1js3 Citations

Structural insight into Parkinson's disease treatment from drug-inhibited DOPA decarboxylase.

Nat Struct Biol 8 963-7 (2001)
Cited: 105 times
EuropePMC logo PMID: 11685243

Abstract

DOPA decarboxylase (DDC) is responsible for the synthesis of the key neurotransmitters dopamine and serotonin via decarboxylation of L-3,4-dihydroxyphenylalanine (L-DOPA) and L-5-hydroxytryptophan, respectively. DDC has been implicated in a number of clinic disorders, including Parkinson's disease and hypertension. Peripheral inhibitors of DDC are currently used to treat these diseases. We present the crystal structures of ligand-free DDC and its complex with the anti-Parkinson drug carbiDOPA. The inhibitor is bound to the enzyme by forming a hydrazone linkage with the cofactor, and its catechol ring is deeply buried in the active site cleft. The structures provide the molecular basis for the development of new inhibitors of DDC with better pharmacological characteristics.

Reviews - 1js3 mentioned but not cited (1)

  1. Current Advances on Structure-Function Relationships of Pyridoxal 5'-Phosphate-Dependent Enzymes. Liang J, Han Q, Tan Y, Ding H, Li J. Front Mol Biosci 6 4 (2019)

Articles - 1js3 mentioned but not cited (19)

  1. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Williams BB, Van Benschoten AH, Cimermancic P, Donia MS, Zimmermann M, Taketani M, Ishihara A, Kashyap PC, Fraser JS, Fischbach MA. Cell Host Microbe 16 495-503 (2014)
  2. ProteinsPlus: a web portal for structure analysis of macromolecules. Fährrolfes R, Bietz S, Flachsenberg F, Meyder A, Nittinger E, Otto T, Volkamer A, Rarey M. Nucleic Acids Res 45 W337-W343 (2017)
  3. Crystal structure of an RNA-cleaving DNAzyme. Liu H, Yu X, Chen Y, Zhang J, Wu B, Zheng L, Haruehanroengra P, Wang R, Li S, Lin J, Li J, Sheng J, Huang Z, Ma J, Gan J. Nat Commun 8 2006 (2017)
  4. Structural study reveals that Ser-354 determines substrate specificity on human histidine decarboxylase. Komori H, Nitta Y, Ueno H, Higuchi Y. J Biol Chem 287 29175-29183 (2012)
  5. Identification by virtual screening and in vitro testing of human DOPA decarboxylase inhibitors. Daidone F, Montioli R, Paiardini A, Cellini B, Macchiarulo A, Giardina G, Bossa F, Borri Voltattorni C. PLoS One 7 e31610 (2012)
  6. Identifying unexpected therapeutic targets via chemical-protein interactome. Yang L, Chen J, Shi L, Hudock MP, Wang K, He L. PLoS One 5 e9568 (2010)
  7. Crystal structure and substrate specificity of Drosophila 3,4-dihydroxyphenylalanine decarboxylase. Han Q, Ding H, Robinson H, Christensen BM, Li J. PLoS One 5 e8826 (2010)
  8. Crystal structure of tyrosine decarboxylase and identification of key residues involved in conformational swing and substrate binding. Zhu H, Xu G, Zhang K, Kong X, Han R, Zhou J, Ni Y. Sci Rep 6 27779 (2016)
  9. Catalysis in Enzymatic Decarboxylations: Comparison of Selected Cofactor-dependent and Cofactor-independent Examples. Jordan F, Patel H. ACS Catal 3 1601-1617 (2013)
  10. Internal proton transfer in the external pyridoxal 5'-phosphate Schiff base in dopa decarboxylase. Lin YL, Gao J. Biochemistry 49 84-94 (2010)
  11. Kinetic isotope effects of L-Dopa decarboxylase. Lin YL, Gao J. J Am Chem Soc 133 4398-4403 (2011)
  12. Kinetic analyses guide the therapeutic decision in a novel form of moderate aromatic Acid decarboxylase deficiency. Barth M, Serre V, Hubert L, Chaabouni Y, Bahi-Buisson N, Cadoudal M, Rabier D, Tich SN, Ribeiro M, Ricquier D, Munnich A, Bonneau D, de Lonlay P, Christa L. JIMD Rep 3 25-32 (2012)
  13. Mechanism-based tuning of insect 3,4-dihydroxyphenylacetaldehyde synthase for synthetic bioproduction of benzylisoquinoline alkaloids. Vavricka CJ, Yoshida T, Kuriya Y, Takahashi S, Ogawa T, Ono F, Agari K, Kiyota H, Li J, Ishii J, Tsuge K, Minami H, Araki M, Hasunuma T, Kondo A. Nat Commun 10 2015 (2019)
  14. Aromatic l-amino acid decarboxylase deficiency: a patient-derived neuronal model for precision therapies. Rossignoli G, Krämer K, Lugarà E, Alrashidi H, Pope S, De La Fuente Barrigon C, Barwick K, Bisello G, Ng J, Counsell J, Lignani G, Heales SJR, Bertoldi M, Barral S, Kurian MA. Brain 144 2443-2456 (2021)
  15. Benserazide, the first allosteric inhibitor of Coxsackievirus B3 3C protease. Kim BK, Cho JH, Jeong P, Lee Y, Lim JJ, Park KR, Eom SH, Kim YC. FEBS Lett 589 1795-1801 (2015)
  16. Aromatic L-amino acid decarboxylase deficiency in 17 Mainland China patients: Clinical phenotype, molecular spectrum, and therapy overview. Dai W, Lu D, Gu X, Yu Y, Mainland Chinese League of AADC Rare Disease. Mol Genet Genomic Med 8 e1143 (2020)
  17. Structure and Ligands Interactions of Citrus Tryptophan Decarboxylase by Molecular Modeling and Docking Simulations. Facchiano A, Pignone D, Servillo L, Castaldo D, De Masi L. Biomolecules 9 E117 (2019)
  18. Elucidating the Interaction between Pyridoxine 5'-Phosphate Oxidase and Dopa Decarboxylase: Activation of B6-Dependent Enzyme. Al Mughram MH, Ghatge MS, Kellogg GE, Safo MK. Int J Mol Sci 24 642 (2022)
  19. The novel P330L pathogenic variant of aromatic amino acid decarboxylase maps on the catalytic flexible loop underlying its crucial role. Bisello G, Kusmierska K, Verbeek MM, Sykut-Cegielska J, Willemsen MAAP, Wevers RA, Szymańska K, Poznanski J, Drozak J, Wertheim-Tysarowska K, Rygiel AM, Bertoldi M. Cell Mol Life Sci 79 305 (2022)


Reviews citing this publication (20)

  1. Biogenic amines and polyamines: similar biochemistry for different physiological missions and biomedical applications. Medina MA, Urdiales JL, Rodríguez-Caso C, Ramírez FJ, Sánchez-Jiménez F. Crit Rev Biochem Mol Biol 38 23-59 (2003)
  2. Cystathionine-β-Synthase: Molecular Regulation and Pharmacological Inhibition. Zuhra K, Augsburger F, Majtan T, Szabo C. Biomolecules 10 E697 (2020)
  3. Mammalian histidine decarboxylase: from structure to function. Moya-Garcia AA, Medina MA, Sánchez-Jiménez F. Bioessays 27 57-63 (2005)
  4. Natural Antioxidant Anthocyanins-A Hidden Therapeutic Candidate in Metabolic Disorders with Major Focus in Neurodegeneration. Ullah R, Khan M, Shah SA, Saeed K, Kim MO. Nutrients 11 E1195 (2019)
  5. Mammalian Dopa decarboxylase: structure, catalytic activity and inhibition. Bertoldi M. Arch Biochem Biophys 546 1-7 (2014)
  6. The chaperone role of the pyridoxal 5'-phosphate and its implications for rare diseases involving B6-dependent enzymes. Cellini B, Montioli R, Oppici E, Astegno A, Voltattorni CB. Clin Biochem 47 158-165 (2014)
  7. A new perspective on the treatment of aromatic L-amino acid decarboxylase deficiency. Allen GF, Land JM, Heales SJ. Mol Genet Metab 97 6-14 (2009)
  8. Mitochondrial permeability transition pore: a promising target for the treatment of Parkinson's disease. Rasheed MZ, Tabassum H, Parvez S. Protoplasma 254 33-42 (2017)
  9. A comprehensive view of polyamine and histamine metabolism to the light of new technologies. Medina MA, Correa-Fiz F, Rodríguez-Caso C, Sánchez-Jiménez F. J Cell Mol Med 9 854-864 (2005)
  10. Pyridoxal 5'-Phosphate-Dependent Enzymes at the Crossroads of Host-Microbe Tryptophan Metabolism. Cellini B, Zelante T, Dindo M, Bellet MM, Renga G, Romani L, Costantini C. Int J Mol Sci 21 E5823 (2020)
  11. Molecular dynamics simulations of the intramolecular proton transfer and carbanion stabilization in the pyridoxal 5'-phosphate dependent enzymes L-dopa decarboxylase and alanine racemase. Lin YL, Gao J, Rubinstein A, Major DT. Biochim Biophys Acta 1814 1438-1446 (2011)
  12. Structure-based drug discovery and protein targets in the CNS. Hubbard RE. Neuropharmacology 60 7-23 (2011)
  13. Melatonin biosynthesis pathways in nature and its production in engineered microorganisms. Xie X, Ding D, Bai D, Zhu Y, Sun W, Sun Y, Zhang D. Synth Syst Biotechnol 7 544-553 (2022)
  14. Homology modelling: a review about the method on hand of the diabetic antigen GAD 65 structure prediction. Wiltgen M, Tilz GP. Wien Med Wochenschr 159 112-125 (2009)
  15. Aromatic Amino Acid Decarboxylase Deficiency: The Added Value of Biochemistry. Montioli R, Borri Voltattorni C. Int J Mol Sci 22 3146 (2021)
  16. A review of aromatic l-amino acid decarboxylase (AADC) deficiency in Taiwan. Lee NC, Chien YH, Hwu WL. Am J Med Genet C Semin Med Genet 181 226-229 (2019)
  17. Compound Heterozygosis in AADC Deficiency and Its Complex Phenotype in Terms of AADC Protein Population. Bisello G, Bertoldi M. Int J Mol Sci 23 11238 (2022)
  18. Structural and functional analogies and differences between histidine decarboxylase and aromatic l-amino acid decarboxylase molecular networks: Biomedical implications. Sanchez-Jiménez F, Pino-Ángeles A, Rodríguez-López R, Morales M, Urdiales JL. Pharmacol Res 114 90-102 (2016)
  19. Relationship Between Gut Bacteria and Levodopa Metabolism. Xu K, Sheng S, Zhang F. Curr Neuropharmacol 21 1536-1547 (2023)
  20. [Enzyme inhibitors in Parkinson treatment]. Gütschow M, Meusel M. Pharm Unserer Zeit 35 218-225 (2006)

Articles citing this publication (65)

  1. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Maini Rekdal V, Bess EN, Bisanz JE, Turnbaugh PJ, Balskus EP. Science 364 eaau6323 (2019)
  2. Tyramine Functions independently of octopamine in the Caenorhabditis elegans nervous system. Alkema MJ, Hunter-Ensor M, Ringstad N, Horvitz HR. Neuron 46 247-260 (2005)
  3. GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop. Fenalti G, Law RH, Buckle AM, Langendorf C, Tuck K, Rosado CJ, Faux NG, Mahmood K, Hampe CS, Banga JP, Wilce M, Schmidberger J, Rossjohn J, El-Kabbani O, Pike RN, Smith AI, Mackay IR, Rowley MJ, Whisstock JC. Nat Struct Mol Biol 14 280-286 (2007)
  4. Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. Capitani G, De Biase D, Aurizi C, Gut H, Bossa F, Grütter MG. EMBO J 22 4027-4037 (2003)
  5. Open conformation of human DOPA decarboxylase reveals the mechanism of PLP addition to Group II decarboxylases. Giardina G, Montioli R, Gianni S, Cellini B, Paiardini A, Voltattorni CB, Cutruzzolà F. Proc Natl Acad Sci U S A 108 20514-20519 (2011)
  6. Region-specific protein abundance changes in the brain of MPTP-induced Parkinson's disease mouse model. Zhang X, Zhou JY, Chin MH, Schepmoes AA, Petyuk VA, Weitz KK, Petritis BO, Monroe ME, Camp DG, Wood SA, Melega WP, Bigelow DJ, Smith DJ, Qian WJ, Smith RD. J Proteome Res 9 1496-1509 (2010)
  7. "Zipped Synthesis" by Cross-Metathesis Provides a Cystathionine β-Synthase Inhibitor that Attenuates Cellular H2S Levels and Reduces Neuronal Infarction in a Rat Ischemic Stroke Model. McCune CD, Chan SJ, Beio ML, Shen W, Chung WJ, Szczesniak LM, Chai C, Koh SQ, Wong PT, Berkowitz DB. ACS Cent Sci 2 242-252 (2016)
  8. Function and evolution of the serotonin-synthetic bas-1 gene and other aromatic amino acid decarboxylase genes in Caenorhabditis. Hare EE, Loer CM. BMC Evol Biol 4 24 (2004)
  9. Blunted epidermal L-tryptophan metabolism in vitiligo affects immune response and ROS scavenging by Fenton chemistry, part 1: Epidermal H2O2/ONOO(-)-mediated stress abrogates tryptophan hydroxylase and dopa decarboxylase activities, leading to low serotonin and melatonin levels. Schallreuter KU, Salem MA, Gibbons NC, Martinez A, Slominski R, Lüdemann J, Rokos H. FASEB J 26 2457-2470 (2012)
  10. Evolutionarily conserved regions and hydrophobic contacts at the superfamily level: The case of the fold-type I, pyridoxal-5'-phosphate-dependent enzymes. Paiardini A, Bossa F, Pascarella S. Protein Sci 13 2992-3005 (2004)
  11. Structure of P-protein of the glycine cleavage system: implications for nonketotic hyperglycinemia. Nakai T, Nakagawa N, Maoka N, Masui R, Kuramitsu S, Kamiya N. EMBO J 24 1523-1536 (2005)
  12. A comprehensive picture of the mutations associated with aromatic amino acid decarboxylase deficiency: from molecular mechanisms to therapy implications. Montioli R, Dindo M, Giorgetti A, Piccoli S, Cellini B, Voltattorni CB. Hum Mol Genet 23 5429-5440 (2014)
  13. Linkage between cellular communications, energy utilization, and proliferation in metastatic neuroendocrine cancers. Ippolito JE, Merritt ME, Bäckhed F, Moulder KL, Mennerick S, Manchester JK, Gammon ST, Piwnica-Worms D, Gordon JI. Proc Natl Acad Sci U S A 103 12505-12510 (2006)
  14. Cross talk between the intrarenal dopaminergic and cyclooxygenase-2 systems. Zhang MZ, Yao B, McKanna JA, Harris RC. Am J Physiol Renal Physiol 288 F840-5 (2005)
  15. High-throughput tandem-microwell assay identifies inhibitors of the hydrogen sulfide signaling pathway. Zhou Y, Yu J, Lei X, Wu J, Niu Q, Zhang Y, Liu H, Christen P, Gehring H, Wu F. Chem Commun (Camb) 49 11782-11784 (2013)
  16. Intersubunit signaling in glutamate-1-semialdehyde-aminomutase. Stetefeld J, Jenny M, Burkhard P. Proc Natl Acad Sci U S A 103 13688-13693 (2006)
  17. Investigation of a substrate-specifying residue within Papaver somniferum and Catharanthus roseus aromatic amino acid decarboxylases. Torrens-Spence MP, Lazear M, von Guggenberg R, Ding H, Li J. Phytochemistry 106 37-43 (2014)
  18. Local changes in the catalytic site of mammalian histidine decarboxylase can affect its global conformation and stability. Rodríguez-Caso C, Rodríguez-Agudo D, Moya-García AA, Fajardo I, Medina MA, Subramaniam V, Sánchez-Jiménez F. Eur J Biochem 270 4376-4387 (2003)
  19. Molecular insights into the pathogenicity of variants associated with the aromatic amino acid decarboxylase deficiency. Montioli R, Cellini B, Borri Voltattorni C. J Inherit Metab Dis 34 1213-1224 (2011)
  20. Eukaryotic-type aromatic amino acid decarboxylase from the root colonizer Pseudomonas putida is highly specific for 3,4-dihydroxyphenyl-L-alanine, an allelochemical in the rhizosphere. Koyanagi T, Nakagawa A, Sakurama H, Yamamoto K, Sakurai N, Takagi Y, Minami H, Katayama T, Kumagai H. Microbiology (Reading) 158 2965-2974 (2012)
  21. Inhibitory and structural studies of novel coenzyme-substrate analogs of human histidine decarboxylase. Wu F, Yu J, Gehring H. FASEB J 22 890-897 (2008)
  22. Mapping of catalytically important residues in the rat L-histidine decarboxylase enzyme using bioinformatic and site-directed mutagenesis approaches. Fleming JV, Sánchez-Jiménez F, Moya-García AA, Langlois MR, Wang TC. Biochem J 379 253-261 (2004)
  23. Structural basis for divergent and convergent evolution of catalytic machineries in plant aromatic amino acid decarboxylase proteins. Torrens-Spence MP, Chiang YC, Smith T, Vicent MA, Wang Y, Weng JK. Proc Natl Acad Sci U S A 117 10806-10817 (2020)
  24. A dopa decarboxylase modulating the immune response of scallop Chlamys farreri. Zhou Z, Yang J, Wang L, Zhang H, Gao Y, Shi X, Wang M, Kong P, Qiu L, Song L. PLoS One 6 e18596 (2011)
  25. S250F variant associated with aromatic amino acid decarboxylase deficiency: molecular defects and intracellular rescue by pyridoxine. Montioli R, Oppici E, Cellini B, Roncador A, Dindo M, Voltattorni CB. Hum Mol Genet 22 1615-1624 (2013)
  26. Biochemical and computational approaches to improve the clinical treatment of dopa decarboxylase-related diseases: an overview. Cellini B, Montioli R, Oppici E, Voltattorni CB. Open Biochem J 6 131-138 (2012)
  27. Multiple roles of the active site lysine of Dopa decarboxylase. Bertoldi M, Voltattorni CB. Arch Biochem Biophys 488 130-139 (2009)
  28. Tyrosine decarboxylase from Lactobacillus brevis: soluble expression and characterization. Zhang K, Ni Y. Protein Expr Purif 94 33-39 (2014)
  29. Crystal Structures of Cystathionine β-Synthase from Saccharomyces cerevisiae: One Enzymatic Step at a Time. Tu Y, Kreinbring CA, Hill M, Liu C, Petsko GA, McCune CD, Berkowitz DB, Liu D, Ringe D. Biochemistry 57 3134-3145 (2018)
  30. Chemogenomics of pyridoxal 5'-phosphate dependent enzymes. Singh R, Spyrakis F, Cozzini P, Paiardini A, Pascarella S, Mozzarelli A. J Enzyme Inhib Med Chem 28 183-194 (2013)
  31. Pentobarbital inhibits L-DOPA-induced dopamine increases in the rat striatum: An in vivo microdialysis study. Adachi YU, Yamada S, Satomoto M, Watanabe K, Higuchi H, Kazama T, Doi M, Sato S. Brain Res Bull 69 593-596 (2006)
  32. In silico target fishing for the potential targets and molecular mechanisms of baicalein as an antiparkinsonian agent: discovery of the protective effects on NMDA receptor-mediated neurotoxicity. Gao L, Fang JS, Bai XY, Zhou D, Wang YT, Liu AL, Du GH. Chem Biol Drug Des 81 675-687 (2013)
  33. Molecular interaction studies of green tea catechins as multitarget drug candidates for the treatment of Parkinson's disease: computational and structural insights. Azam F, Mohamed N, Alhussen F. Network 26 97-115 (2015)
  34. Interaction of human Dopa decarboxylase with L-Dopa: spectroscopic and kinetic studies as a function of pH. Montioli R, Cellini B, Dindo M, Oppici E, Voltattorni CB. Biomed Res Int 2013 161456 (2013)
  35. Effects of Tianshu Capsule on Spontaneously Hypertensive Rats as Revealed by 1H-NMR-Based Metabolic Profiling. Gao J, Wang T, Wang C, Wang S, Wang W, Ma D, Li Y, Zhao H, Chen J. Front Pharmacol 10 989 (2019)
  36. Multi-Omics Interdisciplinary Research Integration to Accelerate Dementia Biomarker Development (MIRIADE). Mavrina E, Kimble L, Waury K, Gogishvili D, Gómez de San José N, Das S, Coppens S, Fernandes Gomes B, Mravinacová S, Wojdała AL, Bolsewig K, Bayoumy S, Burtscher F, Mohaupt P, Willemse E, Teunissen C, MIRIADE consortium. Front Neurol 13 890638 (2022)
  37. Mutational analysis of substrate interactions with the active site of dialkylglycine decarboxylase. Fogle EJ, Toney MD. Biochemistry 49 6485-6493 (2010)
  38. Regulation of catecholamine release from the adrenal medulla is altered in deer mice (Peromyscus maniculatus) native to high altitudes. Scott AL, Pranckevicius NA, Nurse CA, Scott GR. Am J Physiol Regul Integr Comp Physiol 317 R407-R417 (2019)
  39. Structural and functional analysis of cysteine residues in human glutamate decarboxylase 65 (GAD65) and GAD67. Wei J, Wu JY. J Neurochem 93 624-633 (2005)
  40. Crystal structure of Oryza sativa TDC reveals the substrate specificity for TDC-mediated melatonin biosynthesis. Zhou Y, Liao L, Liu X, Liu B, Chen X, Guo Y, Huang C, Zhao Y, Zeng Z. J Adv Res 24 501-511 (2020)
  41. Experimental Evidence and In Silico Identification of Tryptophan Decarboxylase in Citrus Genus. De Masi L, Castaldo D, Pignone D, Servillo L, Facchiano A. Molecules 22 E272 (2017)
  42. Structural model of human GAD65: prediction and interpretation of biochemical and immunogenic features. Capitani G, De Biase D, Gut H, Ahmed S, Grütter MG. Proteins 59 7-14 (2005)
  43. Heterozygosis in aromatic amino acid decarboxylase deficiency: Evidence for a positive interallelic complementation between R347Q and R358H mutations. Montioli R, Janson G, Paiardini A, Bertoldi M, Borri Voltattorni C. IUBMB Life 70 215-223 (2018)
  44. H2S biogenesis by cystathionine beta-synthase: mechanism of inhibition by aminooxyacetic acid and unexpected role of serine. Petrosino M, Zuhra K, Kopec J, Hutchin A, Szabo C, Majtan T. Cell Mol Life Sci 79 438 (2022)
  45. Identification of Potential Molecular Mechanism Related to Infertile Endometriosis. Li X, Guo L, Zhang W, He J, Ai L, Yu C, Wang H, Liang W. Front Vet Sci 9 845709 (2022)
  46. Withania coagulans tryptophan decarboxylase gene cloning, heterologous expression, and catalytic characteristics of the recombinant enzyme. Jadaun JS, Sangwan NS, Narnoliya LK, Tripathi S, Sangwan RS. Protoplasma 254 181-192 (2017)
  47. Single-cell transcriptomics of human iPSC differentiation dynamics reveal a core molecular network of Parkinson's disease. Novak G, Kyriakis D, Grzyb K, Bernini M, Rodius S, Dittmar G, Finkbeiner S, Skupin A. Commun Biol 5 49 (2022)
  48. Aromatic L-amino acid decarboxylase turnover in vivo in rhesus macaque striatum: a microPET study. DeJesus OT, Flores LG, Murali D, Converse AK, Bartlett RM, Barnhart TE, Oakes TR, Nickles RJ. Brain Res 1054 55-60 (2005)
  49. Characterization of the regulatory region of the dopa decarboxylase gene in Medaka: an in vivo green fluorescent protein reporter assay combined with a simple TA-cloning method. Fujimori KE. Mol Biotechnol 41 224-235 (2009)
  50. Development of a high-throughput assay to measure histidine decarboxylase activity. August EM, Patnaude L, Hopkins J, Studts J, Gautschi E, Shrutkowski A, Kronkaitis A, Brown M, Kabcenell A, Rajotte D. J Biomol Screen 11 816-821 (2006)
  51. DopAmide: Novel, Water-Soluble, Slow-Release l-dihydroxyphenylalanine (l-DOPA) Precursor Moderates l-DOPA Conversion to Dopamine and Generates a Sustained Level of Dopamine at Dopaminergic Neurons. Atlas D. CNS Neurosci Ther 22 461-467 (2016)
  52. The critical structural role of a highly conserved histidine residue in group II amino acid decarboxylases. Capitani G, Tramonti A, Bossa F, Grütter MG, De Biase D. FEBS Lett 554 41-44 (2003)
  53. Transcriptome changes in the phenylpropanoid pathway in senescing leaves of Toona sinensis. Sui J, Qu C, Yang J, Zhang W, Ji Y. Acta Physiol Plant 41 126 (2019)
  54. Aminooxy analog of histamine is an efficient inhibitor of mammalian L-histidine decarboxylase: combined in silico and experimental evidence. Castro-Oropeza R, Pino-Ángeles A, Khomutov MA, Urdiales JL, Moya-García AA, Vepsäläinen J, Persson L, Sarabia F, Khomutov A, Sánchez-Jiménez F. Amino Acids 46 621-631 (2014)
  55. Computation of kinetic isotope effects for enzymatic reactions. Gao J. Sci China Chem 54 1841-1850 (2012)
  56. Epitope mapping of human aromatic L-amino acid decarboxylase. Bratland E, Wolff AS, Haavik J, Kämpe O, Sköldberg F, Perheentupa J, Bredholt G, Knappskog PM, Husebye ES. Biochem Biophys Res Commun 353 692-698 (2007)
  57. Gas-phase acidity and dynamics of the protonation processes of carbidopa and levodopa. A QM/QD study. Sukker GM, Elroby SA, Hilal R. J Biomol Struct Dyn 34 2268-2280 (2016)
  58. Human aromatic amino acid decarboxylase is an asymmetric and flexible enzyme: Implication in aromatic amino acid decarboxylase deficiency. Bisello G, Ribeiro RP, Perduca M, Belviso BD, Polverino De' Laureto P, Giorgetti A, Caliandro R, Bertoldi M. Protein Sci 32 e4732 (2023)
  59. Structural Basis of the Substrate Specificity and Enzyme Catalysis of a Papaver somniferum Tyrosine Decarboxylase. Guan H, Song S, Robinson H, Liang J, Ding H, Li J, Han Q. Front Mol Biosci 4 5 (2017)
  60. Structural basis for substrate specificity of l-methionine decarboxylase. Okawa A, Shiba T, Hayashi M, Onoue Y, Murota M, Sato D, Inagaki J, Tamura T, Harada S, Inagaki K. Protein Sci 30 663-677 (2021)
  61. Synthesis of 5-methyl phenanthridium derivatives: a new class of human DOPA decarboxylase inhibitors. Cheng P, Zhou J, Qing Z, Kang W, Liu S, Liu W, Xie H, Zeng J. Bioorg Med Chem Lett 24 2712-2716 (2014)
  62. News Conformational change of organic cofactor PLP is essential for catalysis in PLP-dependent enzymes. Ngo HP, Nguyen DQ, Park H, Park YS, Kwak K, Kim T, Lee JH, Cho KS, Kang LW. BMB Rep 55 439-446 (2022)
  63. Forging the microbiome to help us live long and prosper. Rock RR, Turnbaugh PJ. PLoS Biol 21 e3002087 (2023)
  64. Investigating Paracetamol's Role as a Potential Treatment for Parkinson's Disease: Ab Initio Analysis of Dopamine, l-DOPA, Paracetamol, and NAPQI Interactions with Enzymes Involved in Dopamine Metabolism. Harle J, Slater C, Cafiero M. ACS Omega 8 38053-38063 (2023)
  65. The importance of aromatic-type interactions in serotonin synthesis: protein-ligand interactions in tryptophan hydroxylase and aromatic amino acid decarboxylase. Hofto LR, Lee CE, Cafiero M. J Comput Chem 30 1111-1115 (2009)


Related citations provided by authors (2)

  1. Preliminary X-ray analysis of a new crystal form of pig kidney DOPA decarboxylase. Malashkevich VN, Burkhard P, Dominici P, Moore PS, Borri-Voltattorni C, Jansonius JN Acta Crystallogr. D Biol. Crystallogr. 55 568-570 (1999)
  2. Crystallization and preliminary X-ray analysis of pig kidney DOPA decarboxylase. Malashkevich VN, Filipponi P, Sauder U, Dominici P, Jansonius JN, Borri-Voltattorni C J. Mol. Biol. 224 1167-1170 (1992)