1jqq Citations

Topography for independent binding of alpha-helical and PPII-helical ligands to a peroxisomal SH3 domain.

Abstract

While the function of most small signaling domains is confined to binary ligand interactions, the peroxisomal Pex13p SH3 domain has the unique capacity of binding to two different ligands, Pex5p and Pex14p. We have used this domain as a model to decipher its structurally independent ligand binding sites. By the combined use of X-ray crystallography, NMR spectroscopy, and circular dichroism, we show that the two ligands bind in unrelated conformations to patches located at opposite surfaces of this SH3 domain. Mutations in the Pex13p SH3 domain that abolish interactions within the Pex13p-Pex5p interface specifically impair PTS1-dependent protein import into yeast peroxisomes.

Articles - 1jqq mentioned but not cited (4)

  1. Characterization of domain-peptide interaction interface: prediction of SH3 domain-mediated protein-protein interaction network in yeast by generic structure-based models. Hou T, Li N, Li Y, Wang W. J Proteome Res 11 2982-2995 (2012)
  2. Topography for independent binding of alpha-helical and PPII-helical ligands to a peroxisomal SH3 domain. Douangamath A, Filipp FV, Klein AT, Barnett P, Zou P, Voorn-Brouwer T, Vega MC, Mayans OM, Sattler M, Distel B, Wilmanns M. Mol Cell 10 1007-1017 (2002)
  3. IBIS (Inferred Biomolecular Interaction Server) reports, predicts and integrates multiple types of conserved interactions for proteins. Shoemaker BA, Zhang D, Tyagi M, Thangudu RR, Fong JH, Marchler-Bauer A, Bryant SH, Madej T, Panchenko AR. Nucleic Acids Res 40 D834-40 (2012)
  4. CARDIO-PRED: an in silico tool for predicting cardiovascular-disorder associated proteins. Jain P, Thukral N, Gahlot LK, Hasija Y. Syst Synth Biol 9 55-66 (2015)


Reviews citing this publication (18)

  1. Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Li SS. Biochem J 390 641-653 (2005)
  2. The structure and function of proline recognition domains. Zarrinpar A, Bhattacharyya RP, Lim WA. Sci STKE 2003 RE8 (2003)
  3. Peroxisomal disorders I: biochemistry and genetics of peroxisome biogenesis disorders. Wanders RJ, Waterham HR. Clin Genet 67 107-133 (2005)
  4. Peroxisome biogenesis disorders. Weller S, Gould SJ, Valle D. Annu Rev Genomics Hum Genet 4 165-211 (2003)
  5. Biogenesis of peroxisomes. Topogenesis of the peroxisomal membrane and matrix proteins. Heiland I, Erdmann R. FEBS J 272 2362-2372 (2005)
  6. Peroxisome Function, Biogenesis, and Dynamics in Plants. Kao YT, Gonzalez KL, Bartel B. Plant Physiol 176 162-177 (2018)
  7. Biogenesis of peroxisomes and glycosomes: trypanosomatid glycosome assembly is a promising new drug target. Moyersoen J, Choe J, Fan E, Hol WG, Michels PA. FEMS Microbiol Rev 28 603-643 (2004)
  8. Pex14p, more than just a docking protein. Azevedo JE, Schliebs W. Biochim Biophys Acta 1763 1574-1584 (2006)
  9. Current Advances in Protein Import into Peroxisomes. Walter T, Erdmann R. Protein J 38 351-362 (2019)
  10. Dynamic architecture of the peroxisomal import receptor Pex5p. Stanley WA, Wilmanns M. Biochim Biophys Acta 1763 1592-1598 (2006)
  11. Peroxisomes, glyoxysomes and glycosomes (review). Michels PA, Moyersoen J, Krazy H, Galland N, Herman M, Hannaert V. Mol Membr Biol 22 133-145 (2005)
  12. Pex13p: docking or cargo handling protein? Williams C, Distel B. Biochim Biophys Acta 1763 1585-1591 (2006)
  13. Comparison of the peroxisomal matrix protein import system of different organisms. Exploration of possibilities for developing inhibitors of the import system of trypanosomatids for anti-parasite chemotherapy. Galland N, Michels PA. Eur J Cell Biol 89 621-637 (2010)
  14. The intrinsically disordered nature of the peroxisomal protein translocation machinery. Barros-Barbosa A, Rodrigues TA, Ferreira MJ, Pedrosa AG, Teixeira NR, Francisco T, Azevedo JE. FEBS J 286 24-38 (2019)
  15. Peroxin 5: a cycling receptor for protein translocation into peroxisomes. Williams CP, Stanley WA. Int J Biochem Cell Biol 42 1771-1774 (2010)
  16. Image-Based Analysis Revealing the Molecular Mechanism of Peroxisome Dynamics in Plants. Goto-Yamada S, Oikawa K, Yamato KT, Kanai M, Hikino K, Nishimura M, Mano S. Front Cell Dev Biol 10 883491 (2022)
  17. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. Cells 12 2054 (2023)
  18. A simple recipe for the non-expert bioinformaticist for building experimentally-testable hypotheses for proteins with no known homologs. Zawaira A, Shibayama Y. J Struct Funct Genomics 13 185-200 (2012)

Articles citing this publication (35)

  1. The GDP-GTP exchange factor collybistin: an essential determinant of neuronal gephyrin clustering. Harvey K, Duguid IC, Alldred MJ, Beatty SE, Ward H, Keep NH, Lingenfelter SE, Pearce BR, Lundgren J, Owen MJ, Smart TG, Lüscher B, Rees MI, Harvey RJ. J Neurosci 24 5816-5826 (2004)
  2. Inhibition of basal FGF receptor signaling by dimeric Grb2. Lin CC, Melo FA, Ghosh R, Suen KM, Stagg LJ, Kirkpatrick J, Arold ST, Ahmed Z, Ladbury JE. Cell 149 1514-1524 (2012)
  3. Complex role of collybistin and gephyrin in GABAA receptor clustering. Saiepour L, Fuchs C, Patrizi A, Sassoè-Pognetto M, Harvey RJ, Harvey K. J Biol Chem 285 29623-29631 (2010)
  4. Functional similarity between the peroxisomal PTS2 receptor binding protein Pex18p and the N-terminal half of the PTS1 receptor Pex5p. Schäfer A, Kerssen D, Veenhuis M, Kunau WH, Schliebs W. Mol Cell Biol 24 8895-8906 (2004)
  5. Protein-protein interaction affinity plays a crucial role in controlling the Sho1p-mediated signal transduction pathway in yeast. Marles JA, Dahesh S, Haynes J, Andrews BJ, Davidson AR. Mol Cell 14 813-823 (2004)
  6. Novel Src homology 3 domain-binding motifs identified from proteomic screen of a Pro-rich region. Jia CY, Nie J, Wu C, Li C, Li SS. Mol Cell Proteomics 4 1155-1166 (2005)
  7. Evaluation of integrin αvβ6 cystine knot PET tracers to detect cancer and idiopathic pulmonary fibrosis. Kimura RH, Wang L, Shen B, Huo L, Tummers W, Filipp FV, Guo HH, Haywood T, Abou-Elkacem L, Baratto L, Habte F, Devulapally R, Witney TH, Cheng Y, Tikole S, Chakraborti S, Nix J, Bonagura CA, Hatami N, Mooney JJ, Desai T, Turner S, Gaster RS, Otte A, Visser BC, Poultsides GA, Norton J, Park W, Stolowitz M, Lau K, Yang E, Natarajan A, Ilovich O, Srinivas S, Srinivasan A, Paulmurugan R, Willmann J, Chin FT, Cheng Z, Iagaru A, Li F, Gambhir SS. Nat Commun 10 4673 (2019)
  8. Regulation of NOXO1 activity through reversible interactions with p22 and NOXA1. Dutta S, Rittinger K. PLoS One 5 e10478 (2010)
  9. Identification of a novel, intraperoxisomal pex14-binding site in pex13: association of pex13 with the docking complex is essential for peroxisomal matrix protein import. Schell-Steven A, Stein K, Amoros M, Landgraf C, Volkmer-Engert R, Rottensteiner H, Erdmann R. Mol Cell Biol 25 3007-3018 (2005)
  10. A novel Pex14 protein-interacting site of human Pex5 is critical for matrix protein import into peroxisomes. Neuhaus A, Kooshapur H, Wolf J, Meyer NH, Madl T, Saidowsky J, Hambruch E, Lazam A, Jung M, Sattler M, Schliebs W, Erdmann R. J Biol Chem 289 437-448 (2014)
  11. A bacterial antirepressor with SH3 domain topology mimics operator DNA in sequestering the repressor DNA recognition helix. León E, Navarro-Avilés G, Santiveri CM, Flores-Flores C, Rico M, González C, Murillo FJ, Elías-Arnanz M, Jiménez MA, Padmanabhan S. Nucleic Acids Res 38 5226-5241 (2010)
  12. PB1 domain-dependent signaling complex is required for extracellular signal-regulated kinase 5 activation. Nakamura K, Uhlik MT, Johnson NL, Hahn KM, Johnson GL. Mol Cell Biol 26 2065-2079 (2006)
  13. Structure-based prediction of the Saccharomyces cerevisiae SH3-ligand interactions. Fernandez-Ballester G, Beltrao P, Gonzalez JM, Song YH, Wilmanns M, Valencia A, Serrano L. J Mol Biol 388 902-916 (2009)
  14. Modulation of the Leishmania donovani peroxin 5 quaternary structure by peroxisomal targeting signal 1 ligands. Madrid KP, De Crescenzo G, Wang S, Jardim A. Mol Cell Biol 24 7331-7344 (2004)
  15. Structural insights into the specific binding of huntingtin proline-rich region with the SH3 and WW domains. Gao YG, Yan XZ, Song AX, Chang YG, Gao XC, Jiang N, Zhang Q, Hu HY. Structure 14 1755-1765 (2006)
  16. Membrane topologies of PEX13 and PEX14 provide new insights on the mechanism of protein import into peroxisomes. Barros-Barbosa A, Ferreira MJ, Rodrigues TA, Pedrosa AG, Grou CP, Pinto MP, Fransen M, Francisco T, Azevedo JE. FEBS J 286 205-222 (2019)
  17. Network evolution: rewiring and signatures of conservation in signaling. Sun MG, Sikora M, Costanzo M, Boone C, Kim PM. PLoS Comput Biol 8 e1002411 (2012)
  18. A viable Arabidopsis pex13 missense allele confers severe peroxisomal defects and decreases PEX5 association with peroxisomes. Woodward AW, Fleming WA, Burkhart SE, Ratzel SE, Bjornson M, Bartel B. Plant Mol Biol 86 201-214 (2014)
  19. Crystal structure of the conserved N-terminal domain of the peroxisomal matrix protein import receptor, Pex14p. Su JR, Takeda K, Tamura S, Fujiki Y, Miki K. Proc Natl Acad Sci U S A 106 417-421 (2009)
  20. Estrogen receptor alpha--identification by a modeling approach of a potential polyproline II recognizing domain within the AF-2 region of the receptor that would play a role of prime importance in its mechanism of action. Jacquot Y, Gallo D, Leclercq G. J Steroid Biochem Mol Biol 104 1-10 (2007)
  21. Interactions between Cdc42 and the scaffold protein Scd2: requirement of SH3 domains for GTPase binding. Wheatley E, Rittinger K. Biochem J 388 177-184 (2005)
  22. SH2-catalytic domain linker heterogeneity influences allosteric coupling across the SFK family. Register AC, Leonard SE, Maly DJ. Biochemistry 53 6910-6923 (2014)
  23. The SH3 domain of UNC-89 (obscurin) interacts with paramyosin, a coiled-coil protein, in Caenorhabditis elegans muscle. Qadota H, Mayans O, Matsunaga Y, McMurry JL, Wilson KJ, Kwon GE, Stanford R, Deehan K, Tinley TL, Ngwa VM, Benian GM. Mol Biol Cell 27 1606-1620 (2016)
  24. Automated evaluation of chemical shift perturbation spectra: New approaches to quantitative analysis of receptor-ligand interaction NMR spectra. Peng C, Unger SW, Filipp FV, Sattler M, Szalma S. J Biomol NMR 29 491-504 (2004)
  25. Identification of specificity determining residues in peptide recognition domains using an information theoretic approach applied to large-scale binding maps. Yip KY, Utz L, Sitwell S, Hu X, Sidhu SS, Turk BE, Gerstein M, Kim PM. BMC Biol 9 53 (2011)
  26. Molecular mechanism of a temperature-sensitive phenotype in peroxisomal biogenesis disorder. Hashimoto K, Kato Z, Nagase T, Shimozawa N, Kuwata K, Omoya K, Li A, Matsukuma E, Yamamoto Y, Ohnishi H, Tochio H, Shirakawa M, Suzuki Y, Wanders RJ, Kondo N. Pediatr Res 58 263-269 (2005)
  27. Peroxin 5-peroxin 14 association in the protozoan Leishmania donovani involves a novel protein-protein interaction motif. Madrid KP, Jardim A. Biochem J 391 105-114 (2005)
  28. Crystal structure of Src-like adaptor protein 2 reveals close association of SH3 and SH2 domains through β-sheet formation. Wybenga-Groot LE, McGlade CJ. Cell Signal 25 2702-2708 (2013)
  29. Directed discovery of bivalent peptide ligands to an SH3 domain. Ferguson MR, Fan X, Mukherjee M, Luo J, Khan R, Ferreon JC, Hilser VJ, Shope RE, Fox RO. Protein Sci 13 626-632 (2004)
  30. Most yeast SH3 domains bind peptide targets with high intrinsic specificity. Brown T, Brown N, Stollar EJ. PLoS One 13 e0193128 (2018)
  31. Partially-supervised protein subclass discovery with simultaneous annotation of functional residues. Georgi B, Schultz J, Schliep A. BMC Struct Biol 9 68 (2009)
  32. The intracellular Ig fold: a robust protein scaffold for the engineering of molecular recognition. Bruning M, Barsukov I, Franke B, Barbieri S, Volk M, Leopoldseder S, Ucurum Z, Mayans O. Protein Eng Des Sel 25 205-212 (2012)
  33. Evolution of the SH3 Domain Specificity Landscape in Yeasts. Verschueren E, Spiess M, Gkourtsa A, Avula T, Landgraf C, Mancilla VT, Huber A, Volkmer R, Winsor B, Serrano L, Hochstenbach F, Distel B. PLoS One 10 e0129229 (2015)
  34. Identification of two distinct peptide-binding pockets in the SH3 domain of human mixed-lineage kinase 3. Kokoszka ME, Kall SL, Khosla S, McGinnis JE, Lavie A, Kay BK. J Biol Chem 293 13553-13565 (2018)
  35. Genotype-phenotype correlations and disease mechanisms in PEX13-related Zellweger spectrum disorders. Borgia P, Baldassari S, Pedemonte N, Alkhunaizi E, D'Onofrio G, Tortora D, Calì E, Scudieri P, Balagura G, Musante I, Diana MC, Pedemonte M, Vari MS, Iacomino M, Riva A, Chimenz R, Mangano GD, Mohammadi MH, Toosi MB, Ashrafzadeh F, Imannezhad S, Karimiani EG, Accogli A, Schiaffino MC, Maghnie M, Soler MA, Echiverri K, Abrams CK, Striano P, Fortuna S, Maroofian R, Houlden H, Zara F, Fiorillo C, Salpietro V. Orphanet J Rare Dis 17 286 (2022)