1js8 Citations

Crystal structure of a functional unit from Octopus hemocyanin.

J Mol Biol 278 855-70 (1998)
Cited: 174 times
EuropePMC logo PMID: 9614947

Abstract

Hemocyanins are giant oxygen transport proteins found in many arthropods and molluscs. Freely dissolved in the hemolymph, they are multisubunit proteins that contain many copies of the active site, a copper atom pair that reversibly binds oxygen. Octopus hemocyanin is composed of ten subunits, each of which contain seven oxygen-binding "functional units". The carboxyl-terminal 47 kDa functional unit, Odg, is a proteolytic isolate that binds oxygen reversibly while exhibiting slight Bohr and magnesium ion effects. In this work we present the X-ray structure determination and analysis of Odg at 2.3 A resolution. Odg has two structural domains: a largely alpha-helical copper binding domain, and a five-stranded anti-parallel beta-sandwich with the jelly roll topology found in many viruses. Six histidine residues ligate the copper atoms, one of which is involved in a thioether bridge. The results show that the hemocyanin from the mollusc and that from the arthropod have distinct tertiary folds in addition to the long recognized differences in their quaternary structures. Nonetheless, a comparison of Octopus and horseshoe crab hemocyanin reveals a similar active site, in a striking example of perhaps both convergent and divergent evolution.

Reviews - 1js8 mentioned but not cited (5)

  1. Copper active sites in biology. Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Chem. Rev. 114 3659-3853 (2014)
  2. Copper dioxygen (bio)inorganic chemistry. Solomon EI, Ginsbach JW, Heppner DE, Kieber-Emmons MT, Kjaergaard CH, Smeets PJ, Tian L, Woertink JS. Faraday Discuss. 148 11-39; discussion 97-108 (2011)
  3. Structure-function correlations in tyrosinases. Kanteev M, Goldfeder M, Fishman A. Protein Sci. 24 1360-1369 (2015)
  4. Cupredoxins--a study of how proteins may evolve to use metals for bioenergetic processes. Choi M, Davidson VL. Metallomics 3 140-151 (2011)
  5. Immunological properties of oxygen-transport proteins: hemoglobin, hemocyanin and hemerythrin. Coates CJ, Decker H. Cell. Mol. Life Sci. 74 293-317 (2017)

Articles - 1js8 mentioned but not cited (14)

  1. Global rigid body modeling of macromolecular complexes against small-angle scattering data. Petoukhov MV, Svergun DI. Biophys. J. 89 1237-1250 (2005)
  2. O2 reduction to H2O by the multicopper oxidases. Solomon EI, Augustine AJ, Yoon J. Dalton Trans 3921-3932 (2008)
  3. Crystal structure of Manduca sexta prophenoloxidase provides insights into the mechanism of type 3 copper enzymes. Li Y, Wang Y, Jiang H, Deng J. Proc. Natl. Acad. Sci. U.S.A. 106 17002-17006 (2009)
  4. Latent and active abPPO4 mushroom tyrosinase cocrystallized with hexatungstotellurate(VI) in a single crystal. Mauracher SG, Molitor C, Al-Oweini R, Kortz U, Rompel A. Acta Crystallogr. D Biol. Crystallogr. 70 2301-2315 (2014)
  5. Geometric and electronic structure differences between the type 3 copper sites of the multicopper oxidases and hemocyanin/tyrosinase. Yoon J, Fujii S, Solomon EI. Proc. Natl. Acad. Sci. U.S.A. 106 6585-6590 (2009)
  6. Molecular Mechanisms Behind Anti SARS-CoV-2 Action of Lactoferrin. Miotto M, Di Rienzo L, Bò L, Boffi A, Ruocco G, Milanetti E. Front Mol Biosci 8 607443 (2021)
  7. Origin, evolution and classification of type-3 copper proteins: lineage-specific gene expansions and losses across the Metazoa. Aguilera F, McDougall C, Degnan BM. BMC Evol. Biol. 13 96 (2013)
  8. Crystal structures of copper-depleted and copper-bound fungal pro-tyrosinase: insights into endogenous cysteine-dependent copper incorporation. Fujieda N, Yabuta S, Ikeda T, Oyama T, Muraki N, Kurisu G, Itoh S. J. Biol. Chem. 288 22128-22140 (2013)
  9. Cryo-EM structure of a molluscan hemocyanin suggests its allosteric mechanism. Zhang Q, Dai X, Cong Y, Zhang J, Chen DH, Dougherty MT, Wang J, Ludtke SJ, Schmid MF, Chiu W. Structure 21 604-613 (2013)
  10. Crystallization and preliminary X-ray crystallographic analysis of tyrosinase from the mushroom Agaricus bisporus. Ismaya WT, Rozeboom HJ, Schurink M, Boeriu CG, Wichers H, Dijkstra BW. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67 575-578 (2011)
  11. The structure of a prophenoloxidase (PPO) from Anopheles gambiae provides new insights into the mechanism of PPO activation. Hu Y, Wang Y, Deng J, Jiang H. BMC Biol. 14 2 (2016)
  12. Structural insights into the interaction between molluscan hemocyanins and phenolic substrates: An in silico study using docking and molecular dynamics. Naresh KN, Sreekumar A, Rajan SS. J Mol Graph Model 61 272-280 (2015)
  13. Positive selection in octopus haemocyanin indicates functional links to temperature adaptation. Oellermann M, Strugnell JM, Lieb B, Mark FC. BMC Evol. Biol. 15 133 (2015)
  14. The evolution of hemocyanin genes in Tectipleura: a multitude of conserved introns in highly diverse gastropods. Schäfer GG, Pedrini-Martha V, Jackson DJ, Dallinger R, Lieb B. BMC Ecol Evol 21 36 (2021)


Reviews citing this publication (27)

  1. Keyhole limpet hemocyanin (KLH): a biomedical review. Harris JR, Markl J. Micron 30 597-623 (1999)
  2. Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Decker H, Tuczek F. Trends Biochem. Sci. 25 392-397 (2000)
  3. Direct electron transfer between copper-containing proteins and electrodes. Shleev S, Tkac J, Christenson A, Ruzgas T, Yaropolov AI, Whittaker JW, Gorton L. Biosens Bioelectron 20 2517-2554 (2005)
  4. Bacterial tyrosinases. Claus H, Decker H. Syst. Appl. Microbiol. 29 3-14 (2006)
  5. Copper-O2 reactivity of tyrosinase models towards external monophenolic substrates: molecular mechanism and comparison with the enzyme. Rolff M, Schottenheim J, Decker H, Tuczek F. Chem Soc Rev 40 4077-4098 (2011)
  6. Synthetic models of the active site of catechol oxidase: mechanistic studies. Koval IA, Gamez P, Belle C, Selmeczi K, Reedijk J. Chem Soc Rev 35 814-840 (2006)
  7. New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins. Olivares C, Solano F. Pigment Cell Melanoma Res 22 750-760 (2009)
  8. Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Ramsden CA, Riley PA. Bioorg. Med. Chem. 22 2388-2395 (2014)
  9. Catechol oxidase - structure and activity. Eicken C, Krebs B, Sacchettini JC. Curr. Opin. Struct. Biol. 9 677-683 (1999)
  10. Similar enzyme activation and catalysis in hemocyanins and tyrosinases. Decker H, Schweikardt T, Nillius D, Salzbrunn U, Jaenicke E, Tuczek F. Gene 398 183-191 (2007)
  11. Diverse immune functions of hemocyanins. Coates CJ, Nairn J. Dev. Comp. Immunol. 45 43-55 (2014)
  12. Structural insights into dioxygen-activating copper enzymes. Rosenzweig AC, Sazinsky MH. Curr. Opin. Struct. Biol. 16 729-735 (2006)
  13. Tyrosinase and ocular diseases: some novel thoughts on the molecular basis of oculocutaneous albinism type 1. Ray K, Chaki M, Sengupta M. Prog Retin Eye Res 26 323-358 (2007)
  14. Evolution of molluscan hemocyanin structures. Markl J. Biochim. Biophys. Acta 1834 1840-1852 (2013)
  15. Novel cofactors via post-translational modifications of enzyme active sites. Okeley NM, van der Donk WA. Chem. Biol. 7 R159-71 (2000)
  16. Functional changes in the family of type 3 copper proteins during evolution. Jaenicke E, Decker H. Chembiochem 5 163-169 (2004)
  17. Atx1-like chaperones and their cognate P-type ATPases: copper-binding and transfer. Singleton C, Le Brun NE. Biometals 20 275-289 (2007)
  18. Generation of protein-derived redox cofactors by posttranslational modification. Davidson VL. Mol Biosyst 7 29-37 (2011)
  19. Allostery in very large molecular assemblies. van Holde KE, Miller KI, van Olden E. Biophys. Chem. 86 165-172 (2000)
  20. Dioxygen-activating bio-inorganic model complexes. Liang HC, Dahan M, Karlin KD. Curr Opin Chem Biol 3 168-175 (1999)
  21. Activation of dioxygen by copper metalloproteins and insights from model complexes. Quist DA, Diaz DE, Liu JJ, Karlin KD. J. Biol. Inorg. Chem. 22 253-288 (2017)
  22. Anticancer agent-based marine natural products and related compounds. Chen JW, Wu QH, Rowley DC, Al-Kareef AM, Wang H. J Asian Nat Prod Res 17 199-216 (2015)
  23. Modeling tyrosinase activity. Effect of ligand topology on aromatic ring hydroxylation: an overview. De A, Mandal S, Mukherjee R. J. Inorg. Biochem. 102 1170-1189 (2008)
  24. High-valent copper in biomimetic and biological oxidations. Keown W, Gary JB, Stack TD. J. Biol. Inorg. Chem. 22 289-305 (2017)
  25. Molluscan hemocyanin: structure, evolution, and physiology. Kato S, Matsui T, Gatsogiannis C, Tanaka Y. Biophys Rev 10 191-202 (2018)
  26. Protein-Derived Cofactors Revisited: Empowering Amino Acid Residues with New Functions. Davidson VL. Biochemistry 57 3115-3125 (2018)
  27. De Novo Structural Determination of the Oligosaccharide Structure of Hemocyanins from Molluscs. Dolashka P, Daskalova A, Dolashki A, Voelter W. Biomolecules 10 (2020)

Articles citing this publication (128)

  1. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M. J. Biol. Chem. 281 8981-8990 (2006)
  2. Crystal structure of a plant catechol oxidase containing a dicopper center. Klabunde T, Eicken C, Sacchettini JC, Krebs B. Nat. Struct. Biol. 5 1084-1090 (1998)
  3. The first crystal structure of tyrosinase: all questions answered? Decker H, Schweikardt T, Tuczek F. Angew. Chem. Int. Ed. Engl. 45 4546-4550 (2006)
  4. First structures of an active bacterial tyrosinase reveal copper plasticity. Sendovski M, Kanteev M, Ben-Yosef VS, Adir N, Fishman A. J. Mol. Biol. 405 227-237 (2011)
  5. Sequence of the Octopus dofleini hemocyanin subunit: structural and evolutionary implications. Miller KI, Cuff ME, Lang WF, Varga-Weisz P, Field KG, van Holde KE. J. Mol. Biol. 278 827-842 (1998)
  6. Processing of crayfish hemocyanin subunits into phenoloxidase. Lee SY, Lee BL, Söderhäll K. Biochem. Biophys. Res. Commun. 322 490-496 (2004)
  7. Structures of two molluscan hemocyanin genes: significance for gene evolution. Lieb B, Altenhein B, Markl J, Vincent A, van Olden E, van Holde KE, Miller KI. Proc. Natl. Acad. Sci. U.S.A. 98 4546-4551 (2001)
  8. Hemocyanin from the keyhole limpet Megathura crenulata (KLH) carries a novel type of N-glycans with Gal(beta1-6)Man-motifs. Kurokawa T, Wuhrer M, Lochnit G, Geyer H, Markl J, Geyer R. Eur. J. Biochem. 269 5459-5473 (2002)
  9. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science. Guerette PA, Hoon S, Seow Y, Raida M, Masic A, Wong FT, Ho VH, Kong KW, Demirel MC, Pena-Francesch A, Amini S, Tay GZ, Ding D, Miserez A. Nat. Biotechnol. 31 908-915 (2013)
  10. Comparison of the characteristics of fungal and plant tyrosinases. Selinheimo E, NiEidhin D, Steffensen C, Nielsen J, Lomascolo A, Halaouli S, Record E, O'Beirne D, Buchert J, Kruus K. J. Biotechnol. 130 471-480 (2007)
  11. Keyhole limpet hemocyanin: 9-A CryoEM structure and molecular model of the KLH1 didecamer reveal the interfaces and intricate topology of the 160 functional units. Gatsogiannis C, Markl J. J. Mol. Biol. 385 963-983 (2009)
  12. Tyrosinases from crustaceans form hexamers. Jaenicke E, Decker H. Biochem. J. 371 515-523 (2003)
  13. Identification of a novel group of putative Arabidopsis thaliana beta-(1,3)-galactosyltransferases. Qu Y, Egelund J, Gilson PR, Houghton F, Gleeson PA, Schultz CJ, Bacic A. Plant Mol. Biol. 68 43-59 (2008)
  14. A novel putative tyrosinase involved in periostracum formation from the pearl oyster (Pinctada fucata). Zhang C, Xie L, Huang J, Chen L, Zhang R. Biochem. Biophys. Res. Commun. 342 632-639 (2006)
  15. Proteolytic processing of polyphenol oxidase from plants and fungi. Flurkey WH, Inlow JK. J. Inorg. Biochem. 102 2160-2170 (2008)
  16. Electronic structure of the peroxy intermediate and its correlation to the native intermediate in the multicopper oxidases: insights into the reductive cleavage of the o-o bond. Yoon J, Solomon EI. J. Am. Chem. Soc. 129 13127-13136 (2007)
  17. Structure of a molluscan hemocyanin didecamer (HtH1 from Haliotis tuberculata) at 12 A resolution by cryoelectron microscopy. Meissner U, Dube P, Harris JR, Stark H, Markl J. J. Mol. Biol. 298 21-34 (2000)
  18. Abalone (Haliotis tuberculata) hemocyanin type 1 (HtH1). Organization of the approximately 400 kDa subunit, and amino acid sequence of its functional units f, g and h. Keller H, Lieb Bp6, Altenhein B, Gebauer D, Richter S, Stricker S, Markl J. Eur. J. Biochem. 264 27-38 (1999)
  19. Conversion of crustacean hemocyanin to catecholoxidase. Jaenicke E, Decker H. Micron 35 89-90 (2004)
  20. Intramolecular localization of the functional units of Sepia officinalis hemocyanin by immunoelectron microscopy. Lamy J, You V, Taveau JC, Boisset N, Lamy JN. J. Mol. Biol. 284 1051-1074 (1998)
  21. A three-dimensional model of mammalian tyrosinase active site accounting for loss of function mutations. Schweikardt T, Olivares C, Solano F, Jaenicke E, García-Borrón JC, Decker H. Pigment Cell Res. 20 394-401 (2007)
  22. Gene structure and hemocyanin isoform HtH2 from the mollusc Haliotis tuberculata indicate early and late intron hot spots. Altenhein B, Markl J, Lieb B. Gene 301 53-60 (2002)
  23. Purification, characterization and molecular cloning of tyrosinase from the cephalopod mollusk, Illex argentinus. Naraoka T, Uchisawa H, Mori H, Matsue H, Chiba S, Kimura A. Eur. J. Biochem. 270 4026-4038 (2003)
  24. Hemocyanin of the molluscan Concholepas concholepas exhibits an unusual heterodecameric array of subunits. De Ioannes P, Moltedo B, Oliva H, Pacheco R, Faunes F, De Ioannes AE, Becker MI. J. Biol. Chem. 279 26134-26142 (2004)
  25. Hemocyanin subunit organization of the gastropod Rapana thomasiana. Gebauer W, Stoeva S, Voelter W, Dainese E, Salvato B, Beltramini M, Markl J. Arch. Biochem. Biophys. 372 128-134 (1999)
  26. Molecular cloning and characterisation of prophenoloxidase cDNA from haemocytes of the giant freshwater prawn, Macrobrachium rosenbergii, and its transcription in relation with the moult stage. Liu CH, Tseng DY, Lai CY, Cheng W, Kuo CM. Fish Shellfish Immunol. 21 60-69 (2006)
  27. The hemocyanin from a living fossil, the cephalopod Nautilus pompilius: protein structure, gene organization, and evolution. Bergmann S, Lieb B, Ruth P, Markl J. J. Mol. Evol. 62 362-374 (2006)
  28. Characterization of the carbohydrate moieties of the functional unit RvH1-a of Rapana venosa haemocyanin using HPLC/electrospray ionization MS and glycosidase digestion. Dolashka-Angelova P, Beck A, Dolashki A, Beltramini M, Stevanovic S, Salvato B, Voelter W. Biochem. J. 374 185-192 (2003)
  29. Location of intrinsic and inducible phenoloxidase activity in molluscan hemocyanin. Siddiqui NI, Akosung RF, Gielens C. Biochem. Biophys. Res. Commun. 348 1138-1144 (2006)
  30. Nautilus pompilius hemocyanin: 9 A cryo-EM structure and molecular model reveal the subunit pathway and the interfaces between the 70 functional units. Gatsogiannis C, Moeller A, Depoix F, Meissner U, Markl J. J. Mol. Biol. 374 465-486 (2007)
  31. Switch between tyrosinase and catecholoxidase activity of scorpion hemocyanin by allosteric effectors. Nillius D, Jaenicke E, Decker H. FEBS Lett. 582 749-754 (2008)
  32. cDNA sequence, protein structure, and evolution of the single hemocyanin from Aplysia californica, an opisthobranch gastropod. Lieb B, Boisguérin V, Gebauer W, Markl J. J. Mol. Evol. 59 536-545 (2004)
  33. Comparative modeling of the latent form of a plant catechol oxidase using a molluskan hemocyanin structure. Gerdemann C, Eicken C, Galla HJ, Krebs B. J. Inorg. Biochem. 89 155-158 (2002)
  34. Amino acid sequence and glycosylation of functional unit RtH2-e from Rapana thomasiana (gastropod) hemocyanin. Stoeva S, Idakieva K, Betzel C, Genov N, Voelter W. Arch. Biochem. Biophys. 399 149-158 (2002)
  35. Carbohydrate composition of Carcinus aestuarii hemocyanin. Dolashka-Angelova P, Beltramini M, Dolashki A, Salvato B, Hristova R, Voelter W. Arch. Biochem. Biophys. 389 153-158 (2001)
  36. Discovery of a new tyrosinase-like enzyme family lacking a C-terminally processed domain: production and characterization of an Aspergillus oryzae catechol oxidase. Gasparetti C, Faccio G, Arvas M, Buchert J, Saloheimo M, Kruus K. Appl. Microbiol. Biotechnol. 86 213-226 (2010)
  37. Subunit organization of the abalone Haliotis tuberculata hemocyanin type 2 (HtH2), and the cDNA sequence encoding its functional units d, e, f, g and h. Lieb B, Altenhein B, Lehnert R, Gebauer W, Markl J. Eur. J. Biochem. 265 134-144 (1999)
  38. Automated three-dimensional reconstruction of keyhole limpet hemocyanin type 1. Mouche F, Zhu Y, Pulokas J, Potter CS, Carragher B. J. Struct. Biol. 144 301-312 (2003)
  39. EPR study of the dinuclear active copper site of tyrosinase from Streptomyces antibioticus. van Gastel M, Bubacco L, Groenen EJ, Vijgenboom E, Canters GW. FEBS Lett. 474 228-232 (2000)
  40. The dual nature of haemocyanin in the establishment and persistence of the squid-vibrio symbiosis. Kremer N, Schwartzman J, Augustin R, Zhou L, Ruby EG, Hourdez S, McFall-Ngai MJ. Proc. Biol. Sci. 281 20140504 (2014)
  41. Cupredoxin-like domains in haemocyanins. Jaenicke E, Büchler K, Markl J, Decker H, Barends TR. Biochem. J. 426 373-378 (2010)
  42. The first complete cDNA sequence of the hemocyanin from a bivalve, the protobranch Nucula nucleus. Bergmann S, Markl J, Lieb B. J. Mol. Evol. 64 500-510 (2007)
  43. A molecular mechanism for copper transportation to tyrosinase that is assisted by a metallochaperone, caddie protein. Matoba Y, Bando N, Oda K, Noda M, Higashikawa F, Kumagai T, Sugiyama M. J. Biol. Chem. 286 30219-30231 (2011)
  44. Immunodominant role of CCHA subunit of Concholepas hemocyanin is associated with unique biochemical properties. Becker MI, Fuentes A, Del Campo M, Manubens A, Nova E, Oliva H, Faunes F, Valenzuela MA, Campos-Vallette M, Aliaga A, Ferreira J, De Ioannes AE, De Ioannes P, Moltedo B. Int. Immunopharmacol. 9 330-339 (2009)
  45. Mass spectral evidence for N-glycans with branching on fucose in a molluscan hemocyanin. Gielens C, Idakieva K, Van den Bergh V, Siddiqui NI, Parvanova K, Compernolle F. Biochem. Biophys. Res. Commun. 331 562-570 (2005)
  46. Structure/function correlations among coupled binuclear copper proteins through spectroscopic and reactivity studies of NspF. Ginsbach JW, Kieber-Emmons MT, Nomoto R, Noguchi A, Ohnishi Y, Solomon EI. Proc. Natl. Acad. Sci. U.S.A. 109 10793-10797 (2012)
  47. Topology of the 10 subunits within the decamer of KLH, the hemocyanin of the marine gastropod Megathura crenulata. Gebauer W, Robin Harris J, Markl J. J. Struct. Biol. 139 153-159 (2002)
  48. Role of the C-terminal extension in a bacterial tyrosinase. Fairhead M, Thöny-Meyer L. FEBS J. 277 2083-2095 (2010)
  49. Sepia officinalis hemocyanin: A refined 3D structure from field emission gun cryoelectron microscopy. Boisset N, Mouche F. J. Mol. Biol. 296 459-472 (2000)
  50. Structural comparison of cephalopod hemocyanins: phylogenetic significance. Mouche F, Boisset N, Lamy J, Zal F, Lamy JN. J. Struct. Biol. 127 199-212 (1999)
  51. Functional properties of hemocyanin from Oncomelania hupensis, the intermediate host of Schistosoma japonicum. Guo D, Zhang Y, Zeng D, Wang H, Li X, Li Y, Fan X. Exp. Parasitol. 123 277-281 (2009)
  52. Influence of limited proteolysis, detergent treatment and lyophilization on the phenoloxidase activity of Rapana thomasiana hemocyanin. Idakieva K, Siddiqui NI, Meersman F, De Maeyer M, Chakarska I, Gielens C. Int. J. Biol. Macromol. 45 181-187 (2009)
  53. Kinetic properties of catecholoxidase activity of tarantula hemocyanin. Jaenicke E, Decker H. FEBS J. 275 1518-1528 (2008)
  54. Mechanistic insight into the activity of tyrosinase from variable-temperature studies in an aqueous/organic solvent. Granata A, Monzani E, Bubacco L, Casella L. Chemistry 12 2504-2514 (2006)
  55. Small-angle X-ray scattering-based three-dimensional reconstruction of the immunogen KLH1 reveals different oxygen-dependent conformations. Hartmann H, Bongers A, Decker H. J. Biol. Chem. 279 2841-2845 (2004)
  56. Catalytic oxygenation of phenols by arthropod hemocyanin, an oxygen carrier protein, from Portunus trituberculatus. Fujieda N, Yakiyama A, Itoh S. Dalton Trans 39 3083-3092 (2010)
  57. Comparative 11A structure of two molluscan hemocyanins from 3D cryo-electron microscopy. Meissner U, Gatsogiannis C, Moeller A, Depoix F, Harris JR, Markl J. Micron 38 754-765 (2007)
  58. Glycan structures of the structural subunit (HtH1) of Haliotis tuberculata hemocyanin. Velkova L, Dolashka P, Lieb B, Dolashki A, Voelter W, Van Beeumen J, Devreese B. Glycoconj. J. 28 385-395 (2011)
  59. Human resistin and the RELM of Inflammation in diabesity. Al Hannan F, Culligan KG. Diabetol Metab Syndr 7 54 (2015)
  60. Isozymes of Ipomoea batatas catechol oxidase differ in catalase-like activity. Gerdemann C, Eicken C, Magrini A, Meyer HE, Rompel A, Spener F, Krebs B. Biochim. Biophys. Acta 1548 94-105 (2001)
  61. Multifunctions of MelB, a fungal tyrosinase from Aspergillus oryzae. Fujieda N, Murata M, Yabuta S, Ikeda T, Shimokawa C, Nakamura Y, Hata Y, Itoh S. Chembiochem 13 193-201 (2012)
  62. Role of the tertiary structure in the diphenol oxidase activity of Octopus vulgaris hemocyanin. Campello S, Beltramini M, Giordano G, Di Muro P, Marino SM, Bubacco L. Arch. Biochem. Biophys. 471 159-167 (2008)
  63. Controlled cleavage of KLH1 and KLH2 by the V8 protease from Staphylococcus aureus reassociation, electrophoretic and transmission electron microscopy study of peptide fragments. Gebauer W, Harris JR. Eur. J. Biochem. 262 166-175 (1999)
  64. The crystal structure of an extracellular catechol oxidase from the ascomycete fungus Aspergillus oryzae. Hakulinen N, Gasparetti C, Kaljunen H, Kruus K, Rouvinen J. J. Biol. Inorg. Chem. 18 917-929 (2013)
  65. X-ray absorption analysis of the active site of Streptomyces antibioticus Tyrosinase upon binding of transition state analogue inhibitors. Bubacco L, Spinazze R, della Longa S, Benfatto M. Arch. Biochem. Biophys. 465 320-327 (2007)
  66. o-Diphenol oxidase activity of molluscan hemocyanins. Hristova R, Dolashki A, Voelter W, Stevanovic S, Dolashka-Angelova P. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 149 439-446 (2008)
  67. Polyphenoloxidase from Riesling and Dornfelder wine grapes (Vitis vinifera) is a tyrosinase. Fronk P, Hartmann H, Bauer M, Solem E, Jaenicke E, Tenzer S, Decker H. Food Chem 183 49-57 (2015)
  68. The refined structure of functional unit h of keyhole limpet hemocyanin (KLH1-h) reveals disulfide bridges. Jaenicke E, Büchler K, Decker H, Markl J, Schröder GF. IUBMB Life 63 183-187 (2011)
  69. Catecholase activity of a copper(II) complex with a macrocyclic ligand: unraveling catalytic mechanisms. Koval IA, Selmeczi K, Belle C, Philouze C, Saint-Aman E, Gautier-Luneau I, Schuitema AM, van Vliet M, Gamez P, Roubeau O, Lüken M, Krebs B, Lutz M, Spek AL, Pierre JL, Reedijk J. Chemistry 12 6138-6150 (2006)
  70. Cloning and structural analysis of a haemocyanin from the Stonefly Perla grandis. Fochetti R, Belardinelli M, Guerra L, Buonocore F, Fausto AM, Caporale C. Protein J. 25 443-454 (2006)
  71. Effect of thiohydroxyl compounds on tyrosinase: inactivation and reactivation study. Park YD, Lee SJ, Park KH, Kim SY, Hahn MJ, Yang JM. J Protein Chem 22 613-623 (2003)
  72. Formulation of abalone hemocyanin with high antiviral activity and stability. Zanjani NT, Sairi F, Marshall G, Saksena MM, Valtchev P, Gomes VG, Cunningham AL, Dehghani F. Eur J Pharm Sci 53 77-85 (2014)
  73. Less symmetrical dicopper(II) complexes as catechol oxidase models--an adjacent thioether group increases catecholase activity. Merkel M, Möller N, Piacenza M, Grimme S, Rompel A, Krebs B. Chemistry 11 1201-1209 (2005)
  74. Modeling the met form of human tyrosinase: a refined and hydrated pocket for antagonist design. Favre E, Daina A, Carrupt PA, Nurisso A. Chem Biol Drug Des 84 206-215 (2014)
  75. Structure and O2-reactivity of copper(I) complexes supported by pyridylalkylamine ligands. Itoh S, Tachi Y. Dalton Trans 4531-4538 (2006)
  76. Electrophilic arene hydroxylation and phenol O-H oxidations performed by an unsymmetric μ-η(1):η(1)-O2-peroxo dicopper(II) complex. Garcia-Bosch I, Ribas X, Costas M. Chemistry 18 2113-2122 (2012)
  77. Low-resolution structure of the proteolytic fragments of the Rapana venosa hemocyanin in solution. Dainese E, Svergun D, Beltramini M, Di Muro P, Salvato B. Arch. Biochem. Biophys. 373 154-162 (2000)
  78. Molecular basis of the Bohr effect in arthropod hemocyanin. Hirota S, Kawahara T, Beltramini M, Di Muro P, Magliozzo RS, Peisach J, Powers LS, Tanaka N, Nagao S, Bubacco L. J. Biol. Chem. 283 31941-31948 (2008)
  79. Structure-based calculation of multi-donor multi-acceptor fluorescence resonance energy transfer in the 4x6-mer tarantula hemocyanin. Erker W, Hübler R, Decker H. Eur. Biophys. J. 33 386-395 (2004)
  80. Activation mechanism of melB tyrosinase from Aspergillus oryzae by acidic treatment. Fujieda N, Murata M, Yabuta S, Ikeda T, Shimokawa C, Nakamura Y, Hata Y, Itoh S. J. Biol. Inorg. Chem. 18 19-26 (2013)
  81. Oxidized derivatives of Octopus vulgaris and Carcinus aestuarii hemocyanins at pH 7.5 and related models by x-ray absorption spectroscopy. Borghi E, Solari PL, Beltramini M, Bubacco L, Di Muro P, Salvato B. Biophys. J. 82 3254-3268 (2002)
  82. Stabilisation of a highly reactive bis(mu-oxo)dicopper(III) species at room temperature by electronic and steric constraint of an unconventional nitrogen donor ligand. Herres-Pawlis S, Binder S, Eich A, Haase R, Schulz B, Wellenreuther G, Henkel G, Rübhausen M, Meyer-Klaucke W. Chemistry 15 8678-8682 (2009)
  83. Theoretical study of the catalytic mechanism of catechol oxidase. Güell M, Siegbahn PE. J. Biol. Inorg. Chem. 12 1251-1264 (2007)
  84. Chemically Modified Amino Acids in Copper Proteins That Bind or Activate Dioxygen The author acknowledges the Royal Society (London) for a University Research Fellowship. Halcrow MA. Angew. Chem. Int. Ed. Engl. 40 346-349 (2001)
  85. Contribution of the copper ions in the dinuclear active site to the stability of Carcinus aestuarii hemocyanin. Spinozzi F, Gatto S, De Filippis V, Carsughi F, Di Muro P, Beltramini M. Arch. Biochem. Biophys. 439 42-52 (2005)
  86. Cryo-EM structure of isomeric molluscan hemocyanin triggered by viral infection. Zhu H, Zhuang J, Feng H, Liang R, Wang J, Xie L, Zhu P. PLoS ONE 9 e98766 (2014)
  87. Crystallization and preliminary analysis of crystals of the 24-meric hemocyanin of the emperor scorpion (Pandinus imperator). Jaenicke E, Pairet B, Hartmann H, Decker H. PLoS ONE 7 e32548 (2012)
  88. Experimental and bioinformatic investigation of the proteolytic degradation of the C-terminal domain of a fungal tyrosinase. Faccio G, Arvas M, Thöny-Meyer L, Saloheimo M. J. Inorg. Biochem. 121 37-45 (2013)
  89. Low-resolution molecular structures of isolated functional units from arthropodan and molluscan hemocyanin. Grossmann JG, Ali SA, Abbasi A, Zaidi ZH, Stoeva S, Voelter W, Hasnain SS. Biophys. J. 78 977-981 (2000)
  90. Oligosaccharide structure of a functional unit RvH1-b of Rapana venosa hemocyanin using HPLC/electrospray ionization mass spectrometry. Beck A, Hillen N, Dolashki A, Stevanovic S, Salvato B, Voelter W, Dolashka-Angelova P. Biochimie 89 938-949 (2007)
  91. Oxygen binding and activation by the complexes of PY2- and TPA-appended diphenylglycoluril receptors with copper and other metals. Sprakel VS, Feiters MC, Meyer-Klaucke W, Klopstra M, Brinksma J, Feringa BL, Karlin KD, Nolte RJ. Dalton Trans 3522-3534 (2005)
  92. Phenoloxidase activity of intact and chemically modified functional unit RvH1: a from molluscan Rapana venosa hemocyanin. Dolashki A, Voelter W, Dolashka P. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 160 1-7 (2011)
  93. Positions of the glycans in molluscan hemocyanin, determined by fluorescence spectroscopy. Kostadinova E, Dolashka P, Velkova L, Dolashki A, Stevanovic S, Voelter W. J Fluoresc 23 753-760 (2013)
  94. Solvation of copper ions by imidazole: structures and sequential binding energies of Cu+(imidazole)x, x = 1-4. Competition between ion solvation and hydrogen bonding. Rannulu NS, Rodgers MT. Phys Chem Chem Phys 7 1014-1025 (2005)
  95. Thermal stability of homologous functional units of Helix pomatia hemocyanin does not correlate with carbohydrate content. Yesilyurt BT, Gielens C, Meersman F. FEBS J. 275 3625-3632 (2008)
  96. Conformational stabilization at the active site of molluskan (Rapana thomasiana) hemocyanin by a cysteine-histidine thioether bridge A study by mass spectrometry and molecular modeling. Gielens C, Idakieva K, De Maeyer M, Van den Bergh V, Siddiqui NI, Compernolle F. Peptides 28 790-797 (2007)
  97. Disulfide bond reduction: A powerful, chemical probe for the study of structure-function relationships in the hemocyanins. Topham R, Tesh S, Westcott A, Cole G, Mercatante D, Kaufman G, Bonaventura C. Arch. Biochem. Biophys. 369 261-266 (1999)
  98. Purification, spectroscopic characterization and o-diphenoloxidase activity of hemocyanin from a freshwater gastropod: Pila globosa. Naresh KN, Krupanidhi S, Rajan SS. Protein J. 32 327-336 (2013)
  99. Substrate-Induced Carbon Monoxide Reactivity Suggests Multiple Enzyme Conformations at the Catalytic Copper M-Center of Peptidylglycine Monooxygenase. Kline CD, Blackburn NJ. Biochemistry 55 6652-6661 (2016)
  100. Comparative structural analysis of low-molecular mass fragments of Rapana venosa hemocyanin obtained using two different procedures. Sabatucci A, Vachette P, Beltramini M, Salvato B, Dainese E. J. Struct. Biol. 149 127-137 (2005)
  101. Crystallization and preliminary X-ray analysis of Aspergillus oryzae catechol oxidase. Kaljunen H, Gasparetti C, Kruus K, Rouvinen J, Hakulinen N. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 672-674 (2011)
  102. Crystallization and preliminary X-ray crystallographic study of a 3.8-MDa respiratory supermolecule hemocyanin. Matsuno A, Gai Z, Tanaka M, Kato K, Kato S, Katoh T, Shimizu T, Yoshioka T, Kishimura H, Tanaka Y, Yao M. J. Struct. Biol. 190 379-382 (2015)
  103. Fluorescence labels as sensors for oxygen binding of arthropod hemocyanins. Erker W, Schoen A, Basché T, Decker H. Biochem. Biophys. Res. Commun. 324 893-900 (2004)
  104. Isolation and characterization of haemoporin, an abundant haemolymph protein from Aplysia californica. Jaenicke E, Walsh PJ, Decker H. Biochem. J. 375 681-688 (2003)
  105. Paramagnetic properties of the halide-bound derivatives of oxidised tyrosinase investigated by 1H NMR spectroscopy. Tepper AW, Bubacco L, Canters GW. Chemistry 12 7668-7675 (2006)
  106. Robust Synthesis of Ciprofloxacin-Capped Metallic Nanoparticles and Their Urease Inhibitory Assay. Nisar M, Khan SA, Qayum M, Khan A, Farooq U, Jaafar HZ, Zia-Ul-Haq M, Ali R. Molecules 21 411 (2016)
  107. The oxidation of phenylhydrazine by tyrosinase. Sung YM, Gayam SR, Wu SP. Appl. Biochem. Biotechnol. 169 2420-2429 (2013)
  108. Theoretical study of the oxidation of phenolates by the [Cu2O2(N,N'-di-tert-butylethylenediamine)2]2+ complex. Liu YF, Yu JG, Siegbahn PE, Blomberg MR. Chemistry 19 1942-1954 (2013)
  109. Transmission photoemission electron microscopy for lateral mapping of the X-ray absorption structure of a metalloprotein in a liquid cell. Panzer D, Beck C, Maul J, Möller M, Decker H, Schönhense G. Eur. Biophys. J. 38 53-58 (2008)
  110. Biomimetic modeling of copper complexes: a study of enantioselective catalytic oxidation on d-(+)-catechin and L-( - )-epicatechin with copper complexes. Mutti FG, Pievo R, Sgobba M, Gullotti M, Santagostini L. Bioinorg Chem Appl 762029 (2008)
  111. Facing the phase problem. Hendrickson WA. IUCrJ 10 521-543 (2023)
  112. Functional analysis of a tyrosinase gene involved in early larval shell biogenesis in Crassostrea angulata and its response to ocean acidification. Yang B, Pu F, Li L, You W, Ke C, Feng D. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 206 8-15 (2017)
  113. Hemocyanins of Muricidae: New 'Insights' Unravel an Additional Highly Hydrophilic 800 kDa Mass Within the Molecule. Schäfer GG, Grebe LJ, Depoix F, Lieb B. J Mol Evol 89 62-72 (2021)
  114. Histidine residues at the copper-binding site in human tyrosinase are essential for its catalytic activities. Noh H, Lee SJ, Jo HJ, Choi HW, Hong S, Kong KH. J Enzyme Inhib Med Chem 35 726-732 (2020)
  115. Homology models of four Agaricus bisporus tyrosinases. Inlow JK. Int. J. Biol. Macromol. 50 283-293 (2012)
  116. Mechanistic studies of the tyrosinase-catalyzed oxidative cyclocondensation of 2-aminophenol to 2-aminophenoxazin-3-one. Washington C, Maxwell J, Stevenson J, Malone G, Lowe EW, Zhang Q, Wang G, McIntyre NR. Arch. Biochem. Biophys. 577-578 24-34 (2015)
  117. N-glycan structures of β-HlH subunit of Helix lucorum hemocyanin. Velkova L, Dolashka P, Van Beeumen J, Devreese B. Carbohydr. Res. 449 1-10 (2017)
  118. New aspects of the reactivity of tyrosinase. Casella L, Granata A, Monzani E, Pievo R, Pattarello L, Bubacco L. Micron 35 141-142 (2004)
  119. Phenoloxidase activity in humoral plasma, hemocyanin and hemocyanin separated proteins of the giant freshwater prawn Macrobrachium rosenbergii. Mullaivanam Ramasamy S, Denis M, Sivakumar S, Munusamy A. Int. J. Biol. Macromol. 102 977-985 (2017)
  120. Structural quantitative information on the active sites of hemocyanins and related model compounds by the XAS approach: the role of multiple-scattering calculations. Borghi E, Solari PL. Micron 35 81-86 (2004)
  121. Structural role of the copper ions in the dinuclear active site of Carcinus aestuarii hemocyanin. Gatto S, De Filippis V, Spinozzi F, Di Muro P, Bubacco L, Beltramini M. Micron 35 43-44 (2004)
  122. A square-pyramidal copper(II) complex with strong intramolecular hydrogen bonds: diaqua(N,N'-dimethylformamide-κO)bis[2-(diphenylphosphoryl)benzoato-κO]copper(II). Zhou M, Song L, Niu F, Shu K, Chai W. Acta Crystallogr C 69 463-466 (2013)
  123. Binding of oxo-Cu2 clusters to ferric ion-binding protein A from Neisseria gonorrhoeae: a structural insight. Chen W, Ye D, Wang H, Lin D, Huang J, Sun H, Zhong W. Metallomics 5 1430-1439 (2013)
  124. Geometric preferences of crosslinked protein-derived cofactors reveal a high propensity for near-sequence pairs. Swain MD, Benson DE. Proteins 59 64-71 (2005)
  125. Low-dimensional copper(II) complexes triply bridged with azide/carboxylate/DMSO showing very strong ferromagnetic interaction and influence of dipolar fields at low temperatures: a quantum Monte Carlo magnetic study. Tangoulis V, Panagoulis D, Raptopoulou CP, Dendrinou-Samara C. Dalton Trans 1752-1760 (2008)
  126. Model building of a molluscan hemocyanin from X-ray solution scattering. Mičetić I, Salvato B. Micron 35 17-20 (2004)
  127. Quantitative elemental imaging in eukaryotic algae. Schmollinger S, Chen S, Merchant SS. Metallomics 15 mfad025 (2023)
  128. The Crystal Structure of Tyrosinase from Verrucomicrobium spinosum Reveals It to Be an Atypical Bacterial Tyrosinase. Fekry M, Dave KK, Badgujar D, Hamnevik E, Aurelius O, Dobritzsch D, Danielson UH. Biomolecules 13 1360 (2023)