1jms Citations

Crystal structures of a template-independent DNA polymerase: murine terminal deoxynucleotidyltransferase.

EMBO J 21 427-39 (2002)
Related entries: 1kdh, 1kej

Cited: 100 times
EuropePMC logo PMID: 11823435

Abstract

The crystal structure of the catalytic core of murine terminal deoxynucleotidyltransferase (TdT) at 2.35 A resolution reveals a typical DNA polymerase beta-like fold locked in a closed form. In addition, the structures of two different binary complexes, one with an oligonucleotide primer and the other with an incoming ddATP-Co(2+) complex, show that the substrates and the two divalent ions in the catalytic site are positioned in TdT in a manner similar to that described for the human DNA polymerase beta ternary complex, suggesting a common two metal ions mechanism of nucleotidyl transfer in these two proteins. The inability of TdT to accommodate a template strand can be explained by steric hindrance at the catalytic site caused by a long lariat-like loop, which is absent in DNA polymerase beta. However, displacement of this discriminating loop would be sufficient to unmask a number of evolutionarily conserved residues, which could then interact with a template DNA strand. The present structure can be used to model the recently discovered human polymerase mu, with which it shares 43% sequence identity.

Reviews - 1jms mentioned but not cited (3)

  1. The X family portrait: structural insights into biological functions of X family polymerases. Moon AF, Garcia-Diaz M, Batra VK, Beard WA, Bebenek K, Kunkel TA, Wilson SH, Pedersen LC. DNA Repair (Amst) 6 1709-1725 (2007)
  2. Nonhomologous end joining: a good solution for bad ends. Waters CA, Strande NT, Wyatt DW, Pryor JM, Ramsden DA. DNA Repair (Amst) 17 39-51 (2014)
  3. Structure and function relationships in mammalian DNA polymerases. Hoitsma NM, Whitaker AM, Schaich MA, Smith MR, Fairlamb MS, Freudenthal BD. Cell Mol Life Sci 77 35-59 (2020)

Articles - 1jms mentioned but not cited (12)

  1. Crystal structures of a template-independent DNA polymerase: murine terminal deoxynucleotidyltransferase. Delarue M, Boulé JB, Lescar J, Expert-Bezançon N, Jourdan N, Sukumar N, Rougeon F, Papanicolaou C. EMBO J 21 427-439 (2002)
  2. A specific loop in human DNA polymerase mu allows switching between creative and DNA-instructed synthesis. Juárez R, Ruiz JF, Nick McElhinny SA, Ramsden D, Blanco L. Nucleic Acids Res 34 4572-4582 (2006)
  3. Sustained active site rigidity during synthesis by human DNA polymerase μ. Moon AF, Pryor JM, Ramsden DA, Kunkel TA, Bebenek K, Pedersen LC. Nat Struct Mol Biol 21 253-260 (2014)
  4. The catalytic cycle for ribonucleotide incorporation by human DNA Pol λ. Gosavi RA, Moon AF, Kunkel TA, Pedersen LC, Bebenek K. Nucleic Acids Res 40 7518-7527 (2012)
  5. Conferring a template-dependent polymerase activity to terminal deoxynucleotidyltransferase by mutations in the Loop1 region. Romain F, Barbosa I, Gouge J, Rougeon F, Delarue M. Nucleic Acids Res 37 4642-4656 (2009)
  6. ResBoost: characterizing and predicting catalytic residues in enzymes. Alterovitz R, Arvey A, Sankararaman S, Dallett C, Freund Y, Sjölander K. BMC Bioinformatics 10 197 (2009)
  7. Decision-making during NHEJ: a network of interactions in human Polμ implicated in substrate recognition and end-bridging. Martin MJ, Martin MJ, Blanco L. Nucleic Acids Res 42 7923-7934 (2014)
  8. Sequence Preference and Initiator Promiscuity for De Novo DNA Synthesis by Terminal Deoxynucleotidyl Transferase. Schaudy E, Lietard J, Somoza MM. ACS Synth Biol 10 1750-1760 (2021)
  9. Modulation of the structure, catalytic activity, and fidelity of African swine fever virus DNA polymerase X by a reversible disulfide switch. Voehler MW, Eoff RL, McDonald WH, Guengerich FP, Stone MP. J Biol Chem 284 18434-18444 (2009)
  10. Structural and functional plasticity of antibiotic resistance nucleotidylyltransferases revealed by molecular characterization of lincosamide nucleotidylyltransferases lnu(A) and lnu(D). Stogios PJ, Evdokimova E, Morar M, Koteva K, Wright GD, Courvalin P, Savchenko A. J Mol Biol 427 2229-2243 (2015)
  11. Structural evidence for an in trans base selection mechanism involving Loop1 in polymerase μ at an NHEJ double-strand break junction. Loc'h J, Gerodimos CA, Rosario S, Tekpinar M, Lieber MR, Delarue M. J Biol Chem 294 10579-10595 (2019)
  12. Molecular Dynamics Simulations and Structural Analysis to Decipher Functional Impact of a Twenty Residue Insert in the Ternary Complex of Mus musculus TdT Isoform. Mutt E, Sowdhamini R. PLoS One 11 e0157286 (2016)


Reviews citing this publication (15)

  1. Repair of double-strand breaks by end joining. Chiruvella KK, Liang Z, Wilson TE. Cold Spring Harb Perspect Biol 5 a012757 (2013)
  2. RNA-specific ribonucleotidyl transferases. Martin G, Keller W. RNA 13 1834-1849 (2007)
  3. Terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase. Motea EA, Berdis AJ. Biochim Biophys Acta 1804 1151-1166 (2010)
  4. The DNA-polymerase-X family: controllers of DNA quality? Ramadan K, Shevelev I, Hübscher U. Nat Rev Mol Cell Biol 5 1038-1043 (2004)
  5. Sibling rivalry: competition between Pol X family members in V(D)J recombination and general double strand break repair. Nick McElhinny SA, Ramsden DA. Immunol Rev 200 156-164 (2004)
  6. Polymerases in nonhomologous end joining: building a bridge over broken chromosomes. Ramsden DA. Antioxid Redox Signal 14 2509-2519 (2011)
  7. DNA polymerases in nonhomologous end joining: are there any benefits to standing out from the crowd? Ramsden DA, Asagoshi K. Environ Mol Mutagen 53 741-751 (2012)
  8. Template-Independent Enzymatic Oligonucleotide Synthesis (TiEOS): Its History, Prospects, and Challenges. Jensen MA, Davis RW. Biochemistry 57 1821-1832 (2018)
  9. tRNA-nucleotidyltransferases: highly unusual RNA polymerases with vital functions. Vörtler S, Mörl M. FEBS Lett 584 297-302 (2010)
  10. Terminal Deoxynucleotidyl Transferase in the Synthesis and Modification of Nucleic Acids. Sarac I, Hollenstein M. Chembiochem 20 860-871 (2019)
  11. DNA synthesis technologies to close the gene writing gap. Hoose A, Vellacott R, Storch M, Freemont PS, Ryadnov MG. Nat Rev Chem 7 144-161 (2023)
  12. How to broaden enzyme substrate specificity: strategies, implications and applications. Jestin JL, Vichier-Guerre S. Res Microbiol 156 961-966 (2005)
  13. Molecular and Functional Characteristics of DNA Polymerase Beta-Like Enzymes From Trypanosomatids. Maldonado E, Morales-Pison S, Urbina F, Solari A. Front Cell Infect Microbiol 11 670564 (2021)
  14. Structural and Molecular Kinetic Features of Activities of DNA Polymerases. Kuznetsova AA, Fedorova OS, Kuznetsov NA. Int J Mol Sci 23 6373 (2022)
  15. Mini review: Enzyme-based DNA synthesis and selective retrieval for data storage. Yoo E, Choe D, Shin J, Cho S, Cho BK. Comput Struct Biotechnol J 19 2468-2476 (2021)

Articles citing this publication (70)

  1. A gradient of template dependence defines distinct biological roles for family X polymerases in nonhomologous end joining. Nick McElhinny SA, Havener JM, Garcia-Diaz M, Juárez R, Bebenek K, Kee BL, Blanco L, Kunkel TA, Ramsden DA. Mol Cell 19 357-366 (2005)
  2. Simplified normal mode analysis of conformational transitions in DNA-dependent polymerases: the elastic network model. Delarue M, Sanejouand YH. J Mol Biol 320 1011-1024 (2002)
  3. Crystal structure of the 2'-specific and double-stranded RNA-activated interferon-induced antiviral protein 2'-5'-oligoadenylate synthetase. Hartmann R, Justesen J, Sarkar SN, Sen GC, Yee VC. Mol Cell 12 1173-1185 (2003)
  4. XRCC4:DNA ligase IV can ligate incompatible DNA ends and can ligate across gaps. Gu J, Lu H, Tippin B, Shimazaki N, Goodman MF, Lieber MR. EMBO J 26 1010-1023 (2007)
  5. A structural solution for the DNA polymerase lambda-dependent repair of DNA gaps with minimal homology. Garcia-Diaz M, Bebenek K, Krahn JM, Blanco L, Kunkel TA, Pedersen LC. Mol Cell 13 561-572 (2004)
  6. Crystal structures of the Bacillus stearothermophilus CCA-adding enzyme and its complexes with ATP or CTP. Li F, Xiong Y, Wang J, Cho HD, Tomita K, Weiner AM, Steitz TA. Cell 111 815-824 (2002)
  7. Structural insight into the substrate specificity of DNA Polymerase mu. Moon AF, Garcia-Diaz M, Bebenek K, Davis BJ, Zhong X, Ramsden DA, Kunkel TA, Pedersen LC. Nat Struct Mol Biol 14 45-53 (2007)
  8. Lack of sugar discrimination by human Pol mu requires a single glycine residue. Ruiz JF, Juárez R, García-Díaz M, Terrados G, Picher AJ, González-Barrera S, Fernández de Henestrosa AR, Blanco L. Nucleic Acids Res 31 4441-4449 (2003)
  9. Mechanism of poly(A) polymerase: structure of the enzyme-MgATP-RNA ternary complex and kinetic analysis. Balbo PB, Bohm A. Structure 15 1117-1131 (2007)
  10. Structural basis for UTP specificity of RNA editing TUTases from Trypanosoma brucei. Deng J, Ernst NL, Turley S, Stuart KD, Hol WG. EMBO J 24 4007-4017 (2005)
  11. Crystal structures of an archaeal class I CCA-adding enzyme and its nucleotide complexes. Xiong Y, Li F, Wang J, Weiner AM, Steitz TA. Mol Cell 12 1165-1172 (2003)
  12. Essential role for polymerase specialization in cellular nonhomologous end joining. Pryor JM, Waters CA, Aza A, Asagoshi K, Strom C, Mieczkowski PA, Blanco L, Ramsden DA. Proc Natl Acad Sci U S A 112 E4537-45 (2015)
  13. Structure and mechanism of the lincosamide antibiotic adenylyltransferase LinB. Morar M, Bhullar K, Hughes DW, Junop M, Wright GD. Structure 17 1649-1659 (2009)
  14. Limited terminal transferase in human DNA polymerase mu defines the required balance between accuracy and efficiency in NHEJ. Andrade P, Martín MJ, Martín MJ, Juárez R, López de Saro F, Blanco L. Proc Natl Acad Sci U S A 106 16203-16208 (2009)
  15. UTP-bound and Apo structures of a minimal RNA uridylyltransferase. Stagno J, Aphasizheva I, Rosengarth A, Luecke H, Aphasizhev R. J Mol Biol 366 882-899 (2007)
  16. Biochemical and structural insights into substrate binding and catalytic mechanism of mammalian poly(A) polymerase. Martin G, Möglich A, Keller W, Doublié S. J Mol Biol 341 911-925 (2004)
  17. Crystal structure of the Pyrococcus horikoshii DNA primase-UTP complex: implications for the mechanism of primer synthesis. Ito N, Nureki O, Shirouzu M, Yokoyama S, Hanaoka F. Genes Cells 8 913-923 (2003)
  18. A role for DNA polymerase mu in the emerging DJH rearrangements of the postgastrulation mouse embryo. Gozalbo-López B, Andrade P, Terrados G, de Andrés B, Serrano N, Cortegano I, Palacios B, Bernad A, Blanco L, Marcos MA, Gaspar ML. Mol Cell Biol 29 1266-1275 (2009)
  19. DNA-binding determinants promoting NHEJ by human Polμ. Martin MJ, Juarez R, Blanco L. Nucleic Acids Res 40 11389-11403 (2012)
  20. Loop 1 modulates the fidelity of DNA polymerase lambda. Bebenek K, Garcia-Diaz M, Zhou RZ, Povirk LF, Kunkel TA. Nucleic Acids Res 38 5419-5431 (2010)
  21. Mismatch tolerance by DNA polymerase Pol4 in the course of nonhomologous end joining in Saccharomyces cerevisiae. Pardo B, Ma E, Marcand S. Genetics 172 2689-2694 (2006)
  22. Mutagenesis of human DNA polymerase lambda: essential roles of Tyr505 and Phe506 for both DNA polymerase and terminal transferase activities. Shevelev I, Blanca G, Villani G, Ramadan K, Spadari S, Hübscher U, Maga G. Nucleic Acids Res 31 6916-6925 (2003)
  23. Structures of intermediates along the catalytic cycle of terminal deoxynucleotidyltransferase: dynamical aspects of the two-metal ion mechanism. Gouge J, Rosario S, Romain F, Beguin P, Delarue M. J Mol Biol 425 4334-4352 (2013)
  24. Characterization of SpPol4, a unique X-family DNA polymerase in Schizosaccharomyces pombe. González-Barrera S, Sánchez A, Ruiz JF, Juárez R, Picher AJ, Terrados G, Andrade P, Blanco L. Nucleic Acids Res 33 4762-4774 (2005)
  25. Crystal structures of the vaccinia virus polyadenylate polymerase heterodimer: insights into ATP selectivity and processivity. Moure CM, Bowman BR, Gershon PD, Quiocho FA. Mol Cell 22 339-349 (2006)
  26. Molecular modeling and functional characterization of the monomeric primase-polymerase domain from the Sulfolobus solfataricus plasmid pIT3. Prato S, Vitale RM, Contursi P, Lipps G, Saviano M, Rossi M, Bartolucci S. FEBS J 275 4389-4402 (2008)
  27. The use of non-natural nucleotides to probe template-independent DNA synthesis. Berdis AJ, McCutcheon D. Chembiochem 8 1399-1408 (2007)
  28. Mutational analysis of terminal deoxynucleotidyltransferase-mediated N-nucleotide addition in V(D)J recombination. Repasky JA, Corbett E, Boboila C, Schatz DG. J Immunol 172 5478-5488 (2004)
  29. Structural Basis for a New Templated Activity by Terminal Deoxynucleotidyl Transferase: Implications for V(D)J Recombination. Loc'h J, Rosario S, Delarue M. Structure 24 1452-1463 (2016)
  30. Enhancing Terminal Deoxynucleotidyl Transferase Activity on Substrates with 3' Terminal Structures for Enzymatic De Novo DNA Synthesis. Barthel S, Palluk S, Hillson NJ, Keasling JD, Arlow DH. Genes (Basel) 11 E102 (2020)
  31. Fluorescent xDNA nucleotides as efficient substrates for a template-independent polymerase. Jarchow-Choy SK, Krueger AT, Liu H, Gao J, Kool ET. Nucleic Acids Res 39 1586-1594 (2011)
  32. Phylogenetic analysis and evolutionary origins of DNA polymerase X-family members. Bienstock RJ, Beard WA, Wilson SH. DNA Repair (Amst) 22 77-88 (2014)
  33. Structural basis for a novel mechanism of DNA bridging and alignment in eukaryotic DSB DNA repair. Gouge J, Rosario S, Romain F, Poitevin F, Béguin P, Delarue M. EMBO J 34 1126-1142 (2015)
  34. The HI0073/HI0074 protein pair from Haemophilus influenzae is a member of a new nucleotidyltransferase family: structure, sequence analyses, and solution studies. Lehmann C, Lim K, Chalamasetty VR, Krajewski W, Melamud E, Galkin A, Howard A, Kelman Z, Reddy PT, Murzin AG, Herzberg O. Proteins 50 249-260 (2003)
  35. Statistical models for discerning protein structures containing the DNA-binding helix-turn-helix motif. McLaughlin WA, Berman HM. J Mol Biol 330 43-55 (2003)
  36. Modeling DNA polymerase μ motions: subtle transitions before chemistry. Li Y, Schlick T. Biophys J 99 3463-3472 (2010)
  37. Saving the ends for last: the role of pol mu in DNA end joining. Paull TT. Mol Cell 19 294-296 (2005)
  38. Sequential side-chain residue motions transform the binary into the ternary state of DNA polymerase lambda. Foley MC, Arora K, Schlick T. Biophys J 91 3182-3195 (2006)
  39. High-Molecular-Weight Polynucleotides by Transferase-Catalyzed Living Chain-Growth Polycondensation. Tang L, Navarro LA, Chilkoti A, Zauscher S. Angew Chem Int Ed Engl 56 6778-6782 (2017)
  40. Incorporation of non-nucleoside triphosphate analogues opposite to an abasic site by human DNA polymerases beta and lambda. Crespan E, Zanoli S, Khandazhinskaya A, Shevelev I, Jasko M, Alexandrova L, Kukhanova M, Blanca G, Villani G, Hübscher U, Spadari S, Maga G. Nucleic Acids Res 33 4117-4127 (2005)
  41. Characterization of terminal deoxynucleotidyl transferase and polymerase mu in zebrafish. Beetz S, Diekhoff D, Steiner LA. Immunogenetics 59 735-744 (2007)
  42. Early expression of two TdT isoforms in the hematopoietic system of the Mexican axolotl. Implications for the evolutionary origin of the N-nucleotide addition. Golub R, André S, Hassanin A, Affaticati P, Larijani M, Fellah JS. Immunogenetics 56 204-213 (2004)
  43. Identification of functional domains in TdIF1 and its inhibitory mechanism for TdT activity. Kubota T, Maezawa S, Koiwai K, Hayano T, Koiwai O. Genes Cells 12 941-959 (2007)
  44. Terminal deoxynucleotidyl transferases from elasmobranchs reveal structural conservation within vertebrates. Bartl S, Miracle AL, Rumfelt LL, Kepler TB, Mochon E, Litman GW, Flajnik MF. Immunogenetics 55 594-604 (2003)
  45. The structural basis of the kinetic mechanism of a gap-filling X-family DNA polymerase that binds Mg(2+)-dNTP before binding to DNA. Nakane S, Ishikawa H, Nakagawa N, Kuramitsu S, Masui R. J Mol Biol 417 179-196 (2012)
  46. Enzymatic synthesis of random sequences of RNA and RNA analogues by DNA polymerase theta mutants for the generation of aptamer libraries. Randrianjatovo-Gbalou I, Rosario S, Sismeiro O, Varet H, Legendre R, Coppée JY, Huteau V, Pochet S, Delarue M. Nucleic Acids Res 46 6271-6284 (2018)
  47. Loop II of DNA polymerase beta is important for polymerization activity and fidelity. Lin GC, Jaeger J, Sweasy JB. Nucleic Acids Res 35 2924-2935 (2007)
  48. Mechanism of U-insertion RNA editing in trypanosome mitochondria: characterization of RET2 functional domains by mutational analysis. Ringpis GE, Stagno J, Aphasizhev R. J Mol Biol 399 696-706 (2010)
  49. Terminal deoxynucleotidyltransferase forms a ternary complex with a novel chromatin remodeling protein with 82 kDa and core histone. Fujita K, Shimazaki N, Ohta Y, Kubota T, Ibe S, Toji S, Tamai K, Fujisaki S, Hayano T, Koiwai O. Genes Cells 8 559-571 (2003)
  50. News Two classes give lessons about CCA. Schimmel P, Yang XL. Nat Struct Mol Biol 11 807-808 (2004)
  51. Modified Nucleotides as Substrates of Terminal Deoxynucleotidyl Transferase. Tauraitė D, Jakubovska J, Dabužinskaitė J, Bratchikov M, Meškys R. Molecules 22 E672 (2017)
  52. False-positive TUNEL staining observed in SV40 based transgenic murine prostate cancer models. Lawrence MD, Blyth BJ, Ormsby RJ, Tilley WD, Sykes PJ. Transgenic Res 22 1037-1047 (2013)
  53. Mutations in the middle domain of yeast poly(A) polymerase affect interactions with RNA but not ATP. Zhelkovsky A, Helmling S, Bohm A, Moore C. RNA 10 558-564 (2004)
  54. N4-acyl-2'-deoxycytidine-5'-triphosphates for the enzymatic synthesis of modified DNA. Jakubovska J, Tauraite D, Birštonas L, Meškys R. Nucleic Acids Res 46 5911-5923 (2018)
  55. The Effects of Magnesium Ions on the Enzymatic Synthesis of Ligand-Bearing Artificial DNA by Template-Independent Polymerase. Takezawa Y, Kobayashi T, Shionoya M. Int J Mol Sci 17 E906 (2016)
  56. The active site of TthPolX is adapted to prevent 8-oxo-dGTP misincorporation. Garrido P, Mejia E, Garcia-Diaz M, Blanco L, Picher AJ. Nucleic Acids Res 42 534-543 (2014)
  57. Enzymatic synthesis and modification of high molecular weight DNA using terminal deoxynucleotidyl transferase. Deshpande S, Yang Y, Chilkoti A, Zauscher S. Methods Enzymol 627 163-188 (2019)
  58. Evidence that the long murine terminal deoxynucleotidyltransferase isoform plays no role in the control of V(D)J junctional diversity. Doyen N, Boulé JB, Rougeon F, Papanicolaou C. J Immunol 172 6764-6767 (2004)
  59. Molecular flexibility and discontinuous translocation of a non-templated polymerase. Johnson L, Liu S, Gershon PD. J Mol Biol 337 843-856 (2004)
  60. Analysis of diverse double-strand break synapsis with Polλ reveals basis for unique substrate specificity in nonhomologous end-joining. Kaminski AM, Chiruvella KK, Ramsden DA, Bebenek K, Kunkel TA, Pedersen LC. Nat Commun 13 3806 (2022)
  61. Analysis of oligonucleotide microarrays by 3' end labeling using fluorescent nucleotides and terminal transferase. Guerra CE. Biotechniques 41 53-56 (2006)
  62. BRCT domain of DNA polymerase μ has DNA-binding activity and promotes the DNA polymerization activity. Matsumoto T, Go K, Hyodo M, Koiwai K, Maezawa S, Hayano T, Suzuki M, Koiwai O. Genes Cells 17 790-806 (2012)
  63. Polμ tumor variants decrease the efficiency and accuracy of NHEJ. Sastre-Moreno G, Pryor JM, Díaz-Talavera A, Ruiz JF, Ramsden DA, Blanco L. Nucleic Acids Res 45 10018-10031 (2017)
  64. A model for the dynamics of mammalian family X DNA polymerases. Xie P. J Theor Biol 277 111-122 (2011)
  65. Structures of the Leishmania infantum polymerase beta. Mejia E, Burak M, Alonso A, Larraga V, Kunkel TA, Bebenek K, Garcia-Diaz M. DNA Repair (Amst) 18 1-9 (2014)
  66. Functional analyses of polymorphic variants of human terminal deoxynucleotidyl transferase. Troshchynsky A, Dzneladze I, Chen L, Sheng Y, Saridakis V, Wu GE. Genes Immun 16 388-398 (2015)
  67. Structural-functional relationships between terminal deoxynucleotidyltransferase and 5'-triphosphates of nucleoside analogs. Kukhanova MK, Ivanov AV, Jasko MV. Biochemistry (Mosc) 70 890-896 (2005)
  68. Synthesis of novel alkyl triphosphates and their substrate properties toward terminal deoxynucleotidyltransferase. Jasko M, Khandazhinskaya A, Alexandrova L, Shirokova E, Ivanov A, Kukhanova M. Nucleosides Nucleotides Nucleic Acids 26 323-334 (2007)
  69. [Structure-functional analysis of interactions of terminal deoxynucleotidyl transferase with new non-nucleoside substrates]. Matyugina ES, Alexandrova LA, Jas'ko MV, Ivanov AV, Vasil'ev IA, Lapteva VL, Khandazhinskaya AL, Kukhanova MK. Bioorg Khim 35 376-383 (2009)
  70. Noncanonical prokaryotic X family DNA polymerases lack polymerase activity and act as exonucleases. Prostova M, Shilkin E, Kulikova AA, Makarova A, Ryazansky S, Kulbachinskiy A. Nucleic Acids Res 50 6398-6413 (2022)


Related citations provided by authors (1)

  1. Crystallization of the Catalytic Domain of Murine Deoxynucleotidyl Transferase. Sukumar N, Boule JB, Expert-Bezancon N, Jourdan N, Lescar J, Rougeon F, Papanicolaou C, Delarue M Acta Crystallogr. D Biol. Crystallogr. 56 1662-1664 (2000)