+ inward rectifying channels participate in sperm capacitation and fertilization. Yi YJ, Sung DY, Millette C, Sutovsky M, Kennedy C, Sutovsky P, Thompson W, Thomas K. Syst Biol Reprod Med 57 296-308 (2011)
  580. Artificial modulation of the gating behavior of a K+ channel in a KvAP-DNA chimera. Wang A, Zocchi G. PLoS ONE 6 e18598 (2011)
  581. G-protein-coupled receptor structure: what can we learn? Tobin AB. F1000 Biol Rep 1 11 (2009)
  582. Unnatural amino acids: better than the real things? Minnihan EC, Yokoyama K, Stubbe J. F1000 Biol Rep 1 88 (2009)
  583. Biochemistry. Old gate gets a new look. Weyand S, Iwata S. Science 329 151-152 (2010)
  584. Potassium channel gating: not an open and shut case. Norton RS, Gulbis JM. Proc. Natl. Acad. Sci. U.S.A. 107 7623-7624 (2010)
  585. Dissimilarity in the channel intrinsic stability among the bacterial KcsA and the inwardly rectifying potassium channel ROMK1. Raja M, Vales E. Biochimie 91 1426-1433 (2009)
  586. The positively charged C-terminal region of the inactivating Shaker B peptide binds to the potassium channel KcsA. Neira JL. Protein Eng. Des. Sel. 22 341-347 (2009)
  587. Functional consequences of leucine and tyrosine mutations in the dual pore motifs of the yeast K(+) channel, Tok1p. Roller A, Natura G, Bihler H, Slayman CL, Bertl A. Pflugers Arch. 456 883-896 (2008)
  588. Is the mobility of the pore walls and water molecules in the selectivity filter of KcsA channel functionally important? Kraszewski S, Yesylevskyy SO, Boiteux C, Ramseyer C, Kharkyanen VN. Phys Chem Chem Phys 10 2249-2255 (2008)
  589. Cooperative transport in a potassium ion channel. Gwan JF, Baumgaertner A. J Chem Phys 127 045103 (2007)
  590. In the yeast potassium channel, Tok1p, the external ring of aspartate residues modulates both gating and conductance. Roller A, Natura G, Bihler H, Slayman CL, Eing C, Bertl A. Pflugers Arch. 451 362-370 (2005)
  591. Comment Bend to open? Minor DL. Structure 13 1094-1095 (2005)
  592. Semimicroscopic modeling of permeation energetics in ion channels. Jordan PC. IEEE Trans Nanobioscience 4 94-101 (2005)
  593. A photochemical approach to the lipid accessibility of engineered cysteinyl residues. Li J, Shi L, Karlin A. Proc. Natl. Acad. Sci. U.S.A. 100 886-891 (2003)
  594. Chloride channel function: partial charges and dipolar rods. Mancia F, Shapiro L. Structure 10 283-284 (2002)
  595. Water molecules in hydroxy/acid networks as a competition between dynamics and bonding. Synthesis of a wet hydrophobic pore. Pérez-Hernández N, Pérez C, Rodríguez ML, Foces-Foces C, Tolstoy PM, Limbach HH, Morales EQ, Pérez R, Martín JD. Bioorg. Med. Chem. 12 1305-1314 (2004)
  596. Ion channel structure and the promise of bacteria: cyclic nucleotide-gated channels in the queue. Karpen JW. J. Gen. Physiol. 124 199-201 (2004)
  597. New tetragonal form of reaction centers from Rhodobacter sphaeroides and the involvement of a manganese ion at a crystal contact point. Uyeda G, Cámara-Artigas A, Williams JC, Allen JP. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61 733-736 (2005)
  598. Shape-Dependent Global Deformation Modes of Large Protein Structures. Miloshevsky GV, Hassanein A, Jordan PC. J Mol Struct 972 41-50 (2010)
  599. Solvation counteracts coulombic repulsion in the binding of two cations to a model hexapeptide. Ai H, Zhang C, He W, Chan K, Li Q. J Mol Model 18 53-64 (2012)
  600. An Information Theory Approach to Nonlinear, Nonequilibrium Thermodynamics. Rogers DM, Beck TL, Rempe SB. J Stat Phys 145 385-409 (2011)
  601. Characterization of a cyclic nucleotide-activated K(+) channel and its lipid environment by using solid-state NMR spectroscopy. Cukkemane A, Baldus M. Chembiochem 14 1789-1798 (2013)
  602. Qualitative computational bioanalytics: assembly of viral channel-forming peptides around mono and divalent ions. Li LH, Hsu HJ, Fischer WB. Biochem. Biophys. Res. Commun. 442 85-91 (2013)
  603. Interaction analysis of a ladder-shaped polycyclic ether and model transmembrane peptides in lipid bilayers by using Förster resonance energy transfer and polarized attenuated total reflection infrared spectroscopy. Yamada K, Kuriyama H, Hara T, Murata M, Irie R, Harntaweesup Y, Satake M, Fukuzawa S, Tachibana K. Bioorg. Med. Chem. 22 3773-3780 (2014)
  604. Molecular determinants of tetramerization in the KcsA cytoplasmic domain. Kamnesky G, Hirschhorn O, Shaked H, Chen J, Yao L, Chill JH. Protein Sci. 23 1403-1416 (2014)
  605. Water at interfaces. Takahashi H, Kuzume A, Ito M. J Environ Sci (China) 21 Suppl 1 S7-S12 (2009)
  606. K⁺-dependent selectivity and external Ca²⁺ block of Shab K⁺ channels. Carrillo E, Pacheco L, Balleza D, Gomez-Lagunas F. PLoS ONE 10 e0120431 (2015)
  607. Continuum electrostatic approach for evaluating positions and interactions of proteins in a bilayer membrane. Supunyabut C, Fuklang S, Sompornpisut P. J. Mol. Graph. Model. 59 81-91 (2015)
  608. Transmembrane Helix Assembly by Max-Min Ant System Algorithm. Sujaree K, Kitjaruwankul S, Boonamnaj P, Supunyabut C, Sompornpisut P. Chem Biol Drug Des 86 1360-1372 (2015)
  609. Equilibrium fluctuation relations for voltage coupling in membrane proteins. Kim I, Warshel A. Biochim. Biophys. Acta 1848 2985-2997 (2015)
  610. Pore hydration states of KcsA potassium channels in membranes. Blasic JR, Worcester DL, Gawrisch K, Gurnev P, Mihailescu M. J. Biol. Chem. 290 26765-26775 (2015)
  611. Multi-scaled normal mode analysis method for dynamics simulation of protein-membrane complexes: A case study of potassium channel gating motion correlations. Wu X, Han M, Ming D. J Chem Phys 143 134113 (2015)
  612. K+ Block Is the Mechanism of Functional Asymmetry in Bacterial Na(v) Channels. Ngo V, Wang Y, Haas S, Noskov SY, Farley RA. PLoS Comput. Biol. 12 e1004482 (2016)
  613. Polyclonal Antibody Production for Membrane Proteins via Genetic Immunization. Hansen DT, Robida MD, Craciunescu FM, Loskutov AV, Dörner K, Rodenberry JC, Wang X, Olson TL, Patel H, Fromme P, Sykes KF. Sci Rep 6 21925 (2016)
  614. Thermal Responsive Ion Selectivity of Uranyl Peroxide Nanocages: An Inorganic Mimic of K(+) Ion Channels. Gao Y, Szymanowski JE, Sun X, Burns PC, Liu T. Angew. Chem. Int. Ed. Engl. 55 6887-6891 (2016)
  615. The Potassium Binding Protein Kbp Is a Cytoplasmic Potassium Sensor. Ashraf KU, Josts I, Mosbahi K, Kelly SM, Byron O, Smith BO, Walker D. Structure 24 741-749 (2016)
  616. An antiarrhythmic agent as a promising lead compound for targeting the hEAG1 ion channel in cancer therapy: insights from molecular dynamics simulations. Șterbuleac D, Maniu CL. Chem Biol Drug Des 88 683-689 (2016)
  617. Design, synthesis and computational evaluation of a novel intermediate salt of N-cyclohexyl-N-(cyclohexylcarbamoyl)-4-(trifluoromethyl) benzamide as potential potassium channel blocker in epileptic paroxysmal seizures. Natchimuthu V, Bandaru S, Nayarisseri A, Ravi S. Comput Biol Chem 64 64-73 (2016)
  618. Conformational heterogeneity in closed and open states of the KcsA potassium channel in lipid bicelles. Kim DM, Dikiy I, Upadhyay V, Posson DJ, Eliezer D, Nimigean CM. J. Gen. Physiol. 148 119-132 (2016)
  619. Specific interactions between alkali metal cations and the KcsA channel studied using ATR-FTIR spectroscopy. Furutani Y, Shimizu H, Asai Y, Oiki S, Kandori H. Biophys Physicobiol 12 37-45 (2015)
  620. Expression and cellular localization of HCN channels in rat cerebellar granule neurons. Zúñiga R, González D, Valenzuela C, Brown N, Zúñiga L. Biochem. Biophys. Res. Commun. 478 1429-1435 (2016)
  621. Hydration of potassium iodide dimer studied by photoelectron spectroscopy and ab initio calculations. Li RZ, Zeng Z, Hou GL, Xu HG, Zhao X, Gao YQ, Zheng WJ. J Chem Phys 145 184307 (2016)
  622. A reduced mechanical model for cAMP-modulated gating in HCN channels. Weißgraeber S, Saponaro A, Thiel G, Hamacher K. Sci Rep 7 40168 (2017)
  623. Dynamics of the EAG1 K+ channel selectivity filter assessed by molecular dynamics simulations. Bernsteiner H, Bründl M, Stary-Weinzinger A. Biochem. Biophys. Res. Commun. 484 107-112 (2017)
  624. Quantum Interference and Selectivity through Biological Ion Channels. Salari V, Naeij H, Shafiee A. Sci Rep 7 41625 (2017)
  625. Hysteresis of KcsA potassium channel's activation- deactivation gating is caused by structural changes at the channel's selectivity filter. Tilegenova C, Cortes DM, Cuello LG. Proc. Natl. Acad. Sci. U.S.A. 114 3234-3239 (2017)
  626. Hydrogen bond strength in membrane proteins probed by time-resolved 1H-detected solid-state NMR and MD simulations. Medeiros-Silva J, Jekhmane S, Baldus M, Weingarth M. Solid State Nucl Magn Reson 87 80-85 (2017)
  627. Ion- and water-binding sites inside an occluded hourglass pore of a trimeric intracellular cation (TRIC) channel. Ou X, Guo J, Wang L, Yang H, Liu X, Sun J, Liu Z. BMC Biol. 15 31 (2017)
  628. Helical jackknives control the gates of the double-pore K+ uptake system KtrAB. Diskowski M, Mehdipour AR, Wunnicke D, Mills DJ, Mikusevic V, Bärland N, Hoffmann J, Morgner N, Steinhoff HJ, Hummer G, Vonck J, Hänelt I. Elife 6 (2017)
  629. Crystal structure of the potassium-importing KdpFABC membrane complex. Huang CS, Pedersen BP, Stokes DL. Nature 546 681-685 (2017)
  630. Different characteristics of cell volume and intracellular calcium ion concentration dynamics between the hippocampal CA1 and lateral cerebral cortex of male mouse brain slices during exposure to hypotonic stress. Takahashi N, Omi A, Uchino H, Kudo Y. J. Neurosci. Res. 96 117-127 (2018)
  631. The lysosomal potassium channel TMEM175 adopts a novel tetrameric architecture. Lee C, Guo J, Zeng W, Kim S, She J, Cang C, Ren D, Jiang Y. Nature 547 472-475 (2017)
  632. Crystal structure of an inactivated mutant mammalian voltage-gated K+ channel. Pau V, Zhou Y, Ramu Y, Xu Y, Lu Z. Nat. Struct. Mol. Biol. 24 857-865 (2017)
  633. Structural and electrostatic effects at the surfaces of size- and charge-selected aqueous nanodrops. Cooper RJ, O'Brien JT, Chang TM, Williams ER. Chem Sci 8 5201-5213 (2017)
  634. Mechanism of activation at the selectivity filter of the KcsA K+ channel. Heer FT, Posson DJ, Wojtas-Niziurski W, Nimigean CM, Bernèche S, Bernèche S. Elife 6 (2017)
  635. Dynamic water patterns change the stability of the collapsed filter conformation of the KcsA K+ channel. Wu D. PLoS ONE 12 e0186789 (2017)
  636. Protein crystallization: Eluding the bottleneck of X-ray crystallography. Holcomb J, Spellmon N, Zhang Y, Doughan M, Li C, Yang Z. AIMS Biophys 4 557-575 (2017)
  637. Stochastic palmitoylation of accessible cysteines in membrane proteins revealed by native mass spectrometry. Rodenburg RNP, Snijder J, van de Waterbeemd M, Schouten A, Granneman J, Heck AJR, Gros P. Nat Commun 8 1280 (2017)