1jpa Citations

Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region.

Cell 106 745-57 (2001)
Cited: 199 times
EuropePMC logo PMID: 11572780

Abstract

The Eph receptor tyrosine kinase family is regulated by autophosphorylation within the juxtamembrane region and the kinase activation segment. We have solved the X-ray crystal structure to 1.9 A resolution of an autoinhibited, unphosphorylated form of EphB2 comprised of the juxtamembrane region and the kinase domain. The structure, supported by mutagenesis data, reveals that the juxtamembrane segment adopts a helical conformation that distorts the small lobe of the kinase domain, and blocks the activation segment from attaining an activated conformation. Phosphorylation of conserved juxtamembrane tyrosines would relieve this autoinhibition by disturbing the association of the juxtamembrane segment with the kinase domain, while liberating phosphotyrosine sites for binding SH2 domains of target proteins. We propose that the autoinhibitory mechanism employed by EphB2 is a more general device through which receptor tyrosine kinases are controlled.

Reviews - 1jpa mentioned but not cited (2)

  1. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)
  2. The EphB6 Receptor: Kinase-Dead but Very Much Alive. Strozen TG, Sharpe JC, Harris ED, Uppalapati M, Toosi BM. Int J Mol Sci 22 8211 (2021)

Articles - 1jpa mentioned but not cited (9)

  1. A change in conformational dynamics underlies the activation of Eph receptor tyrosine kinases. Wiesner S, Wybenga-Groot LE, Warner N, Lin H, Pawson T, Forman-Kay JD, Sicheri F. EMBO J 25 4686-4696 (2006)
  2. A multi-template combination algorithm for protein comparative modeling. Cheng J. BMC Struct Biol 8 18 (2008)
  3. Structural and functional impact of cancer-related missense somatic mutations. Shi Z, Moult J. J Mol Biol 413 495-512 (2011)
  4. Dynamics of protein kinases: insights from nuclear magnetic resonance. Xiao Y, Liddle JC, Pardi A, Ahn NG. Acc Chem Res 48 1106-1114 (2015)
  5. A Systems Biology-Based Approach to Uncovering Molecular Mechanisms Underlying Effects of Traditional Chinese Medicine Qingdai in Chronic Myelogenous Leukemia, Involving Integration of Network Pharmacology and Molecular Docking Technology. Zhou C, Liu L, Zhuang J, Wei J, Zhang T, Gao C, Liu C, Li H, Si H, Sun C. Med Sci Monit 24 4305-4316 (2018)
  6. Interactions of the EphA2 Kinase Domain with PIPs in Membranes: Implications for Receptor Function. Chavent M, Karia D, Kalli AC, Domański J, Duncan AL, Hedger G, Stansfeld PJ, Seiradake E, Jones EY, Sansom MSP. Structure 26 1025-1034.e2 (2018)
  7. Convergent Evolution of Head Crests in Two Domesticated Columbids Is Associated with Different Missense Mutations in EphB2. Vickrey AI, Domyan ET, Horvath MP, Shapiro MD. Mol Biol Evol 32 2657-2664 (2015)
  8. Completing the structural family portrait of the human EphB tyrosine kinase domains. Overman RC, Debreczeni JE, Truman CM, McAlister MS, Attwood TK. Protein Sci 23 627-638 (2014)
  9. Bioinformatic search of plant microtubule-and cell cycle related serine-threonine protein kinases. Karpov PA, Nadezhdina ES, Yemets AI, Matusov VG, Nyporko AY, Shashina NY, Blume YB. BMC Genomics 11 Suppl 1 S14 (2010)


Reviews citing this publication (69)

  1. Cell signaling by receptor tyrosine kinases. Lemmon MA, Schlessinger J. Cell 141 1117-1134 (2010)
  2. The conformational plasticity of protein kinases. Huse M, Kuriyan J. Cell 109 275-282 (2002)
  3. Mechanisms and functions of Eph and ephrin signalling. Kullander K, Klein R. Nat Rev Mol Cell Biol 3 475-486 (2002)
  4. Eph receptor signalling casts a wide net on cell behaviour. Pasquale EB. Nat Rev Mol Cell Biol 6 462-475 (2005)
  5. Regulation of protein kinases; controlling activity through activation segment conformation. Nolen B, Taylor S, Ghosh G. Mol Cell 15 661-675 (2004)
  6. Mechanisms of receptor tyrosine kinase activation in cancer. Du Z, Lovly CM. Mol Cancer 17 58 (2018)
  7. Genetics of myeloid leukemias. Kelly LM, Gilliland DG. Annu Rev Genomics Hum Genet 3 179-198 (2002)
  8. FLT3: ITDoes matter in leukemia. Levis M, Small D. Leukemia 17 1738-1752 (2003)
  9. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Genestra M. Cell Signal 19 1807-1819 (2007)
  10. Bidirectional Eph-ephrin signaling during axon guidance. Egea J, Klein R. Trends Cell Biol 17 230-238 (2007)
  11. Biology and genetic aspects of gastrointestinal stromal tumors: KIT activation and cytogenetic alterations. Heinrich MC, Rubin BP, Longley BJ, Fletcher JA. Hum Pathol 33 484-495 (2002)
  12. The structural basis for control of eukaryotic protein kinases. Endicott JA, Noble ME, Johnson LN. Annu Rev Biochem 81 587-613 (2012)
  13. Sensing extracellular matrix: an update on discoidin domain receptor function. Vogel WF, Abdulhussein R, Ford CE. Cell Signal 18 1108-1116 (2006)
  14. Eph receptor signaling and ephrins. Lisabeth EM, Falivelli G, Pasquale EB. Cold Spring Harb Perspect Biol 5 a009159 (2013)
  15. Normal and oncogenic forms of the receptor tyrosine kinase kit. Lennartsson J, Jelacic T, Linnekin D, Shivakrupa R. Stem Cells 23 16-43 (2005)
  16. Juxtamembrane autoinhibition in receptor tyrosine kinases. Hubbard SR. Nat Rev Mol Cell Biol 5 464-471 (2004)
  17. Cell-cell signaling via Eph receptors and ephrins. Himanen JP, Saha N, Nikolov DB. Curr Opin Cell Biol 19 534-542 (2007)
  18. Autoinhibitory domains: modular effectors of cellular regulation. Pufall MA, Graves BJ. Annu Rev Cell Dev Biol 18 421-462 (2002)
  19. A structural perspective on the regulation of the epidermal growth factor receptor. Kovacs E, Zorn JA, Huang Y, Barros T, Kuriyan J. Annu Rev Biochem 84 739-764 (2015)
  20. Eosinophilia: secondary, clonal and idiopathic. Tefferi A, Patnaik MM, Pardanani A. Br J Haematol 133 468-492 (2006)
  21. Regulation and targets of receptor tyrosine kinases. Pawson T. Eur J Cancer 38 Suppl 5 S3-10 (2002)
  22. Eph receptor-ephrin bidirectional signals that target Ras and Rho proteins. Noren NK, Pasquale EB. Cell Signal 16 655-666 (2004)
  23. Allosteric Modulation as a Unifying Mechanism for Receptor Function and Regulation. Changeux JP, Christopoulos A. Cell 166 1084-1102 (2016)
  24. Eph signaling: a structural view. Himanen JP, Nikolov DB. Trends Neurosci 26 46-51 (2003)
  25. VEGFR-1 and VEGFR-2: two non-identical twins with a unique physiognomy. Rahimi N. Front Biosci 11 818-829 (2006)
  26. Role of FLT3 in leukemia. Gilliland DG, Griffin JD. Curr Opin Hematol 9 274-281 (2002)
  27. ROCK and Rho: biochemistry and neuronal functions of Rho-associated protein kinases. Schmandke A, Schmandke A, Strittmatter SM. Neuroscientist 13 454-469 (2007)
  28. Structure and function of VEGF receptors. Stuttfeld E, Ballmer-Hofer K. IUBMB Life 61 915-922 (2009)
  29. Switching on kinases: oncogenic activation of BRAF and the PDGFR family. Dibb NJ, Dilworth SM, Mol CD. Nat Rev Cancer 4 718-727 (2004)
  30. Molecular Bases of VEGFR-2-Mediated Physiological Function and Pathological Role. Wang X, Bove AM, Simone G, Ma B. Front Cell Dev Biol 8 599281 (2020)
  31. Eph receptors and ephrins. Himanen JP, Nikolov DB. Int J Biochem Cell Biol 35 130-134 (2003)
  32. Essential roles of EphB receptors and EphrinB ligands in endothelial cell function and angiogenesis. Salvucci O, Tosato G. Adv Cancer Res 114 21-57 (2012)
  33. Interaction domains: from simple binding events to complex cellular behavior. Pawson T, Raina M, Nash P. FEBS Lett 513 2-10 (2002)
  34. Structural and functional properties of platelet-derived growth factor and stem cell factor receptors. Heldin CH, Lennartsson J. Cold Spring Harb Perspect Biol 5 a009100 (2013)
  35. FMS-like tyrosine kinase 3 in normal hematopoiesis and acute myeloid leukemia. Parcells BW, Ikeda AK, Simms-Waldrip T, Moore TB, Sakamoto KM. Stem Cells 24 1174-1184 (2006)
  36. Eph receptors, ephrins, and synaptic function. Murai KK, Pasquale EB. Neuroscientist 10 304-314 (2004)
  37. Eph-dependent cell-cell adhesion and segregation in development and cancer. Nievergall E, Lackmann M, Janes PW. Cell Mol Life Sci 69 1813-1842 (2012)
  38. Vascular endothelial growth factor receptors: molecular mechanisms of activation and therapeutic potentials. Rahimi N. Exp Eye Res 83 1005-1016 (2006)
  39. Eph receptor signalling: from catalytic to non-catalytic functions. Liang LY, Patel O, Janes PW, Murphy JM, Lucet IS. Oncogene 38 6567-6584 (2019)
  40. Structural Perspectives on Axon Guidance. Seiradake E, Jones EY, Klein R. Annu Rev Cell Dev Biol 32 577-608 (2016)
  41. Who decides when to cleave an ectodomain? Hartmann M, Herrlich A, Herrlich P. Trends Biochem Sci 38 111-120 (2013)
  42. Eph receptor and ephrin function in breast, gut, and skin epithelia. Perez White BE, Getsios S. Cell Adh Migr 8 327-338 (2014)
  43. Fundamental Molecules and Mechanisms for Forming and Maintaining Neuromuscular Synapses. Burden SJ, Huijbers MG, Remedio L. Int J Mol Sci 19 E490 (2018)
  44. Grb2, a double-edged sword of receptor tyrosine kinase signaling. Belov AA, Mohammadi M. Sci Signal 5 pe49 (2012)
  45. Dancing with the dead: Eph receptors and their kinase-null partners. Truitt L, Freywald A. Biochem Cell Biol 89 115-129 (2011)
  46. The FIP1L1-PDGFRalpha kinase in hypereosinophilic syndrome and chronic eosinophilic leukemia. Cools J, Stover EH, Wlodarska I, Marynen P, Gilliland DG. Curr Opin Hematol 11 51-57 (2004)
  47. Oncogenic functions and therapeutic targeting of EphA2 in cancer. Wilson K, Shiuan E, Brantley-Sieders DM. Oncogene 40 2483-2495 (2021)
  48. EphA3 biology and cancer. Janes PW, Slape CI, Farnsworth RH, Atapattu L, Scott AM, Vail ME. Growth Factors 32 176-189 (2014)
  49. FLT3 inhibitors: a paradigm for the development of targeted therapeutics for paediatric cancer. Brown P, Small D. Eur J Cancer 40 707-21, discussion 722-4 (2004)
  50. Proteus in the world of proteins: conformational changes in protein kinases. Rabiller M, Getlik M, Klüter S, Richters A, Tückmantel S, Simard JR, Rauh D. Arch Pharm (Weinheim) 343 193-206 (2010)
  51. The role of proteases in regulating Eph/ephrin signaling. Atapattu L, Lackmann M, Janes PW. Cell Adh Migr 8 294-307 (2014)
  52. EphBs and ephrin-Bs: Trans-synaptic organizers of synapse development and function. Henderson NT, Dalva MB. Mol Cell Neurosci 91 108-121 (2018)
  53. Allosteric modulation as a unifying mechanism for receptor function and regulation. Changeux JP, Christopoulos A. Diabetes Obes Metab 19 Suppl 1 4-21 (2017)
  54. Design principles underpinning the regulatory diversity of protein kinases. Oruganty K, Kannan N. Philos Trans R Soc Lond B Biol Sci 367 2529-2539 (2012)
  55. Tie2 and Eph receptor tyrosine kinase activation and signaling. Barton WA, Dalton AC, Seegar TC, Himanen JP, Nikolov DB. Cold Spring Harb Perspect Biol 6 a009142 (2014)
  56. Novel FLT3 tyrosine kinase inhibitors. Levis M, Small D. Expert Opin Investig Drugs 12 1951-1962 (2003)
  57. The role of low-molecular-weight protein tyrosine phosphatase (LMW-PTP ACP1) in oncogenesis. Alho I, Costa L, Bicho M, Coelho C. Tumour Biol 34 1979-1989 (2013)
  58. Cataloguing the dead: breathing new life into pseudokinase research. Shrestha S, Byrne DP, Harris JA, Kannan N, Eyers PA. FEBS J 287 4150-4169 (2020)
  59. Eph and ephrins in epithelial stem cell niches and cancer. Genander M. Cell Adh Migr 6 126-130 (2012)
  60. Molecular regulation of receptor tyrosine kinases in hematopoietic malignancies. Correll PH, Paulson RF, Wei X. Gene 374 26-38 (2006)
  61. EphA2 and EGFR: Friends in Life, Partners in Crime. Can EphA2 Be a Predictive Biomarker of Response to Anti-EGFR Agents? Cioce M, Fazio VM. Cancers (Basel) 13 700 (2021)
  62. RTK SLAP down: the emerging role of Src-like adaptor protein as a key player in receptor tyrosine kinase signaling. Wybenga-Groot LE, McGlade CJ. Cell Signal 27 267-274 (2015)
  63. The growing story of (ARABIDOPSIS) CRINKLY 4. Czyzewicz N, Nikonorova N, Meyer MR, Sandal P, Shah S, Vu LD, Gevaert K, Rao AG, De Smet I. J Exp Bot 67 4835-4847 (2016)
  64. An Overview of EGFR Mechanisms and Their Implications in Targeted Therapies for Glioblastoma. Rodriguez SMB, Kamel A, Ciubotaru GV, Onose G, Sevastre AS, Sfredel V, Danoiu S, Dricu A, Tataranu LG. Int J Mol Sci 24 11110 (2023)
  65. Ephs and ephrins close ranks. Cutforth T, Harrison CJ. Trends Neurosci 25 332-334 (2002)
  66. A novel miR17/protein tyrosine phosphatase-oc/EphA4 regulatory axis of osteoclast activity. Lau KW, Sheng MH. Arch Biochem Biophys 650 30-38 (2018)
  67. EPHB4-RASA1-Mediated Negative Regulation of Ras-MAPK Signaling in the Vasculature: Implications for the Treatment of EPHB4- and RASA1-Related Vascular Anomalies in Humans. Chen D, Van der Ent MA, Lartey NL, King PD. Pharmaceuticals (Basel) 16 165 (2023)
  68. A regulatory role of membrane by direct modulation of the catalytic kinase domain. Prakash P. Small GTPases 12 246-256 (2021)
  69. Receptor tyrosine kinases: biological functions and anticancer targeted therapy. Zhang N, Li Y. MedComm (2020) 4 e446 (2023)

Articles citing this publication (119)

  1. Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Nühse TS, Stensballe A, Jensen ON, Peck SC. Plant Cell 16 2394-2405 (2004)
  2. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Griffith J, Black J, Faerman C, Swenson L, Wynn M, Lu F, Lippke J, Saxena K. Mol Cell 13 169-178 (2004)
  3. The juxtamembrane region of the EGF receptor functions as an activation domain. Red Brewer M, Choi SH, Alvarado D, Moravcevic K, Pozzi A, Lemmon MA, Carpenter G. Mol Cell 34 641-651 (2009)
  4. EphB receptors coordinate migration and proliferation in the intestinal stem cell niche. Holmberg J, Genander M, Halford MM, Annerén C, Sondell M, Chumley MJ, Silvany RE, Henkemeyer M, Frisén J. Cell 125 1151-1163 (2006)
  5. Regulation of AChR clustering by Dishevelled interacting with MuSK and PAK1. Luo ZG, Wang Q, Zhou JZ, Wang J, Luo Z, Liu M, He X, Wynshaw-Boris A, Xiong WC, Lu B, Mei L. Neuron 35 489-505 (2002)
  6. Structural basis for the inhibition of tyrosine kinase activity of ZAP-70. Deindl S, Kadlecek TA, Brdicka T, Cao X, Weiss A, Kuriyan J. Cell 129 735-746 (2007)
  7. Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression. Dyson MR, Shadbolt SP, Vincent KJ, Perera RL, McCafferty J. BMC Biotechnol 4 32 (2004)
  8. Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain. Saharinen P, Vihinen M, Silvennoinen O. Mol Biol Cell 14 1448-1459 (2003)
  9. Axl is essential for VEGF-A-dependent activation of PI3K/Akt. Ruan GX, Kazlauskas A. EMBO J 31 1692-1703 (2012)
  10. PknB kinase activity is regulated by phosphorylation in two Thr residues and dephosphorylation by PstP, the cognate phospho-Ser/Thr phosphatase, in Mycobacterium tuberculosis. Boitel B, Ortiz-Lombardía M, Durán R, Pompeo F, Cole ST, Cerveñansky C, Alzari PM. Mol Microbiol 49 1493-1508 (2003)
  11. Structures of the cancer-related Aurora-A, FAK, and EphA2 protein kinases from nanovolume crystallography. Nowakowski J, Cronin CN, McRee DE, Knuth MW, Nelson CG, Pavletich NP, Rogers J, Sang BC, Scheibe DN, Swanson RV, Thompson DA. Structure 10 1659-1667 (2002)
  12. Autoinhibition of the kit receptor tyrosine kinase by the cytosolic juxtamembrane region. Chan PM, Ilangumaran S, La Rose J, Chakrabartty A, Rottapel R. Mol Cell Biol 23 3067-3078 (2003)
  13. Intramolecular regulatory switch in ZAP-70: analogy with receptor tyrosine kinases. Brdicka T, Kadlecek TA, Roose JP, Pastuszak AW, Weiss A. Mol Cell Biol 25 4924-4933 (2005)
  14. Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity. Park CJ, Peng Y, Chen X, Dardick C, Ruan D, Bart R, Canlas PE, Ronald PC. PLoS Biol 6 e231 (2008)
  15. Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and mass accuracy precursor alignment. Chen Y, Hoehenwarter W, Weckwerth W. Plant J 63 1-17 (2010)
  16. Regulation of EphA 4 kinase activity is required for a subset of axon guidance decisions suggesting a key role for receptor clustering in Eph function. Egea J, Nissen UV, Dufour A, Sahin M, Greer P, Kullander K, Mrsic-Flogel TD, Greenberg ME, Kiehn O, Vanderhaeghen P, Klein R. Neuron 47 515-528 (2005)
  17. Crystal structure of the MuSK tyrosine kinase: insights into receptor autoregulation. Till JH, Becerra M, Watty A, Lu Y, Ma Y, Neubert TA, Burden SJ, Hubbard SR. Structure 10 1187-1196 (2002)
  18. Identification and functional analysis of phosphorylated tyrosine residues within EphA2 receptor tyrosine kinase. Fang WB, Brantley-Sieders DM, Hwang Y, Ham AJ, Chen J. J Biol Chem 283 16017-16026 (2008)
  19. Expression of Ephb2 and Ephb4 in breast carcinoma. Wu Q, Suo Z, Risberg B, Karlsson MG, Villman K, Nesland JM. Pathol Oncol Res 10 26-33 (2004)
  20. EphB3 suppresses non-small-cell lung cancer metastasis via a PP2A/RACK1/Akt signalling complex. Li G, Ji XD, Gao H, Zhao JS, Xu JF, Sun ZJ, Deng YZ, Shi S, Feng YX, Zhu YQ, Wang T, Li JJ, Xie D, Xie D. Nat Commun 3 667 (2012)
  21. Eph receptors are negatively controlled by protein tyrosine phosphatase receptor type O. Shintani T, Ihara M, Sakuta H, Takahashi H, Watakabe I, Noda M. Nat Neurosci 9 761-769 (2006)
  22. HGF and MET mutations in primary and secondary lymphedema. Finegold DN, Schacht V, Kimak MA, Lawrence EC, Foeldi E, Karlsson JM, Baty CJ, Ferrell RE. Lymphat Res Biol 6 65-68 (2008)
  23. The active conformation of the PAK1 kinase domain. Lei M, Robinson MA, Harrison SC. Structure 13 769-778 (2005)
  24. X-ray crystal structure and functional analysis of vaccinia virus K3L reveals molecular determinants for PKR subversion and substrate recognition. Dar AC, Sicheri F. Mol Cell 10 295-305 (2002)
  25. Eph receptor function is modulated by heterooligomerization of A and B type Eph receptors. Janes PW, Griesshaber B, Atapattu L, Nievergall E, Hii LL, Mensinga A, Chheang C, Day BW, Boyd AW, Bastiaens PI, Jørgensen C, Pawson T, Lackmann M. J Cell Biol 195 1033-1045 (2011)
  26. The tethered configuration of the EGF receptor extracellular domain exerts only a limited control of receptor function. Mattoon D, Klein P, Lemmon MA, Lax I, Schlessinger J. Proc Natl Acad Sci U S A 101 923-928 (2004)
  27. EphrinB3 is an anti-apoptotic ligand that inhibits the dependence receptor functions of EphA4 receptors during adult neurogenesis. Furne C, Ricard J, Cabrera JR, Pays L, Bethea JR, Mehlen P, Liebl DJ. Biochim Biophys Acta 1793 231-238 (2009)
  28. Identification of somatic JAK1 mutations in patients with acute myeloid leukemia. Xiang Z, Zhao Y, Mitaksov V, Fremont DH, Kasai Y, Molitoris A, Ries RE, Miner TL, McLellan MD, DiPersio JF, Link DC, Payton JE, Graubert TA, Watson M, Shannon W, Heath SE, Nagarajan R, Mardis ER, Wilson RK, Ley TJ, Tomasson MH. Blood 111 4809-4812 (2008)
  29. Structure and intrinsic disorder in protein autoinhibition. Trudeau T, Nassar R, Cumberworth A, Wong ET, Woollard G, Gsponer J. Structure 21 332-341 (2013)
  30. Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons. Postigo A, Calella AM, Fritzsch B, Knipper M, Katz D, Eilers A, Schimmang T, Lewin GR, Klein R, Minichiello L. Genes Dev 16 633-645 (2002)
  31. Cytoplasmic relaxation of active Eph controls ephrin shedding by ADAM10. Janes PW, Wimmer-Kleikamp SH, Frangakis AS, Treble K, Griesshaber B, Sabet O, Grabenbauer M, Ting AY, Saftig P, Bastiaens PI, Lackmann M. PLoS Biol 7 e1000215 (2009)
  32. Activated c-Met signals through PI3K with dramatic effects on cytoskeletal functions in small cell lung cancer. Maulik G, Madhiwala P, Brooks S, Ma PC, Kijima T, Tibaldi EV, Schaefer E, Parmar K, Salgia R. J Cell Mol Med 6 539-553 (2002)
  33. Conserved autophosphorylation pattern in activation loops and juxtamembrane regions of Mycobacterium tuberculosis Ser/Thr protein kinases. Durán R, Villarino A, Bellinzoni M, Wehenkel A, Fernandez P, Boitel B, Cole ST, Alzari PM, Cerveñansky C. Biochem Biophys Res Commun 333 858-867 (2005)
  34. The composition of EphB2 clusters determines the strength in the cellular repulsion response. Schaupp A, Sabet O, Dudanova I, Ponserre M, Bastiaens P, Klein R. J Cell Biol 204 409-422 (2014)
  35. PTP1B regulates Eph receptor function and trafficking. Nievergall E, Janes PW, Stegmayer C, Vail ME, Haj FG, Teng SW, Neel BG, Bastiaens PI, Lackmann M. J Cell Biol 191 1189-1203 (2010)
  36. Tyrosine phosphorylation acts as a molecular switch to full-scale activation of the eIF2alpha RNA-dependent protein kinase. Su Q, Wang S, Baltzis D, Qu LK, Wong AH, Koromilas AE. Proc Natl Acad Sci U S A 103 63-68 (2006)
  37. Specificity and sufficiency of EphB1 in driving the ipsilateral retinal projection. Petros TJ, Shrestha BR, Mason C. J Neurosci 29 3463-3474 (2009)
  38. Structural basis for the requirement of two phosphotyrosine residues in signaling mediated by Syk tyrosine kinase. Groesch TD, Zhou F, Mattila S, Geahlen RL, Post CB. J Mol Biol 356 1222-1236 (2006)
  39. The juxtamembrane regions of human receptor tyrosine kinases exhibit conserved interaction sites with anionic lipids. Hedger G, Sansom MS, Koldsø H. Sci Rep 5 9198 (2015)
  40. Autoregulation by the juxtamembrane region of the human ephrin receptor tyrosine kinase A3 (EphA3). Davis TL, Walker JR, Loppnau P, Butler-Cole C, Allali-Hassani A, Dhe-Paganon S. Structure 16 873-884 (2008)
  41. Ephrin-independent regulation of cell substrate adhesion by the EphB4 receptor. Noren NK, Yang NY, Silldorff M, Mutyala R, Pasquale EB. Biochem J 422 433-442 (2009)
  42. Targeted mutations of the juxtamembrane tyrosines in the Kit receptor tyrosine kinase selectively affect multiple cell lineages. Kimura Y, Jones N, Klüppel M, Hirashima M, Tachibana K, Cohn JB, Wrana JL, Pawson T, Bernstein A. Proc Natl Acad Sci U S A 101 6015-6020 (2004)
  43. Macrophage proliferation is regulated through CSF-1 receptor tyrosines 544, 559, and 807. Yu W, Chen J, Xiong Y, Pixley FJ, Yeung YG, Stanley ER. J Biol Chem 287 13694-13704 (2012)
  44. Receptor specific downregulation of cytokine signaling by autophosphorylation in the FERM domain of Jak2. Funakoshi-Tago M, Pelletier S, Matsuda T, Parganas E, Ihle JN. EMBO J 25 4763-4772 (2006)
  45. Cancer somatic mutations disrupt functions of the EphA3 receptor tyrosine kinase through multiple mechanisms. Lisabeth EM, Fernandez C, Pasquale EB. Biochemistry 51 1464-1475 (2012)
  46. Elevated protein tyrosine phosphatase activity provokes Eph/ephrin-facilitated adhesion of pre-B leukemia cells. Wimmer-Kleikamp SH, Nievergall E, Gegenbauer K, Adikari S, Mansour M, Yeadon T, Boyd AW, Patani NR, Lackmann M. Blood 112 721-732 (2008)
  47. Structural Insights into Pseudokinase Domains of Receptor Tyrosine Kinases. Sheetz JB, Mathea S, Karvonen H, Malhotra K, Chatterjee D, Niininen W, Perttilä R, Preuss F, Suresh K, Stayrook SE, Tsutsui Y, Radhakrishnan R, Ungureanu D, Knapp S, Lemmon MA. Mol Cell 79 390-405.e7 (2020)
  48. Transmembrane domain-mediated orientation of receptor monomers in active VEGFR-2 dimers. Dosch DD, Ballmer-Hofer K. FASEB J 24 32-38 (2010)
  49. Crystal structure of the FLT3 kinase domain bound to the inhibitor Quizartinib (AC220). Zorn JA, Wang Q, Fujimura E, Barros T, Kuriyan J. PLoS One 10 e0121177 (2015)
  50. A key role for Abl family kinases in EphA receptor-mediated growth cone collapse. Harbott LK, Nobes CD. Mol Cell Neurosci 30 1-11 (2005)
  51. Disruption of auto-inhibition underlies conformational signaling of ASIC1a to induce neuronal necroptosis. Wang JJ, Liu F, Yang F, Wang YZ, Qi X, Li Y, Hu Q, Zhu MX, Xu TL. Nat Commun 11 475 (2020)
  52. Ubiquitination switches EphA2 vesicular traffic from a continuous safeguard to a finite signalling mode. Sabet O, Stockert R, Xouri G, Brüggemann Y, Stanoev A, Bastiaens PIH. Nat Commun 6 8047 (2015)
  53. Structural insights into the inhibited states of the Mer receptor tyrosine kinase. Huang X, Finerty P, Walker JR, Butler-Cole C, Vedadi M, Schapira M, Parker SA, Turk BE, Thompson DA, Dhe-Paganon S. J Struct Biol 165 88-96 (2009)
  54. Inhibitors of the tyrosine kinase EphB4. Part 1: Structure-based design and optimization of a series of 2,4-bis-anilinopyrimidines. Bardelle C, Cross D, Davenport S, Kettle JG, Ko EJ, Leach AG, Mortlock A, Read J, Roberts NJ, Robins P, Williams EJ. Bioorg Med Chem Lett 18 2776-2780 (2008)
  55. Structural and functional analysis of Saccharomyces cerevisiae Mob1. Mrkobrada S, Boucher L, Ceccarelli DF, Tyers M, Sicheri F. J Mol Biol 362 430-440 (2006)
  56. Structure-based tailoring of compound libraries for high-throughput screening: discovery of novel EphB4 kinase inhibitors. Kolb P, Kipouros CB, Huang D, Caflisch A. Proteins 73 11-18 (2008)
  57. Ectopic EphA4 receptor induces posterior protrusions via FGF signaling in Xenopus embryos. Park EK, Warner N, Bong YS, Stapleton D, Maeda R, Pawson T, Daar IO. Mol Biol Cell 15 1647-1655 (2004)
  58. EphB2 and ephrin-B2 regulate the ionic homeostasis of vestibular endolymph. Dravis C, Wu T, Chumley MJ, Yokoyama N, Wei S, Wu DK, Marcus DC, Henkemeyer M. Hear Res 223 93-104 (2007)
  59. Molecular basis of the constitutive activity and STI571 resistance of Asp816Val mutant KIT receptor tyrosine kinase. Foster R, Griffith R, Ferrao P, Ashman L. J Mol Graph Model 23 139-152 (2004)
  60. A novel pH-dependent membrane peptide that binds to EphA2 and inhibits cell migration. Alves DS, Westerfield JM, Shi X, Nguyen VP, Stefanski KM, Booth KR, Kim S, Morrell-Falvey J, Wang BC, Abel SM, Smith AW, Barrera FN. Elife 7 e36645 (2018)
  61. Forward signaling by EphB1/EphB2 interacting with ephrin-B ligands at the optic chiasm is required to form the ipsilateral projection. Chenaux G, Henkemeyer M. Eur J Neurosci 34 1620-1633 (2011)
  62. Three distinct molecular surfaces in ephrin-A5 are essential for a functional interaction with EphA3. Day B, To C, Himanen JP, Smith FM, Nikolov DB, Boyd AW, Lackmann M. J Biol Chem 280 26526-26532 (2005)
  63. A semisynthetic Eph receptor tyrosine kinase provides insight into ligand-induced kinase activation. Singla N, Erdjument-Bromage H, Himanen JP, Muir TW, Nikolov DB. Chem Biol 18 361-371 (2011)
  64. EphA4 receptor is a novel negative regulator of osteoclast activity. Stiffel V, Amoui M, Sheng MH, Mohan S, Lau KH. J Bone Miner Res 29 804-819 (2014)
  65. A role of the SAM domain in EphA2 receptor activation. Shi X, Hapiak V, Zheng J, Muller-Greven J, Bowman D, Lingerak R, Buck M, Wang BC, Smith AW. Sci Rep 7 45084 (2017)
  66. Comparative Ser/Thr/Tyr phosphoproteomics between two mycobacterial species: the fast growing Mycobacterium smegmatis and the slow growing Mycobacterium bovis BCG. Nakedi KC, Nel AJ, Garnett S, Blackburn JM, Soares NC. Front Microbiol 6 237 (2015)
  67. Myosin 1b functions as an effector of EphB signaling to control cell repulsion. Prospéri MT, Lépine P, Dingli F, Paul-Gilloteaux P, Martin R, Loew D, Knölker HJ, Coudrier E. J Cell Biol 210 347-361 (2015)
  68. Structures of the EphA2 Receptor at the Membrane: Role of Lipid Interactions. Chavent M, Seiradake E, Jones EY, Sansom MS. Structure 24 337-347 (2016)
  69. Molecular basis for receptor tyrosine kinase A-loop tyrosine transphosphorylation. Chen L, Marsiglia WM, Chen H, Katigbak J, Erdjument-Bromage H, Kemble DJ, Fu L, Ma J, Sun G, Zhang Y, Liang G, Neubert TA, Li X, Traaseth NJ, Mohammadi M. Nat Chem Biol 16 267-277 (2020)
  70. The oncogenic activity of RET point mutants for follicular thyroid cells may account for the occurrence of papillary thyroid carcinoma in patients affected by familial medullary thyroid carcinoma. Melillo RM, Cirafici AM, De Falco V, Bellantoni M, Chiappetta G, Fusco A, Carlomagno F, Picascia A, Tramontano D, Tallini G, Santoro M. Am J Pathol 165 511-521 (2004)
  71. Phosphoproteomic analysis of interacting tumor and endothelial cells identifies regulatory mechanisms of transendothelial migration. Locard-Paulet M, Lim L, Veluscek G, McMahon K, Sinclair J, van Weverwijk A, Worboys JD, Yuan Y, Isacke CM, Jørgensen C. Sci Signal 9 ra15 (2016)
  72. Analysis of Somatic Mutations in Cancer: Molecular Mechanisms of Activation in the ErbB Family of Receptor Tyrosine Kinases. Shih AJ, Telesco SE, Radhakrishnan R. Cancers (Basel) 3 1195-1231 (2011)
  73. Consequences of replacing EGFR juxtamembrane domain with an unstructured sequence. He L, Hristova K. Sci Rep 2 854 (2012)
  74. Identification of in vitro autophosphorylation sites and effects of phosphorylation on the Arabidopsis CRINKLY4 (ACR4) receptor-like kinase intracellular domain: insights into conformation, oligomerization, and activity. Meyer MR, Lichti CF, Townsend RR, Rao AG. Biochemistry 50 2170-2186 (2011)
  75. Helicobacter Pylori Targets the EPHA2 Receptor Tyrosine Kinase in Gastric Cells Modulating Key Cellular Functions. Leite M, Marques MS, Melo J, Pinto MT, Cavadas B, Aroso M, Gomez-Lazaro M, Seruca R, Figueiredo C. Cells 9 E513 (2020)
  76. Discovery and characterization of targetable NTRK point mutations in hematologic neoplasms. Joshi SK, Qian K, Bisson WH, Watanabe-Smith K, Huang A, Bottomly D, Traer E, Tyner JW, McWeeney SK, Davare MA, Druker BJ, Tognon CE. Blood 135 2159-2170 (2020)
  77. Angiogenesis depends upon EPHB4-mediated export of collagen IV from vascular endothelial cells. Chen D, Hughes ED, Saunders TL, Wu J, Vasquez MNH, Makinen T, King PD. JCI Insight 7 e156928 (2022)
  78. Ternary complex formation of EphA4, FGFR and FRS2α plays an important role in the proliferation of embryonic neural stem/progenitor cells. Sawada T, Jing X, Zhang Y, Shimada E, Yokote H, Miyajima M, Sakaguchi K. Genes Cells 15 297-311 (2010)
  79. Coupled regulation by the juxtamembrane and sterile α motif (SAM) linker is a hallmark of ephrin tyrosine kinase evolution. Kwon A, John M, Ruan Z, Kannan N. J Biol Chem 293 5102-5116 (2018)
  80. EphA3 functions are regulated by collaborating phosphotyrosine residues. Shi G, Yue G, Zhou R. Cell Res 20 1263-1275 (2010)
  81. EphB2 and EphA4 receptors regulate formation of the principal inter-hemispheric tracts of the mammalian forebrain. Ho SK, Kovacević N, Henkelman RM, Boyd A, Pawson T, Henderson JT. Neuroscience 160 784-795 (2009)
  82. Analysis of EphA4 receptor tyrosine kinase substrate specificity using peptide-based arrays. Warner N, Wybenga-Groot LE, Pawson T. FEBS J 275 2561-2573 (2008)
  83. Crystal structure of the EphA4 protein tyrosine kinase domain in the apo- and dasatinib-bound state. Farenc C, Celie PH, Tensen CP, de Esch IJ, Siegal G. FEBS Lett 585 3593-3599 (2011)
  84. Autoinhibition of the insulin-like growth factor I receptor by the juxtamembrane region. Craddock BP, Cotter C, Miller WT. FEBS Lett 581 3235-3240 (2007)
  85. Co-conserved features associated with cis regulation of ErbB tyrosine kinases. Mirza A, Mustafa M, Talevich E, Kannan N. PLoS One 5 e14310 (2010)
  86. EphB2 activation is required for ependymoma development as well as inhibits differentiation and promotes proliferation of the transformed cell. Chen P, Rossi N, Priddy S, Pierson CR, Studebaker AW, Johnson RA. Sci Rep 5 9248 (2015)
  87. Structural Basis of TPR-Mediated Oligomerization and Activation of Oncogenic Fusion Kinases. Pal K, Bandyopadhyay A, Zhou XE, Xu Q, Marciano DP, Brunzelle JS, Yerrum S, Griffin PR, Vande Woude G, Melcher K, Xu HE. Structure 25 867-877.e3 (2017)
  88. Germline EPHB2 receptor variants in familial colorectal cancer. Zogopoulos G, Jorgensen C, Bacani J, Montpetit A, Lepage P, Ferretti V, Chad L, Selvarajah S, Zanke B, Hudson TJ, Pawson T, Gallinger S. PLoS One 3 e2885 (2008)
  89. Imatinib sensitivity as a consequence of a CSF1R-Y571D mutation and CSF1/CSF1R signaling abnormalities in the cell line GDM1. Chase A, Schultheis B, Kreil S, Baxter J, Hidalgo-Curtis C, Jones A, Zhang L, Grand FH, Melo JV, Cross NC. Leukemia 23 358-364 (2009)
  90. EPHA7 and EPHA10 Physically Interact and Differentially Co-localize in Normal Breast and Breast Carcinoma Cell Lines, and the Co-localization Pattern Is Altered in EPHB6-expressing MDA-MB-231 Cells. Johnson C, Segovia B, Kandpal RP. Cancer Genomics Proteomics 13 359-368 (2016)
  91. Molecular dynamics (MD) investigations of preformed structures of the transmembrane domain of the oncogenic Neu receptor dimer in a DMPC bilayer. Aller P, Voiry L, Garnier N, Genest M. Biopolymers 77 184-197 (2005)
  92. Structural basis for ALK2/BMPR2 receptor complex signaling through kinase domain oligomerization. Agnew C, Ayaz P, Kashima R, Loving HS, Ghatpande P, Kung JE, Underbakke ES, Shan Y, Shaw DE, Hata A, Jura N. Nat Commun 12 4950 (2021)
  93. Structures of an Eph receptor tyrosine kinase and its potential activation mechanism. Wei Q, Liu J, Wang N, Zhang X, Jin J, Chin-Sang I, Zheng J, Jia Z. Acta Crystallogr D Biol Crystallogr 70 3135-3143 (2014)
  94. Ubiquitin ligase SPSB4 diminishes cell repulsive responses mediated by EphB2. Okumura F, Joo-Okumura A, Obara K, Petersen A, Nishikimi A, Fukui Y, Nakatsukasa K, Kamura T. Mol Biol Cell 28 3532-3541 (2017)
  95. Distinctive Structure of the EphA3/Ephrin-A5 Complex Reveals a Dual Mode of Eph Receptor Interaction for Ephrin-A5. Forse GJ, Uson ML, Nasertorabi F, Kolatkar A, Lamberto I, Pasquale EB, Kuhn P. PLoS One 10 e0127081 (2015)
  96. Regulation of the EphA2 receptor intracellular region by phosphomimetic negative charges in the kinase-SAM linker. Lechtenberg BC, Gehring MP, Light TP, Horne CR, Matsumoto MW, Hristova K, Pasquale EB. Nat Commun 12 7047 (2021)
  97. Activating Mutations in PIK3CA Lead to Widespread Modulation of the Tyrosine Phosphoproteome. Zahari MS, Wu X, Blair BG, Pinto SM, Nirujogi RS, Jelinek CA, Malhotra R, Kim MS, Park BH, Pandey A. J Proteome Res 14 3882-3891 (2015)
  98. An Osteoclastic Transmembrane Protein-Tyrosine Phosphatase Enhances Osteoclast Activity in Part by Dephosphorylating EphA4 in Osteoclasts. Lau KH, Amoui M, Stiffel V, Chen ST, Sheng MH. J Cell Biochem 116 1785-1796 (2015)
  99. Autoinhibition of the Ron receptor tyrosine kinase by the juxtamembrane domain. Wang X, Yennawar N, Hankey PA. Cell Commun Signal 12 28 (2014)
  100. Insights into molecular interactions between the juxtamembrane and kinase subdomains of the Arabidopsis Crinkly-4 receptor-like kinase. Meyer MR, Shah S, Rao AG. Arch Biochem Biophys 535 101-110 (2013)
  101. Molecular interactions of EphA4, growth hormone receptor, Janus kinase 2, and signal transducer and activator of transcription 5B. Sawada T, Arai D, Jing X, Miyajima M, Frank SJ, Sakaguchi K. PLoS One 12 e0180785 (2017)
  102. Two kinase family dramas. Leonard TA, Hurley JH. Cell 129 1037-1038 (2007)
  103. Two-step release of kinase autoinhibition in discoidin domain receptor 1. Sammon D, Hohenester E, Leitinger B. Proc Natl Acad Sci U S A 117 22051-22060 (2020)
  104. Biochemical and biophysical characterization of four EphB kinase domains reveals contrasting thermodynamic, kinetic and inhibition profiles. Overman RC, Debreczeni JE, Truman CM, McAlister MS, Attwood TK. Biosci Rep 33 e00040 (2013)
  105. Identification of tetracycline combinations as EphB1 tyrosine kinase inhibitors for treatment of neuropathic pain. Ahmed MS, Wang P, Nguyen NUN, Nakada Y, Menendez-Montes I, Ismail M, Bachoo R, Henkemeyer M, Sadek HA, Kandil ES. Proc Natl Acad Sci U S A 118 e2016265118 (2021)
  106. Structure activity relationships of quinoxalin-2-one derivatives as platelet-derived growth factor-beta receptor (PDGFbeta R) inhibitors, derived from molecular modeling. Mori Y, Hirokawa T, Aoki K, Satomi H, Takeda S, Aburada M, Miyamoto K. Chem Pharm Bull (Tokyo) 56 682-687 (2008)
  107. Expression and purification of the intact cytoplasmic domain of the human ephrin receptor A2 tyrosine kinase in Escherichia coli. Zabell KM, Laurence JS, Kinch MS, Knapp DW, Stauffacher CV. Protein Expr Purif 47 210-216 (2006)
  108. The EphA4 Signaling is Anti-catabolic in Synoviocytes but Pro-anabolic in Articular Chondrocytes. Stiffel VM, Thomas A, Rundle CH, Sheng MH, Lau KW. Calcif Tissue Int 107 576-592 (2020)
  109. The carboxyl terminal tyrosine 417 residue of NOK has an autoinhibitory effect on NOK-mediated signaling transductions. Li YH, Zhong S, Rong ZL, Ren YM, Li ZY, Zhang SP, Chang Z, Liu L. Biochem Biophys Res Commun 356 444-449 (2007)
  110. The intracellular domains of the EphB6 and EphA10 receptor tyrosine pseudokinases function as dynamic signalling hubs. Liang LY, Roy M, Horne CR, Sandow JJ, Surudoi M, Dagley LF, Young SN, Dite T, Babon JJ, Janes PW, Patel O, Murphy JM, Lucet IS. Biochem J 478 3351-3371 (2021)
  111. A negative regulatory role for Y1111 on the Tie-2 RTK. Sturk C, Kim H, Jones N, Dumont DJ. Cell Signal 22 676-683 (2010)
  112. Characterization of the kinase domain of the ephrin-B3 receptor tyrosine kinase using a scintillation proximity assay. Bembenek ME, Schmidt S, Li P, Morawiak J, Prack A, Jain S, Roy R, Parsons T, Chee L. Assay Drug Dev Technol 1 555-563 (2003)
  113. SOCS2 Binds to and Regulates EphA2 through Multiple Mechanisms. Pilling C, Cooper JA. Sci Rep 7 10838 (2017)
  114. Synthetic pentapeptides inhibiting autophosphorylation of insulin receptor in a non-ATP-competitive mechanism. Kato M, Abe M, Kuroda Y, Hirose M, Nakano M, Handa T. J Pept Sci 15 327-336 (2009)
  115. Diverse p120RasGAP interactions with doubly phosphorylated partners EphB4, p190RhoGAP, and Dok1. Vish KJ, Stiegler AL, Boggon TJ. J Biol Chem 299 105098 (2023)
  116. The Inherent Coupling of Intrinsically Disordered Regions in the Multidomain Receptor Tyrosine Kinase KIT. Ledoux J, Trouvé A, Tchertanov L. Int J Mol Sci 23 1589 (2022)
  117. An investigation of binding interactions of tumor-targeted peptide conjugated polyphenols with the kinase domain of ephrin B4 and B2 receptors. Mitchell SM, Heise RM, Murray ME, Lambo DJ, Daso RE, Banerjee IA. Mol Divers (2023)
  118. N-(2,4)-dinitrophenyl-L-arginine Interacts with EphB4 and Functions as an EphB4 Kinase Modulator. Kamstra RL, Freywald A, Floriano WB. Chem Biol Drug Des 86 476-486 (2015)
  119. The combined action of the intracellular regions regulates FGFR2 kinase activity. Lin CC, Wieteska L, Poncet-Montange G, Suen KM, Arold ST, Ahmed Z, Ladbury JE. Commun Biol 6 728 (2023)