1jsa Citations

Molecular mechanics of calcium-myristoyl switches.

Nature 389 198-202 (1997)
Cited: 282 times
EuropePMC logo PMID: 9296500

Abstract

Many eukaryotic cellular and viral proteins have a covalently attached myristoyl group at the amino terminus. One such protein is recoverin, a calcium sensor in retinal rod cells, which controls the lifetime of photoexcited rhodopsin by inhibiting rhodopsin kinase. Recoverin has a relative molecular mass of 23,000 (M[r] 23K), and contains an amino-terminal myristoyl group (or related acyl group) and four EF hands. The binding of two Ca2+ ions to recoverin leads to its translocation from the cytosol to the disc membrane. In the Ca2+-free state, the myristoyl group is sequestered in a deep hydrophobic box, where it is clamped by multiple residues contributed by three of the EF hands. We have used nuclear magnetic resonance to show that Ca2+ induces the unclamping and extrusion of the myristoyl group, enabling it to interact with a lipid bilayer membrane. The transition is also accompanied by a 45-degree rotation of the amino-terminal domain relative to the carboxy-terminal domain, and many hydrophobic residues are exposed. The conservation of the myristoyl binding site and two swivels in recoverin homologues from yeast to humans indicates that calcium-myristoyl switches are ancient devices for controlling calcium-sensitive processes.

Reviews - 1jsa mentioned but not cited (3)

  1. Protein and Signaling Networks in Vertebrate Photoreceptor Cells. Koch KW, Dell'Orco D. Front Mol Neurosci 8 67 (2015)
  2. Ca2+ -dependent regulation of phototransduction. Stephen R, Filipek S, Palczewski K, Sousa MC. Photochem Photobiol 84 903-910 (2008)
  3. The Binding Properties and Physiological Functions of Recoverin. Zang J, Neuhauss SCF. Front Mol Neurosci 11 473 (2018)

Articles - 1jsa mentioned but not cited (12)

  1. Two structural motifs within canonical EF-hand calcium-binding domains identify five different classes of calcium buffers and sensors. Denessiouk K, Permyakov S, Denesyuk A, Permyakov E, Johnson MS. PLoS One 9 e109287 (2014)
  2. Determination of the contribution of the myristoyl group and hydrophobic amino acids of recoverin on its dynamics of binding to lipid monolayers. Desmeules P, Penney SE, Desbat B, Salesse C. Biophys J 93 2069-2082 (2007)
  3. Structural insights for activation of retinal guanylate cyclase by GCAP1. Lim S, Peshenko IV, Dizhoor AM, Ames JB. PLoS One 8 e81822 (2013)
  4. Double electron-electron resonance probes Ca²⁺-induced conformational changes and dimerization of recoverin. Myers WK, Xu X, Li C, Lagerstedt JO, Budamagunta MS, Voss JC, Britt RD, Ames JB. Biochemistry 52 5800-5808 (2013)
  5. Conformational dynamics of recoverin's Ca2+-myristoyl switch probed by 15N NMR relaxation dispersion and chemical shift analysis. Xu X, Ishima R, Ames JB. Proteins 79 1910-1922 (2011)
  6. Site-specific fluorescent labeling to visualize membrane translocation of a myristoyl switch protein. Yang ST, Lim SI, Kiessling V, Kwon I, Tamm LK. Sci Rep 6 32866 (2016)
  7. Light-Induced Thiol Oxidation of Recoverin Affects Rhodopsin Desensitization. Zernii EY, Nazipova AA, Nemashkalova EL, Kazakov AS, Gancharova OS, Serebryakova MV, Tikhomirova NK, Baksheeva VE, Vladimirov VI, Zinchenko DV, Philippov PP, Senin II, Permyakov SE. Front Mol Neurosci 11 474 (2018)
  8. Membrane Binding of Recoverin: From Mechanistic Understanding to Biological Functionality. Timr Š, Pleskot R, Kadlec J, Kohagen M, Magarkar A, Jungwirth P. ACS Cent Sci 3 868-874 (2017)
  9. Analysis of conformational variation in macromolecular structural models. Srivastava SK, Gayathri S, Manjasetty BA, Gopal B. PLoS One 7 e39993 (2012)
  10. Zebrafish Recoverin Isoforms Display Differences in Calcium Switch Mechanisms. Elbers D, Scholten A, Koch KW. Front Mol Neurosci 11 355 (2018)
  11. Bringing the Ca2+ sensitivity of myristoylated recoverin into the physiological range. Marino V, Riva M, Zamboni D, Koch KW, Dell'Orco D. Open Biol 11 200346 (2021)
  12. Zinc Modulation of Neuronal Calcium Sensor Proteins: Three Modes of Interaction with Different Structural Outcomes. Baksheeva VE, Tsvetkov PO, Zalevsky AO, Vladimirov VI, Gorokhovets NV, Zinchenko DV, Permyakov SE, Devred F, Zernii EY. Biomolecules 12 956 (2022)


Reviews citing this publication (61)

  1. Nitric oxide synthases: which, where, how, and why? Michel T, Feron O. J Clin Invest 100 2146-2152 (1997)
  2. The neuronal calcium sensor family of Ca2+-binding proteins. Burgoyne RD, Weiss JL. Biochem J 353 1-12 (2001)
  3. Structural basis for diversity of the EF-hand calcium-binding proteins. Grabarek Z. J Mol Biol 359 509-525 (2006)
  4. Signalling functions of protein palmitoylation. Dunphy JT, Linder ME. Biochim Biophys Acta 1436 245-261 (1998)
  5. Diversity of conformational states and changes within the EF-hand protein superfamily. Yap KL, Ames JB, Swindells MB, Ikura M. Proteins 37 499-507 (1999)
  6. Neuronal Ca2+-sensor proteins: multitalented regulators of neuronal function. Burgoyne RD, O'Callaghan DW, Hasdemir B, Haynes LP, Tepikin AV. Trends Neurosci 27 203-209 (2004)
  7. Calcium ions in neuronal degeneration. Wojda U, Salinska E, Kuznicki J. IUBMB Life 60 575-590 (2008)
  8. Current understanding of fatty acid biosynthesis and the acyl carrier protein. Chan DI, Vogel HJ. Biochem J 430 1-19 (2010)
  9. Chemistry and biology of vision. Palczewski K. J Biol Chem 287 1612-1619 (2012)
  10. Amphitropic proteins: regulation by reversible membrane interactions (review). Johnson JE, Cornell RB. Mol Membr Biol 16 217-235 (1999)
  11. Plant calcineurin B-like proteins and their interacting protein kinases. Batistic O, Kudla J. Biochim Biophys Acta 1793 985-992 (2009)
  12. Acylation of Escherichia coli hemolysin: a unique protein lipidation mechanism underlying toxin function. Stanley P, Koronakis V, Hughes C. Microbiol Mol Biol Rev 62 309-333 (1998)
  13. Signaling complexes: biophysical constraints on intracellular communication. Bray D. Annu Rev Biophys Biomol Struct 27 59-75 (1998)
  14. Lipid rafts-protein association and the regulation of protein activity. Lucero HA, Robbins PW. Arch Biochem Biophys 426 208-224 (2004)
  15. Phototransduction: crystal clear. Ridge KD, Abdulaev NG, Sousa M, Palczewski K. Trends Biochem Sci 28 479-487 (2003)
  16. Ca(2+)-binding proteins in the retina: structure, function, and the etiology of human visual diseases. Palczewski K, Polans AS, Baehr W, Ames JB. Bioessays 22 337-350 (2000)
  17. The synaptic vesicle proteome. Burré J, Volknandt W. J Neurochem 101 1448-1462 (2007)
  18. Visinin-like proteins (VSNLs): interaction partners and emerging functions in signal transduction of a subfamily of neuronal Ca2+ -sensor proteins. Braunewell KH, Klein-Szanto AJ. Cell Tissue Res 335 301-316 (2009)
  19. The catalytic subunit of cAMP-dependent protein kinase: prototype for an extended network of communication. Smith CM, Radzio-Andzelm E, Madhusudan, Akamine P, Taylor SS. Prog Biophys Mol Biol 71 313-341 (1999)
  20. Guanylate cyclase-activating proteins: structure, function, and diversity. Palczewski K, Sokal I, Baehr W. Biochem Biophys Res Commun 322 1123-1130 (2004)
  21. Plant calcium signaling and monitoring: pros and cons and recent experimental approaches. Plieth C. Protoplasma 218 1-23 (2001)
  22. Molecular structure and target recognition of neuronal calcium sensor proteins. Ames JB, Lim S. Biochim Biophys Acta 1820 1205-1213 (2012)
  23. The diversity of calcium sensor proteins in the regulation of neuronal function. McCue HV, Haynes LP, Burgoyne RD. Cold Spring Harb Perspect Biol 2 a004085 (2010)
  24. Targeting and translocation of endothelial nitric oxide synthase. Michel T. Braz J Med Biol Res 32 1361-1366 (1999)
  25. Understanding the physiological roles of the neuronal calcium sensor proteins. Burgoyne RD, Haynes LP. Mol Brain 5 2 (2012)
  26. Cinderella story: PI4P goes from precursor to key signaling molecule. Tan J, Brill JA. Crit Rev Biochem Mol Biol 49 33-58 (2014)
  27. Protein lipid modifications--More than just a greasy ballast. Hentschel A, Zahedi RP, Ahrends R. Proteomics 16 759-782 (2016)
  28. Membrane interaction of retroviral Gag proteins. Dick RA, Vogt VM. Front Microbiol 5 187 (2014)
  29. Protein myristoylation in protein-lipid and protein-protein interactions. Taniguchi H. Biophys Chem 82 129-137 (1999)
  30. The neuronal calcium-sensor proteins. D Burgoyne R. Biochim Biophys Acta 1742 59-68 (2004)
  31. The structure of myristoyl-CoA:protein N-myristoyltransferase. Bhatnagar RS, Fütterer K, Waksman G, Gordon JI. Biochim Biophys Acta 1441 162-172 (1999)
  32. Between promiscuity and specificity: novel roles of EF-hand calcium sensors in neuronal Ca2+ signalling. Mikhaylova M, Hradsky J, Kreutz MR. J Neurochem 118 695-713 (2011)
  33. Specific localization and timing in neuronal signal transduction mediated by protein-lipid interactions. Fivaz M, Meyer T. Neuron 40 319-330 (2003)
  34. Calcineurin homologous protein: a multifunctional Ca2+-binding protein family. Di Sole F, Vadnagara K, Moe OW, Babich V. Am J Physiol Renal Physiol 303 F165-79 (2012)
  35. Antifungals targeted to protein modification: focus on protein N-myristoyltransferase. Georgopapadakou NH. Expert Opin Investig Drugs 11 1117-1125 (2002)
  36. CIB1: a small protein with big ambitions. Leisner TM, Freeman TC, Black JL, Parise LV. FASEB J 30 2640-2650 (2016)
  37. Structural diversity of neuronal calcium sensor proteins and insights for activation of retinal guanylyl cyclase by GCAP1. Lim S, Dizhoor AM, Ames JB. Front Mol Neurosci 7 19 (2014)
  38. Sense and specificity in neuronal calcium signalling. Burgoyne RD, Haynes LP. Biochim Biophys Acta 1853 1921-1932 (2015)
  39. Multiple roles for frequenin/NCS-1 in synaptic function and development. Dason JS, Romero-Pozuelo J, Atwood HL, Ferrús A. Mol Neurobiol 45 388-402 (2012)
  40. Role of carbonic anhydrases in the progression of renal cell carcinoma subtypes: proposal of a unified hypothesis. Dorai T, Sawczuk I, Pastorek J, Wiernik PH, Dutcher JP. Cancer Invest 24 754-779 (2006)
  41. Calcium Sensors in Neuronal Function and Dysfunction. Burgoyne RD, Helassa N, McCue HV, Haynes LP. Cold Spring Harb Perspect Biol 11 (2019)
  42. Mitochondria, calcium, and tumor suppressor Fus1: At the crossroad of cancer, inflammation, and autoimmunity. Uzhachenko R, Shanker A, Yarbrough WG, Ivanova AV. Oncotarget 6 20754-20772 (2015)
  43. Roles played by acidic lipids in HIV-1 Gag membrane binding. Olety B, Ono A. Virus Res 193 108-115 (2014)
  44. Calcium binding protein-mediated regulation of voltage-gated calcium channels linked to human diseases. Nejatbakhsh N, Feng ZP. Acta Pharmacol Sin 32 741-748 (2011)
  45. NCS-1 stirs somnolent synapses. Zucker RS. Nat Neurosci 6 1006-1008 (2003)
  46. Heterogeneous N-terminal acylation of retinal proteins. DeMar JC, Rundle DR, Wensel TG, Anderson RE. Prog Lipid Res 38 49-90 (1999)
  47. Application of surface plasmon resonance for analysis of protein-protein interactions in the G protein-mediated signal transduction pathway. Slepak VZ. J Mol Recognit 13 20-26 (2000)
  48. Kv channel-interacting proteins as neuronal and non-neuronal calcium sensors. Bähring R. Channels (Austin) 12 187-200 (2018)
  49. Dimerization of Neuronal Calcium Sensor Proteins. Ames JB. Front Mol Neurosci 11 397 (2018)
  50. Organization, structure and activity of proteins in monolayers. Boucher J, Trudel E, Méthot M, Desmeules P, Salesse C. Colloids Surf B Biointerfaces 58 73-90 (2007)
  51. Photoreceptor guanylate cyclase variants: cGMP production under control. Sokal I, Alekseev A, Palczewski K. Acta Biochim Pol 50 1075-1095 (2003)
  52. Biochemistry and physiology of zebrafish photoreceptors. Zang J, Neuhauss SCF. Pflugers Arch 473 1569-1585 (2021)
  53. ROS-GC subfamily membrane guanylate cyclase-linked transduction systems: taste, pineal gland and hippocampus. Sharma RK, Duda T. Mol Cell Biochem 334 199-206 (2010)
  54. N-Myristoyltransferase as a Glycine and Lysine Myristoyltransferase in Cancer, Immunity, and Infections. Kosciuk T, Lin H. ACS Chem Biol 15 1747-1758 (2020)
  55. New Approach for Untangling the Role of Uncommon Calcium-Binding Proteins in the Central Nervous System. Kelemen K, Szilágyi T. Brain Sci 11 (2021)
  56. Regulation of retinal membrane guanylyl cyclase (RetGC) by negative calcium feedback and RD3 protein. Dizhoor AM, Peshenko IV. Pflugers Arch 473 1393-1410 (2021)
  57. [Physiology of the visual retinal signal: From phototransduction to the visual cycle]. Salesse C. J Fr Ophtalmol 40 239-250 (2017)
  58. The guanylate cyclase signaling system in zebrafish photoreceptors. Koch KW. FEBS Lett 587 2055-2059 (2013)
  59. Mitochondrial Fus1/Tusc2 and cellular Ca2+ homeostasis: tumor suppressor, anti-inflammatory and anti-aging implications. Uzhachenko R, Shimamoto A, Chirwa SS, Ivanov SV, Ivanova AV, Shanker A. Cancer Gene Ther (2022)
  60. Structural Insights into Retinal Guanylate Cyclase Activator Proteins (GCAPs). Ames JB. Int J Mol Sci 22 (2021)
  61. Tumor Suppressor Candidate 2 (TUSC2): Discovery, Functions, and Cancer Therapy. Arrigo A, Regua AT, Najjar MK, Lo HW. Cancers (Basel) 15 2455 (2023)

Articles citing this publication (206)

  1. Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Goldberg J. Cell 95 237-248 (1998)
  2. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J. Plant Physiol 134 43-58 (2004)
  3. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Quintero FJ, Ohta M, Shi H, Zhu JK, Pardo JM. Proc Natl Acad Sci U S A 99 9061-9066 (2002)
  4. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK. Plant Cell 12 1667-1678 (2000)
  5. Entropic switch regulates myristate exposure in the HIV-1 matrix protein. Tang C, Loeliger E, Luncsford P, Kinde I, Beckett D, Summers MF. Proc Natl Acad Sci U S A 101 517-522 (2004)
  6. Crystal structure of beta-arrestin at 1.9 A: possible mechanism of receptor binding and membrane Translocation. Han M, Gurevich VV, Vishnivetskiy SA, Sigler PB, Schubert C. Structure 9 869-880 (2001)
  7. Binding of human immunodeficiency virus type 1 Gag to membrane: role of the matrix amino terminus. Ono A, Freed EO. J Virol 73 4136-4144 (1999)
  8. Five members of a novel Ca(2+)-binding protein (CABP) subfamily with similarity to calmodulin. Haeseleer F, Sokal I, Verlinde CL, Erdjument-Bromage H, Tempst P, Pronin AN, Benovic JL, Fariss RN, Palczewski K. J Biol Chem 275 1247-1260 (2000)
  9. Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis. Shi J, Kim KN, Ritz O, Albrecht V, Gupta R, Harter K, Luan S, Kudla J. Plant Cell 11 2393-2405 (1999)
  10. β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). Oakhill JS, Chen ZP, Scott JW, Steel R, Castelli LA, Ling N, Macaulay SL, Kemp BE. Proc Natl Acad Sci U S A 107 19237-19241 (2010)
  11. Structure of the reovirus membrane-penetration protein, Mu1, in a complex with is protector protein, Sigma3. Liemann S, Chandran K, Baker TS, Nibert ML, Harrison SC. Cell 108 283-295 (2002)
  12. The morph server: a standardized system for analyzing and visualizing macromolecular motions in a database framework. Krebs WG, Gerstein M. Nucleic Acids Res 28 1665-1675 (2000)
  13. Critical determinants of Ca(2+)-dependent inactivation within an EF-hand motif of L-type Ca(2+) channels. Peterson BZ, Lee JS, Mulle JG, Wang Y, de Leon M, Yue DT. Biophys J 78 1906-1920 (2000)
  14. Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily: two ways to promote multifunctionality. Ikura M, Ames JB. Proc Natl Acad Sci U S A 103 1159-1164 (2006)
  15. Opposing effects of human immunodeficiency virus type 1 matrix mutations support a myristyl switch model of gag membrane targeting. Paillart JC, Göttlinger HG. J Virol 73 2604-2612 (1999)
  16. Interaction specificity of Arabidopsis calcineurin B-like calcium sensors and their target kinases. Kim KN, Cheong YH, Gupta R, Luan S. Plant Physiol 124 1844-1853 (2000)
  17. The prenylation status of a novel plant calmodulin directs plasma membrane or nuclear localization of the protein. Rodríguez-Concepción M, Yalovsky S, Zik M, Fromm H, Gruissem W. EMBO J 18 1996-2007 (1999)
  18. Reversible intracellular translocation of KRas but not HRas in hippocampal neurons regulated by Ca2+/calmodulin. Fivaz M, Meyer T. J Cell Biol 170 429-441 (2005)
  19. Relationship between human immunodeficiency virus type 1 Gag multimerization and membrane binding. Ono A, Demirov D, Freed EO. J Virol 74 5142-5150 (2000)
  20. Palmitoylation of KChIP splicing variants is required for efficient cell surface expression of Kv4.3 channels. Takimoto K, Yang EK, Conforti L. J Biol Chem 277 26904-26911 (2002)
  21. Structural insights into the functional interaction of KChIP1 with Shal-type K(+) channels. Zhou W, Qian Y, Kunjilwar K, Pfaffinger PJ, Choe S. Neuron 41 573-586 (2004)
  22. Expression of the neuronal calcium sensor protein family in the rat brain. Paterlini M, Revilla V, Grant AL, Wisden W. Neuroscience 99 205-216 (2000)
  23. Stabilizing function for myristoyl group revealed by the crystal structure of a neuronal calcium sensor, guanylate cyclase-activating protein 1. Stephen R, Bereta G, Golczak M, Palczewski K, Sousa MC. Structure 15 1392-1402 (2007)
  24. Translocation of sphingosine kinase 1 to the plasma membrane is mediated by calcium- and integrin-binding protein 1. Jarman KE, Moretti PA, Zebol JR, Pitson SM. J Biol Chem 285 483-492 (2010)
  25. A myristoylated calcium-binding protein that preferentially interacts with the Alzheimer's disease presenilin 2 protein. Stabler SM, Ostrowski LL, Janicki SM, Monteiro MJ. J Cell Biol 145 1277-1292 (1999)
  26. Modulation of CaV2.1 channels by the neuronal calcium-binding protein visinin-like protein-2. Lautermilch NJ, Few AP, Scheuer T, Catterall WA. J Neurosci 25 7062-7070 (2005)
  27. Structure of the anchor-domain of myristoylated and non-myristoylated HIV-1 Nef protein. Geyer M, Munte CE, Schorr J, Kellner R, Kalbitzer HR. J Mol Biol 289 123-138 (1999)
  28. A novel calcium-sensitive switch revealed by the structure of human S100B in the calcium-bound form. Smith SP, Shaw GS. Structure 6 211-222 (1998)
  29. Alterations in brain antioxidant enzymes and redox proteomic identification of oxidized brain proteins induced by the anti-cancer drug adriamycin: implications for oxidative stress-mediated chemobrain. Joshi G, Aluise CD, Cole MP, Sultana R, Pierce WM, Vore M, St Clair DK, Butterfield DA. Neuroscience 166 796-807 (2010)
  30. Crystal structure of a myristoylated CAP-23/NAP-22 N-terminal domain complexed with Ca2+/calmodulin. Matsubara M, Nakatsu T, Kato H, Taniguchi H. EMBO J 23 712-718 (2004)
  31. A myristoyl switch regulates membrane binding of HIV-1 Gag. Resh MD. Proc Natl Acad Sci U S A 101 417-418 (2004)
  32. HIV-1 Nef membrane association depends on charge, curvature, composition and sequence. Gerlach H, Laumann V, Martens S, Becker CF, Goody RS, Geyer M. Nat Chem Biol 6 46-53 (2010)
  33. Autophosphorylation and subcellular localization dynamics of a salt- and water deficit-induced calcium-dependent protein kinase from ice plant. Chehab EW, Patharkar OR, Hegeman AD, Taybi T, Cushman JC. Plant Physiol 135 1430-1446 (2004)
  34. Dynamics and calcium sensitivity of the Ca2+/myristoyl switch protein hippocalcin in living cells. O'Callaghan DW, Tepikin AV, Burgoyne RD. J Cell Biol 163 715-721 (2003)
  35. The crystal structure of the novel calcium-binding protein AtCBL2 from Arabidopsis thaliana. Nagae M, Nozawa A, Koizumi N, Sano H, Hashimoto H, Sato M, Shimizu T. J Biol Chem 278 42240-42246 (2003)
  36. Reversible translocation and activity-dependent localization of the calcium-myristoyl switch protein VILIP-1 to different membrane compartments in living hippocampal neurons. Spilker C, Dresbach T, Braunewell KH. J Neurosci 22 7331-7339 (2002)
  37. Differential regulation of CaV2.1 channels by calcium-binding protein 1 and visinin-like protein-2 requires N-terminal myristoylation. Few AP, Lautermilch NJ, Westenbroek RE, Scheuer T, Catterall WA. J Neurosci 25 7071-7080 (2005)
  38. Basic residues in the Mason-Pfizer monkey virus gag matrix domain regulate intracellular trafficking and capsid-membrane interactions. Stansell E, Apkarian R, Haubova S, Diehl WE, Tytler EM, Hunter E. J Virol 81 8977-8988 (2007)
  39. Effects of Ca2+, Mg2+, and myristoylation on guanylyl cyclase activating protein 1 structure and stability. Lim S, Peshenko I, Dizhoor A, Ames JB. Biochemistry 48 850-862 (2009)
  40. Structural analysis of Mg2+ and Ca2+ binding to CaBP1, a neuron-specific regulator of calcium channels. Wingard JN, Chan J, Bosanac I, Haeseleer F, Palczewski K, Ikura M, Ames JB. J Biol Chem 280 37461-37470 (2005)
  41. Toward a unified model of vertebrate rod phototransduction. Hamer RD, Nicholas SC, Tranchina D, Lamb TD, Jarvinen JL. Vis Neurosci 22 417-436 (2005)
  42. Structural insights into activation of phosphatidylinositol 4-kinase (Pik1) by yeast frequenin (Frq1). Strahl T, Huttner IG, Lusin JD, Osawa M, King D, Thorner J, Ames JB. J Biol Chem 282 30949-30959 (2007)
  43. Crystal structure of Escherichia coli lytic transglycosylase Slt35 reveals a lysozyme-like catalytic domain with an EF-hand. van Asselt EJ, Dijkstra AJ, Kalk KH, Takacs B, Keck W, Dijkstra BW. Structure 7 1167-1180 (1999)
  44. Phosphatidylinositol 4-OH kinase is a downstream target of neuronal calcium sensor-1 in enhancing exocytosis in neuroendocrine cells. Rajebhosale M, Greenwood S, Vidugiriene J, Jeromin A, Hilfiker S. J Biol Chem 278 6075-6084 (2003)
  45. Activation and inhibition of photoreceptor guanylyl cyclase by guanylyl cyclase activating protein 1 (GCAP-1): the functional role of Mg2+/Ca2+ exchange in EF-hand domains. Peshenko IV, Dizhoor AM. J Biol Chem 282 21645-21652 (2007)
  46. Molecular cloning and characterization of the human S100A14 gene encoding a novel member of the S100 family. Pietas A, Schlüns K, Marenholz I, Schäfer BW, Heizmann CW, Petersen I. Genomics 79 513-522 (2002)
  47. Ca2+-myristoyl switch in the neuronal calcium sensor recoverin requires different functions of Ca2+-binding sites. Senin II, Fischer T, Komolov KE, Zinchenko DV, Philippov PP, Koch KW. J Biol Chem 277 50365-50372 (2002)
  48. The calmodulin-related calcium sensor CML42 plays a role in trichome branching. Dobney S, Chiasson D, Lam P, Smith SP, Snedden WA. J Biol Chem 284 31647-31657 (2009)
  49. Formin-like 1 (FMNL1) is regulated by N-terminal myristoylation and induces polarized membrane blebbing. Han Y, Eppinger E, Schuster IG, Weigand LU, Liang X, Kremmer E, Peschel C, Krackhardt AM. J Biol Chem 284 33409-33417 (2009)
  50. The neuronal Ca2+ sensor protein visinin-like protein-1 is expressed in pancreatic islets and regulates insulin secretion. Dai FF, Zhang Y, Kang Y, Wang Q, Gaisano HY, Braunewell KH, Chan CB, Wheeler MB. J Biol Chem 281 21942-21953 (2006)
  51. Structural coupling of the EF hand and C-terminal GTPase domains in the mitochondrial protein Miro. Klosowiak JL, Focia PJ, Chakravarthy S, Landahl EC, Freymann DM, Rice SE. EMBO Rep 14 968-974 (2013)
  52. Crystal structure of CHP2 complexed with NHE1-cytosolic region and an implication for pH regulation. Ammar YB, Takeda S, Hisamitsu T, Mori H, Wakabayashi S. EMBO J 25 2315-2325 (2006)
  53. Solution structure and dynamics of the bioactive retroviral M domain from Rous sarcoma virus. McDonnell JM, Fushman D, Cahill SM, Zhou W, Wolven A, Wilson CB, Nelle TD, Resh MD, Wills J, Cowburn D. J Mol Biol 279 921-928 (1998)
  54. Structure of a Ca2+-myristoyl switch protein that controls activation of a phosphatidylinositol 4-kinase in fission yeast. Lim S, Strahl T, Thorner J, Ames JB. J Biol Chem 286 12565-12577 (2011)
  55. Neuronal Ca2+ sensor VILIP-1 leads to the upregulation of functional alpha4beta2 nicotinic acetylcholine receptors in hippocampal neurons. Zhao CJ, Noack C, Brackmann M, Gloveli T, Maelicke A, Heinemann U, Anand R, Braunewell KH. Mol Cell Neurosci 40 280-292 (2009)
  56. The crystal structure of GCAP3 suggests molecular mechanism of GCAP-linked cone dystrophies. Stephen R, Palczewski K, Sousa MC. J Mol Biol 359 266-275 (2006)
  57. Calcium-dependent association of annexin VI, protein kinase C alpha, and neurocalcin alpha on the raft fraction derived from the synaptic plasma membrane of rat brain. Orito A, Kumanogoh H, Yasaka K, Sokawa J, Hidaka H, Sokawa Y, Maekawa S. J Neurosci Res 64 235-241 (2001)
  58. Identification of Ca2+-dependent binding partners for the neuronal calcium sensor protein neurocalcin delta: interaction with actin, clathrin and tubulin. Ivings L, Pennington SR, Jenkins R, Weiss JL, Burgoyne RD. Biochem J 363 599-608 (2002)
  59. A myristoyl/phosphoserine switch controls cAMP-dependent protein kinase association to membranes. Gaffarogullari EC, Masterson LR, Metcalfe EE, Traaseth NJ, Balatri E, Musa MM, Mullen D, Distefano MD, Veglia G. J Mol Biol 411 823-836 (2011)
  60. Conservation of regulatory function in calcium-binding proteins: human frequenin (neuronal calcium sensor-1) associates productively with yeast phosphatidylinositol 4-kinase isoform, Pik1. Strahl T, Grafelmann B, Dannenberg J, Thorner J, Pongs O. J Biol Chem 278 49589-49599 (2003)
  61. The EF-hand Ca2+-binding protein p22 plays a role in microtubule and endoplasmic reticulum organization and dynamics with distinct Ca2+-binding requirements. Andrade J, Zhao H, Titus B, Timm Pearce S, Barroso M. Mol Biol Cell 15 481-496 (2004)
  62. Calcium-myristoyl switch, subcellular localization, and calcium-dependent translocation of the neuronal calcium sensor protein VILIP-3, and comparison with VILIP-1 in hippocampal neurons. Spilker C, Braunewell KH. Mol Cell Neurosci 24 766-778 (2003)
  63. N-terminal myristoylation regulates calcium-induced conformational changes in neuronal calcium sensor-1. Jeromin A, Muralidhar D, Parameswaran MN, Roder J, Fairwell T, Scarlata S, Dowal L, Mustafi SM, Chary KV, Sharma Y. J Biol Chem 279 27158-27167 (2004)
  64. A new class of hexahelical insect proteins revealed as putative carriers of small hydrophobic ligands. Rothemund S, Liou YC, Davies PL, Krause E, Sönnichsen FD. Structure 7 1325-1332 (1999)
  65. Structure of equine infectious anemia virus matrix protein. Hatanaka H, Iourin O, Rao Z, Fry E, Kingsman A, Stuart DI. J Virol 76 1876-1883 (2002)
  66. Crustacean frequenins: molecular cloning and differential localization at neuromuscular junctions. Jeromin A, Shayan AJ, Msghina M, Roder J, Atwood HL. J Neurobiol 41 165-175 (1999)
  67. Drosophila embryos lacking N-myristoyltransferase have multiple developmental defects. Ntwasa M, Aapies S, Schiffmann DA, Gay NJ. Exp Cell Res 262 134-144 (2001)
  68. Measurement of membrane binding between recoverin, a calcium-myristoyl switch protein, and lipid bilayers by AFM-based force spectroscopy. Desmeules P, Grandbois M, Bondarenko VA, Yamazaki A, Salesse C. Biophys J 82 3343-3350 (2002)
  69. Reverse micelle encapsulation of membrane-anchored proteins for solution NMR studies. Valentine KG, Peterson RW, Saad JS, Summers MF, Xu X, Ames JB, Wand AJ. Structure 18 9-16 (2010)
  70. Ca2+-dependent conformational changes in bovine GCAP-2. Hughes RE, Brzovic PS, Dizhoor AM, Klevit RE, Hurley JB. Protein Sci 7 2675-2680 (1998)
  71. Structural analysis of Mg2+ and Ca2+ binding, myristoylation, and dimerization of the neuronal calcium sensor and visinin-like protein 1 (VILIP-1). Li C, Pan W, Braunewell KH, Ames JB. J Biol Chem 286 6354-6366 (2011)
  72. The structure of myristoylated Mason-Pfizer monkey virus matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in its membrane binding. Prchal J, Srb P, Hunter E, Ruml T, Hrabal R. J Mol Biol 423 427-438 (2012)
  73. High-affinity interaction of the N-terminal myristoylation motif of the neuronal calcium sensor protein hippocalcin with phosphatidylinositol 4,5-bisphosphate. O'Callaghan DW, Haynes LP, Burgoyne RD. Biochem J 391 231-238 (2005)
  74. Neuronal calcium sensor-1 gene ncs-1a is essential for semicircular canal formation in zebrafish inner ear. Blasiole B, Kabbani N, Boehmler W, Thisse B, Thisse C, Canfield V, Levenson R. J Neurobiol 64 285-297 (2005)
  75. Unusual topological arrangement of structural motifs in the baboon reovirus fusion-associated small transmembrane protein. Dawe S, Corcoran JA, Clancy EK, Salsman J, Duncan R. J Virol 79 6216-6226 (2005)
  76. A unique phosphatidylinositol 4-phosphate 5-kinase is activated by ADP-ribosylation factor in Plasmodium falciparum. Leber W, Skippen A, Fivelman QL, Bowyer PW, Cockcroft S, Baker DA. Int J Parasitol 39 645-653 (2009)
  77. Calcium-myristoyl Tug is a new mechanism for intramolecular tuning of calcium sensitivity and target enzyme interaction for guanylyl cyclase-activating protein 1: dynamic connection between N-fatty acyl group and EF-hand controls calcium sensitivity. Peshenko IV, Olshevskaya EV, Lim S, Ames JB, Dizhoor AM. J Biol Chem 287 13972-13984 (2012)
  78. Calcium-sensitive regions of GCAP1 as observed by chemical modifications, fluorescence, and EPR spectroscopies. Sokal I, Li N, Klug CS, Filipek S, Hubbell WL, Baehr W, Palczewski K. J Biol Chem 276 43361-43373 (2001)
  79. The CBL and CIPK Gene Family in Grapevine (Vitis vinifera): Genome-Wide Analysis and Expression Profiles in Response to Various Abiotic Stresses. Xi Y, Liu J, Dong C, Cheng ZM. Front Plant Sci 8 978 (2017)
  80. Conformational Selection in a Protein-Protein Interaction Revealed by Dynamic Pathway Analysis. Chakrabarti KS, Agafonov RV, Pontiggia F, Otten R, Higgins MK, Schertler GFX, Oprian DD, Kern D. Cell Rep 14 32-42 (2016)
  81. HIV-1 Gag: flipped out for PI(4,5)P(2). Freed EO. Proc Natl Acad Sci U S A 103 11101-11102 (2006)
  82. Regulation of CDPK isoforms during tuber development. Raíces M, Gargantini PR, Chinchilla D, Crespi M, Téllez-Iñón MT, Ulloa RM. Plant Mol Biol 52 1011-1024 (2003)
  83. The visinin-like proteins VILIP-1 and VILIP-3 in Alzheimer's disease-old wine in new bottles. Braunewell KH. Front Mol Neurosci 5 20 (2012)
  84. Biochemical characterization and expression analysis of a novel EF-hand Ca2+ binding protein calmyrin2 (Cib2) in brain indicates its function in NMDA receptor mediated Ca2+ signaling. Blazejczyk M, Sobczak A, Debowska K, Wisniewska MB, Kirilenko A, Pikula S, Jaworski J, Kuznicki J, Wojda U. Arch Biochem Biophys 487 66-78 (2009)
  85. Identification of target binding site in photoreceptor guanylyl cyclase-activating protein 1 (GCAP1). Peshenko IV, Olshevskaya EV, Lim S, Ames JB, Dizhoor AM. J Biol Chem 289 10140-10154 (2014)
  86. Effects of mutations in the calcium-binding sites of recoverin on its calcium affinity: evidence for successive filling of the calcium binding sites. Permyakov SE, Cherskaya AM, Senin II, Zargarov AA, Shulga-Morskoy SV, Alekseev AM, Zinchenko DV, Lipkin VM, Philippov PP, Uversky VN, Permyakov EA. Protein Eng 13 783-790 (2000)
  87. Zinc-dependent interaction between dishevelled and the Drosophila Wnt antagonist naked cuticle. Rousset R, Wharton KA, Zimmermann G, Scott MP. J Biol Chem 277 49019-49026 (2002)
  88. Evolution and functional diversity of the Calcium Binding Proteins (CaBPs). Haynes LP, McCue HV, Burgoyne RD. Front Mol Neurosci 5 9 (2012)
  89. Fus1/Tusc2 is a novel regulator of mitochondrial calcium handling, Ca2+-coupled mitochondrial processes, and Ca2+-dependent NFAT and NF-κB pathways in CD4+ T cells. Uzhachenko R, Ivanov SV, Yarbrough WG, Shanker A, Medzhitov R, Ivanova AV. Antioxid Redox Signal 20 1533-1547 (2014)
  90. Nicotine-induced Ca2+-myristoyl switch of neuronal Ca2+ sensor VILIP-1 in hippocampal neurons: a possible crosstalk mechanism for nicotinic receptors. Zhao C, Anand R, Braunewell KH. Cell Mol Neurobiol 29 273-286 (2009)
  91. Structural insights into membrane targeting by the flagellar calcium-binding protein (FCaBP), a myristoylated and palmitoylated calcium sensor in Trypanosoma cruzi. Wingard JN, Ladner J, Vanarotti M, Fisher AJ, Robinson H, Buchanan KT, Engman DM, Ames JB. J Biol Chem 283 23388-23396 (2008)
  92. DARPP-32 and NCS-1 expression is not altered in brains of rats treated with typical or atypical antipsychotics. Souza BR, Motta BS, Rosa DV, Torres KC, Castro AA, Comim CM, Sampaio AM, Lima FF, Jeromin A, Quevedo J, Romano-Silva MA. Neurochem Res 33 533-538 (2008)
  93. Interference of the complex between NCS-1 and Ric8a with phenothiazines regulates synaptic function and is an approach for fragile X syndrome. Mansilla A, Chaves-Sanjuan A, Campillo NE, Semelidou O, Martínez-González L, Infantes L, González-Rubio JM, Gil C, Conde S, Skoulakis EM, Ferrús A, Martínez A, Sánchez-Barrena MJ. Proc Natl Acad Sci U S A 114 E999-E1008 (2017)
  94. Kdap, a novel gene associated with the stratification of the epithelium. Oomizu S, Sahuc F, Asahina K, Inamatsu M, Matsuzaki T, Sasaki M, Obara M, Yoshizato K. Gene 256 19-27 (2000)
  95. Molecular dynamics simulations reveal specific interactions of post-translational palmitoyl modifications with rhodopsin in membranes. Olausson BE, Grossfield A, Pitman MC, Brown MF, Feller SE, Vogel A. J Am Chem Soc 134 4324-4331 (2012)
  96. Neuronal calcium sensor-1 (Ncs1p) is up-regulated by calcineurin to promote Ca2+ tolerance in fission yeast. Hamasaki-Katagiri N, Ames JB. J Biol Chem 285 4405-4414 (2010)
  97. Structure and dynamics of Ca2+-binding domain 1 of the Na+/Ca2+ exchanger in the presence and in the absence of Ca2+. Johnson E, Bruschweiler-Li L, Showalter SA, Vuister GW, Zhang F, Brüschweiler R. J Mol Biol 377 945-955 (2008)
  98. Nanodevice-induced conformational and functional changes in a prototypical calcium sensor protein. Marino V, Astegno A, Pedroni M, Piccinelli F, Dell'Orco D. Nanoscale 6 412-423 (2014)
  99. Neuronal calcium sensor protein visinin-like protein-3 interacts with microsomal cytochrome b5 in a Ca2+-dependent manner. Oikawa K, Kimura S, Aoki N, Atsuta Y, Takiyama Y, Nagato T, Yanai M, Kobayashi H, Sato K, Sasajima T, Tateno M. J Biol Chem 279 15142-15152 (2004)
  100. Purification of myristoylated and nonmyristoylated neuronal calcium sensor-1 using single-step hydrophobic interaction chromatography. Fisher JR, Sharma Y, Iuliano S, Piccioti RA, Krylov D, Hurley J, Roder J, Jeromin A. Protein Expr Purif 20 66-72 (2000)
  101. The binding of myristoylated N-terminal nonapeptide from neuro-specific protein CAP-23/NAP-22 to calmodulin does not induce the globular structure observed for the calmodulin-nonmyristylated peptide complex. Hayashi N, Izumi Y, Titani K, Matsushima N. Protein Sci 9 1905-1913 (2000)
  102. Conformational changes in guanylate cyclase-activating protein 1 induced by Ca2+ and N-terminal fatty acid acylation. Orban T, Bereta G, Miyagi M, Wang B, Chance MR, Sousa MC, Palczewski K. Structure 18 116-126 (2010)
  103. Functional analysis of calcium-binding EF-hand motifs of visinin-like protein-1. Lin L, Braunewell KH, Gundelfinger ED, Anand R. Biochem Biophys Res Commun 296 827-832 (2002)
  104. Molecular cloning and expression of human keratinocyte proline-rich protein (hKPRP), an epidermal marker isolated from calcium-induced differentiating keratinocytes. Lee WH, Jang S, Lee JS, Lee Y, Seo EY, You KH, Lee SC, Nam KI, Kim JM, Kee SH, Yang JM, Seo YJ, Park JK, Kim CD, Lee JH. J Invest Dermatol 125 995-1000 (2005)
  105. Optimized reverse micelle surfactant system for high-resolution NMR spectroscopy of encapsulated proteins and nucleic acids dissolved in low viscosity fluids. Dodevski I, Nucci NV, Valentine KG, Sidhu GK, O'Brien ES, Pardi A, Wand AJ. J Am Chem Soc 136 3465-3474 (2014)
  106. Quantitative detection of conformational transitions in a calcium sensor protein by surface plasmon resonance. Dell'Orco D, Müller M, Koch KW. Chem Commun (Camb) 46 7316-7318 (2010)
  107. Single vector system for efficient N-myristoylation of recombinant proteins in E. coli. Glück JM, Hoffmann S, Koenig BW, Willbold D. PLoS One 5 e10081 (2010)
  108. Structure of Guanylyl Cyclase Activator Protein 1 (GCAP1) Mutant V77E in a Ca2+-free/Mg2+-bound Activator State. Lim S, Peshenko IV, Olshevskaya EV, Dizhoor AM, Ames JB. J Biol Chem 291 4429-4441 (2016)
  109. Dimerization of visinin-like protein 1 is regulated by oxidative stress and calcium and is a pathological hallmark of amyotrophic lateral sclerosis. Liebl MP, Kaya AM, Tenzer S, Mittenzwei R, Koziollek-Drechsler I, Schild H, Moosmann B, Behl C, Clement AM. Free Radic Biol Med 72 41-54 (2014)
  110. Exploring the rate-limiting steps in visual phototransduction recovery by bottom-up kinetic modeling. Invergo BM, Montanucci L, Koch KW, Bertranpetit J, Dell'orco D. Cell Commun Signal 11 36 (2013)
  111. Hippocalcin signaling via site-specific translocation in hippocampal neurons. Markova O, Fitzgerald D, Stepanyuk A, Dovgan A, Cherkas V, Tepikin A, Burgoyne RD, Belan P. Neurosci Lett 442 152-157 (2008)
  112. Protein Electrostatic Properties Predefining the Level of Surface Hydrophobicity Change upon Phosphorylation. Polyansky AA, Zagrovic B. J Phys Chem Lett 3 973-976 (2012)
  113. An early stage of Mason-Pfizer monkey virus budding is regulated by the hydrophobicity of the Gag matrix domain core. Stansell E, Tytler E, Walter MR, Hunter E. J Virol 78 5023-5031 (2004)
  114. Spatiotemporal distribution of neuronal calcium sensor-1 in the developing rat spinal cord. Kawasaki T, Nishio T, Kurosawa H, Roder J, Jeromin A. J Comp Neurol 460 465-475 (2003)
  115. The myristoylation of guanylate cyclase-activating protein-2 causes an increase in thermodynamic stability in the presence but not in the absence of Ca²⁺. Schröder T, Lilie H, Lange C. Protein Sci 20 1155-1165 (2011)
  116. News Unexpected tails of a Ca2+ sensor. Haynes LP, Burgoyne RD. Nat Chem Biol 4 90-91 (2008)
  117. Decoding glutamate receptor activation by the Ca2+ sensor protein hippocalcin in rat hippocampal neurons. Dovgan AV, Cherkas VP, Stepanyuk AR, Fitzgerald DJ, Haynes LP, Tepikin AV, Burgoyne RD, Belan PV. Eur J Neurosci 32 347-358 (2010)
  118. Intracellular Ca(2+) mobilization and kinase activity during acylated homoserine lactone-dependent quorum sensing in Serratia liquefaciens. Werthén M, Lundgren T. J Biol Chem 276 6468-6472 (2001)
  119. Molecular structure and target recognition of neuronal calcium sensor proteins. Ames JB, Lim S, Ikura M. Front Mol Neurosci 5 10 (2012)
  120. N-myristoylation and Ca2+ binding of calcineurin B homologous protein CHP3 are required to enhance Na+/H+ exchanger NHE1 half-life and activity at the plasma membrane. Zaun HC, Shrier A, Orlowski J. J Biol Chem 287 36883-36895 (2012)
  121. Novel frequenin-modulated Ca2+-signaling membrane guanylate cyclase (ROS-GC) transduction pathway in bovine hippocampus. Fik-Rymarkiewicz E, Duda T, Sharma RK. Mol Cell Biochem 291 187-204 (2006)
  122. Structure and dynamics of the myristoyl lipid modification of SRC peptides determined by 2H solid-state NMR spectroscopy. Scheidt HA, Huster D. Biophys J 96 3663-3672 (2009)
  123. A structural and dynamic characterization of the EF-hand protein CLSP. Babini E, Bertini I, Capozzi F, Chirivino E, Luchinat C. Structure 14 1029-1038 (2006)
  124. Ca(2+)-dependent conformational changes in guanylyl cyclase-activating protein 2 (GCAP-2) revealed by site-specific phosphorylation and partial proteolysis. Peshenko IV, Olshevskaya EV, Dizhoor AM. J Biol Chem 279 50342-50349 (2004)
  125. The presence of membranes or micelles induces structural changes of the myristoylated guanylate-cyclase activating protein-2. Theisgen S, Thomas L, Schröder T, Lange C, Kovermann M, Balbach J, Huster D. Eur Biophys J 40 565-576 (2011)
  126. A fungal homologue of neuronal calcium sensor-1, Bbcsa1, regulates extracellular acidification and contributes to virulence in the entomopathogenic fungus Beauveria bassiana. Fan Y, Ortiz-Urquiza A, Kudia RA, Keyhani NO. Microbiology (Reading) 158 1843-1851 (2012)
  127. A highly conserved cysteine of neuronal calcium-sensing proteins controls cooperative binding of Ca2+ to recoverin. Ranaghan MJ, Kumar RP, Chakrabarti KS, Buosi V, Kern D, Oprian DD. J Biol Chem 288 36160-36167 (2013)
  128. An ion signal responsive dynamic protein nano-spring constructed by high ordered host-guest recognition. Si C, Li J, Luo Q, Hou C, Pan T, Li H, Liu J. Chem Commun (Camb) 52 2924-2927 (2016)
  129. Conformational remodeling of femtomolar inhibitor-acetylcholinesterase complexes in the crystalline state. Bourne Y, Radić Z, Taylor P, Marchot P. J Am Chem Soc 132 18292-18300 (2010)
  130. Dynamic cellular translocation of caldendrin is facilitated by the Ca2+-myristoyl switch of recoverin. Fries R, Reddy PP, Mikhaylova M, Haverkamp S, Wei T, Müller M, Kreutz MR, Koch KW. J Neurochem 113 1150-1162 (2010)
  131. Functional Status of Neuronal Calcium Sensor-1 Is Modulated by Zinc Binding. Tsvetkov PO, Roman AY, Baksheeva VE, Nazipova AA, Shevelyova MP, Vladimirov VI, Buyanova MF, Zinchenko DV, Zamyatnin AA, Devred F, Golovin AV, Permyakov SE, Zernii EY. Front Mol Neurosci 11 459 (2018)
  132. Synergetic effect of recoverin and calmodulin on regulation of rhodopsin kinase. Grigoriev II, Senin II, Tikhomirova NK, Komolov KE, Permyakov SE, Zernii EY, Koch KW, Philippov PP. Front Mol Neurosci 5 28 (2012)
  133. The peripheral binding of 14-3-3γ to membranes involves isoform-specific histidine residues. Bustad HJ, Skjaerven L, Ying M, Halskau Ø, Baumann A, Rodriguez-Larrea D, Costas M, Underhaug J, Sanchez-Ruiz JM, Martinez A. PLoS One 7 e49671 (2012)
  134. Visinin-like protein 1 regulates natriuretic peptide receptor B in the heart. Buttgereit J, Qadri F, Monti J, Langenickel TH, Dietz R, Braunewell KH, Bader M. Regul Pept 161 51-57 (2010)
  135. Biophysical and functional characterization of hippocalcin mutants responsible for human dystonia. Helassa N, Antonyuk SV, Lian LY, Haynes LP, Burgoyne RD. Hum Mol Genet 26 2426-2435 (2017)
  136. Calcium binding sequences in calmyrin regulates interaction with presenilin-2. Zhu J, Stabler SM, Ames JB, Baskakov I, Monteiro MJ. Exp Cell Res 300 440-454 (2004)
  137. News Calcium-myristoyl switches turn on new lights. Meyer T, York JD. Nat Cell Biol 1 E93-5 (1999)
  138. Characterization of Type I and Type II myristoyl-CoA:protein N-myristoyltransferases with the Acyl-CoAs found on heterogeneously acylated retinal proteins. Rundle DR, Rajala RV, Anderson RE. Exp Eye Res 75 87-97 (2002)
  139. Evolutionary-Conserved Allosteric Properties of Three Neuronal Calcium Sensor Proteins. Marino V, Dell'Orco D. Front Mol Neurosci 12 50 (2019)
  140. Functional heterogeneity of transducin alpha subunits. Neubert TA, Hurley JB. FEBS Lett 422 343-345 (1998)
  141. Interaction of GCAP1 with retinal guanylyl cyclase and calcium: sensitivity to fatty acylation. Peshenko IV, Olshevskaya EV, Dizhoor AM. Front Mol Neurosci 5 19 (2012)
  142. Nuclear magnetic resonance structure of calcium-binding protein 1 in a Ca(2+) -bound closed state: implications for target recognition. Park S, Li C, Ames JB. Protein Sci 20 1356-1366 (2011)
  143. Reversible Ca(2+) switch of an engineered allosteric antioxidant selenoenzyme. Zhang C, Pan T, Salesse C, Zhang D, Miao L, Wang L, Gao Y, Xu J, Dong Z, Luo Q, Liu J. Angew Chem Int Ed Engl 53 13536-13539 (2014)
  144. Divalent cations and redox conditions regulate the molecular structure and function of visinin-like protein-1. Wang CK, Simon A, Jessen CM, Oliveira CL, Mack L, Braunewell KH, Ames JB, Pedersen JS, Hofmann A. PLoS One 6 e26793 (2011)
  145. Effective delivery of recombinant proteins to rod photoreceptors via lipid nanovesicles. Asteriti S, Dal Cortivo G, Pontelli V, Cangiano L, Buffelli M, Dell'Orco D. Biochem Biophys Res Commun 461 665-670 (2015)
  146. Expression and purification of myristoylated matrix protein of Mason-Pfizer monkey virus for NMR and MS measurements. Prchal J, Junkova P, Strmiskova M, Lipov J, Hynek R, Ruml T, Hrabal R. Protein Expr Purif 79 122-127 (2011)
  147. Identification of key structural elements for neuronal calcium sensor-1 function in the regulation of the temperature-dependency of locomotion in C. elegans. Martin VM, Johnson JR, Haynes LP, Barclay JW, Burgoyne RD. Mol Brain 6 39 (2013)
  148. Immunochemical assessment of neural visinin-like calcium-binding protein 3 expression in rat brain. Hamashima H, Tamaru T, Noguchi H, Kobayashi M, Takamatsu K. Neurosci Res 39 133-143 (2001)
  149. Obtaining and characterization of EF-hand mutants of recoverin. Alekseev AM, Shulga-Morskoy SV, Zinchenko DV, Shulga-Morskaya SA, Suchkov DV, Vaganova SA, Senin II, Zargarov AA, Lipkin VM, Akhtar M, Philippov PP. FEBS Lett 440 116-118 (1998)
  150. Spectroscopic characterization of the EF-hand domain of phospholipase C delta1: identification of a lipid interacting domain. Kobayashi M, Gryczynski Z, Lukomska J, Feng J, Roberts MF, Lakowicz JR, Lomasney JW. Arch Biochem Biophys 440 191-203 (2005)
  151. Ca2+-dependent conformational changes in the neuronal Ca2+-sensor recoverin probed by the fluorescent dye Alexa647. Gensch T, Komolov KE, Senin II, Philippov PP, Koch KW. Proteins 66 492-499 (2007)
  152. Calcineurin regulatory subunit B is a unique calcium sensor that regulates calcineurin in both calcium-dependent and calcium-independent manner. Li J, Jia Z, Zhou W, Wei Q. Proteins 77 612-623 (2009)
  153. Characterization of apo and partially saturated states of calerythrin, an EF-hand protein from S. erythraea: a molten globule when deprived of Ca(2+). Aitio H, Laakso T, Pihlajamaa T, Torkkeli M, Kilpeläinen I, Drakenberg T, Serimaa R, Annila A. Protein Sci 10 74-82 (2001)
  154. Energetics and mechanisms of folding and flipping the myristoyl switch in the {beta}-trefoil protein, hisactophilin. Smith MT, Meissner J, Esmonde S, Wong HJ, Meiering EM. Proc Natl Acad Sci U S A 107 20952-20957 (2010)
  155. Molecular determinants of Guanylate Cyclase Activating Protein subcellular distribution in photoreceptor cells of the retina. López-Begines S, Plana-Bonamaisó A, Méndez A. Sci Rep 8 2903 (2018)
  156. Retina specific GCAPs in zebrafish acquire functional selectivity in Ca2+-sensing by myristoylation and Mg2+-binding. Sulmann S, Vocke F, Scholten A, Koch KW. Sci Rep 5 11228 (2015)
  157. Single-step purification of myristoylated and nonmyristoylated recoverin and substrate dependence of myristoylation level. Desmeules P, Penney SE, Salesse C. Anal Biochem 349 25-32 (2006)
  158. The role of neuronal calcium sensors in balancing synaptic plasticity and synaptic dysfunction. Kerrigan TL, Daniel J W, Regan PL, Cho K. Front Mol Neurosci 5 57 (2012)
  159. Amino acid residues in GRK1/GRK7 responsible for interaction with S-modulin/recoverin. Torisawa A, Arinobu D, Tachibanaki S, Kawamura S. Photochem Photobiol 84 823-830 (2008)
  160. Amino acid sequences of two immune-dominant epitopes of recoverin are involved in Ca2+/recoverin-dependent inhibition of phosphorylation of rhodopsin. Senin II, Tikhomirova NK, Churumova VA, Grigoriev II, Kolpakova TA, Zinchenko DV, Philippov PP, Zernii EY. Biochemistry (Mosc) 76 332-338 (2011)
  161. Calmodulins and related potential calcium sensors of Arabidopsis. McCormack E, Braam J. New Phytol 159 585-598 (2003)
  162. Functional restoration of the Ca2+-myristoyl switch in a recoverin mutant. Senin II, Vaganova SA, Weiergräber OH, Ergorov NS, Philippov PP, Koch KW. J Mol Biol 330 409-418 (2003)
  163. Membrane binding of the neuronal calcium sensor recoverin - modulatory role of the charged carboxy-terminus. Senin II, Churumova VA, Philippov PP, Koch KW. BMC Biochem 8 24 (2007)
  164. Structure and Calcium Binding Properties of a Neuronal Calcium-Myristoyl Switch Protein, Visinin-Like Protein 3. Li C, Lim S, Braunewell KH, Ames JB. PLoS One 11 e0165921 (2016)
  165. The myristate moiety and amino terminus of vaccinia virus l1 constitute a bipartite functional region needed for entry. Foo CH, Whitbeck JC, Ponce-de-León M, Saw WT, Cohen GH, Eisenberg RJ. J Virol 86 5437-5451 (2012)
  166. The structure of neuronal calcium sensor-1 in solution revealed by molecular dynamics simulations. Bellucci L, Corni S, Di Felice R, Paci E. PLoS One 8 e74383 (2013)
  167. Comparison of VILIP-1 and VILIP-3 binding to phospholipid monolayers. Rebaud S, Simon A, Wang CK, Mason L, Blum L, Hofmann A, Girard-Egrot A. PLoS One 9 e93948 (2014)
  168. Conformational transition pathway in the allosteric process of calcium-induced recoverin: molecular dynamics simulations. Li JL, Geng CY, Bu Y, Huang XR, Sun CC. J Comput Chem 30 1135-1145 (2009)
  169. NMR structural studies of the myristoylated N-terminus of ADP ribosylation factor 6 (Arf6). Gizachew D, Oswald R. FEBS Lett 580 4296-4301 (2006)
  170. Visualizing protein conformational changes on a personal computer--alpha carbon pseudo bonding as a constraint for interpolation in internal coordinate space. Booth AG. J Mol Graph Model 19 481-486 (2001)
  171. Crystal structure of a Ca2+-dependent regulator of flagellar motility reveals the open-closed structural transition. Shojima T, Hou F, Takahashi Y, Matsumura Y, Okai M, Nakamura A, Mizuno K, Inaba K, Kojima M, Miyakawa T, Tanokura M. Sci Rep 8 2014 (2018)
  172. Crystal structure of cardiac troponin C regulatory domain in complex with cadmium and deoxycholic acid reveals novel conformation. Li AY, Lee J, Borek D, Otwinowski Z, Tibbits GF, Paetzel M. J Mol Biol 413 699-711 (2011)
  173. Effects of Membrane and Biological Target on the Structural and Allosteric Properties of Recoverin: A Computational Approach. Borsatto A, Marino V, Abrusci G, Lattanzi G, Dell'Orco D. Int J Mol Sci 20 (2019)
  174. Expression of enzymes of covalent protein modification during regulated and dysregulated proliferation of mammary epithelial cells: PKA, PKC and NMT. Clegg RA, Gordge PC, Miller WR. Adv Enzyme Regul 39 175-203 (1999)
  175. N-terminal myristoylation alters the calcium binding pathways in neuronal calcium sensor-1. Chandra K, Ramakrishnan V, Sharma Y, Chary KV. J Biol Inorg Chem 16 81-95 (2011)
  176. Specific interaction to PIP2 increases the kinetic rate of membrane binding of VILIPs, a subfamily of Neuronal Calcium Sensors (NCS) proteins. Rebaud S, Wang CK, Sarkis J, Mason L, Simon A, Blum LJ, Hofmann A, Girard-Egrot AP. Biochim Biophys Acta 1838 2698-2707 (2014)
  177. Backbone (1)H, (13)C, and (15)N resonance assignments of guanylyl cyclase activating protein-1, GCAP1. Lim S, Peshenko IV, Dizhoor AM, Ames JB. Biomol NMR Assign 7 39-42 (2013)
  178. Calcium and chlorpromazine binding to the EF-hand peptides of neuronal calcium sensor-1. Muralidhar D, Kunjachen Jobby M, Jeromin A, Roder J, Thomas F, Sharma Y. Peptides 25 909-917 (2004)
  179. Downregulation of the cAMP/PKA pathway in PC12 cells overexpressing NCS-1. Souza BR, Torres KC, Miranda DM, Motta BS, Caetano FS, Rosa DV, Souza RP, Giovani A, Carneiro DS, Guimarães MM, Martins-Silva C, Reis HJ, Gomez MV, Jeromin A, Romano-Silva MA. Cell Mol Neurobiol 31 135-143 (2011)
  180. Identification of critical amino acid residues and functional conservation of the Neurospora crassa and Rattus norvegicus orthologues of neuronal calcium sensor-1. Gohain D, Deka R, Tamuli R. Genetica 144 665-674 (2016)
  181. Membrane fluidity is a driving force for recoverin myristoyl immobilization in zwitterionic lipids. Potvin-Fournier K, Valois-Paillard G, Lefèvre T, Cantin L, Salesse C, Auger M. Biochem Biophys Res Commun 490 1268-1273 (2017)
  182. One of the Ca2+ binding sites of recoverin exclusively controls interaction with rhodopsin kinase. Komolov KE, Zinchenko DV, Churumova VA, Vaganova SA, Weiergräber OH, Senin II, Philippov PP, Koch KW. Biol Chem 386 285-289 (2005)
  183. One-step separation of myristoylated and nonmyristoylated retroviral matrix proteins. Doležal M, Zábranský A, Hrabal R, Ruml T, Pichová I, Rumlová M. Protein Expr Purif 92 94-99 (2013)
  184. (1)H, (15)N, and (13)C chemical shift assignments of neuronal calcium sensor-1 homolog from fission yeast. Lim S, Ames JB. Biomol NMR Assign 3 269-271 (2009)
  185. Functional role of EF-hands 3 and 4 in membrane-binding of KChIP1. Liao YS, Chen KC, Chang LS. J Biosci 34 203-211 (2009)
  186. Impact of strong and weak lipid-protein interactions on the structure of a lipid bilayer on a gold electrode surface. Nullmeier M, Koliwer-Brandl H, Kelm S, Zägel P, Koch KW, Brand I. Chemphyschem 12 1066-1079 (2011)
  187. Membrane Binding of Neuronal Calcium Sensor-1: Highly Specific Interaction with Phosphatidylinositol-3-Phosphate. Baksheeva VE, Nemashkalova EL, Firsov AM, Zalevsky AO, Vladimirov VI, Tikhomirova NK, Philippov PP, Zamyatnin AA, Zinchenko DV, Antonenko YN, Permyakov SE, Zernii EY. Biomolecules 10 (2020)
  188. Neuronal calcium sensor proteins: emerging roles in membrane traffic and synaptic plasticity. Burgoyne RD, Haynes LP. F1000 Biol Rep 2 (2010)
  189. Trafficking of platelet-activating factor acetylhydrolase type II in response to oxidative stress. Thévenin AF, Monillas ES, Winget JM, Czymmek K, Bahnson BJ. Biochemistry 50 8417-8426 (2011)
  190. A Novel Approach to Bacterial Expression and Purification of Myristoylated Forms of Neuronal Calcium Sensor Proteins. Vladimirov VI, Baksheeva VE, Mikhailova IV, Ismailov RG, Litus EA, Tikhomirova NK, Nazipova AA, Permyakov SE, Zernii EY, Zinchenko DV. Biomolecules 10 (2020)
  191. Calcium-dependent membrane association of a flagellar calcium sensor does not require calcium binding. Maric D, Olson CL, Xu X, Ames JB, Engman DM. Mol Biochem Parasitol 201 72-75 (2015)
  192. Cost-effective method for the preparation of uniformly labeled myristoylated proteins for NMR measurements. Kroupa T, Prchal J, Doležal M, Ruml T, Hrabal R. Protein Expr Purif 99 6-9 (2014)
  193. Disorder in a two-domain neuronal Ca2+-binding protein regulates domain stability and dynamics using ligand mimicry. Staby L, Kemplen KR, Stein A, Ploug M, Clarke J, Skriver K, Heidarsson PO, Kragelund BB. Cell Mol Life Sci 78 2263-2278 (2021)
  194. Disulfide Dimerization of Neuronal Calcium Sensor-1: Implications for Zinc and Redox Signaling. Baksheeva VE, Baldin AV, Zalevsky AO, Nazipova AA, Kazakov AS, Vladimirov VI, Gorokhovets NV, Devred F, Philippov PP, Bazhin AV, Golovin AV, Zamyatnin AA, Zinchenko DV, Tsvetkov PO, Permyakov SE, Zernii EY. Int J Mol Sci 22 (2021)
  195. Guanylate Cyclase-Activating Protein-2 Undergoes Structural Changes upon Binding to Detergent Micelles and Bicelles. Margetić A, Nannemann D, Meiler J, Huster D, Theisgen S. Biochim Biophys Acta 1838 2767-2777 (2014)
  196. Intense myristoylation of a single protein in the ocular lens. Cenedella RJ, Chandrasekher G. Biochem Biophys Res Commun 256 652-656 (1999)
  197. Novel Hits for N-Myristoyltransferase Inhibition Discovered by Docking-Based Screening. Spassov DS, Atanasova M, Doytchinova I. Molecules 27 5478 (2022)
  198. Novel approaches to probe the binding of recoverin to membranes. Potvin-Fournier K, Valois-Paillard G, Gagnon MC, Lefèvre T, Audet P, Cantin L, Paquin JF, Salesse C, Auger M. Eur Biophys J 47 679-691 (2018)
  199. Preparation and characteristics of Ca(2+)-dependent monoclonal antibodies to recoverin. Tikhomirova NK, Goncharskaya MA, Senin II. Biochemistry (Mosc) 69 1360-1364 (2004)
  200. ¹H, ¹³C, and ¹⁵N chemical shift assignments of neuronal calcium sensor protein, hippocalcin. Li C, Ames JB. Biomol NMR Assign 8 63-66 (2014)
  201. Conformational regulation and target-myristoyl switch of calcineurin B homologous protein 3. Becker F, Fuchs S, Refisch L, Drepper F, Bildl W, Schulte U, Liang S, Heinicke JI, Hansen SC, Kreutz C, Warscheid B, Fakler B, Mymrikov EV, Hunte C. Elife 12 e83868 (2023)
  202. Experimental Insight into the Structural and Functional Roles of the 'Black' and 'Gray' Clusters in Recoverin, a Calcium Binding Protein with Four EF-Hand Motifs. Permyakov SE, Vologzhannikova AS, Nemashkalova EL, Kazakov AS, Denesyuk AI, Denessiouk K, Baksheeva VE, Zamyatnin AA, Zernii EY, Uversky VN, Permyakov EA. Molecules 24 (2019)
  203. Grk7 but not Grk1 undergoes cAMP-dependent phosphorylation in zebrafish cone photoreceptors and mediates cone photoresponse recovery to elevated cAMP. Chrispell JD, Xiong Y, Weiss ER. J Biol Chem 298 102636 (2022)
  204. Lipid-anchored proteasomes control membrane protein homeostasis. Zhang R, Pan S, Zheng S, Liao Q, Jiang Z, Wang D, Li X, Hu A, Li X, Zhu Y, Shen X, Lei J, Zhong S, Zhang X, Huang L, Wang X, Huang L, Shen L, Song BL, Zhao JW, Wang Z, Yang B, Guo X. Sci Adv 9 eadj4605 (2023)
  205. Phase separation of FSP1 promotes ferroptosis. Nakamura T, Hipp C, Santos Dias Mourão A, Borggräfe J, Aldrovandi M, Henkelmann B, Wanninger J, Mishima E, Lytton E, Emler D, Proneth B, Sattler M, Conrad M. Nature (2023)
  206. Visinin-like protein-1 level is associated with short-term functional outcome of acute ischemic stroke: A prospective cohort study. Liu D, Dong X, Yang R, Guo H, Wang T, Xu G. Medicine (Baltimore) 99 e19252 (2020)