1io4 Citations

Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta.

Abstract

The core binding factor (CBF) heterodimeric transcription factors comprised of AML/CBFA/PEBP2alpha/Runx and CBFbeta/PEBP2beta subunits are essential for differentiation of hematopoietic and bone cells, and their mutation is intimately related to the development of acute leukemias and cleidocranial dysplasia. Here, we present the crystal structures of the AML1/Runx-1/CBFalpha(Runt domain)-CBFbeta(core domain)-C/EBPbeta(bZip)-DNA, AML1/Runx-1/CBFalpha(Runt domain)-C/EBPbeta(bZip)-DNA, and AML1/Runx-1/CBFalpha(Runt domain)-DNA complexes. The hydrogen bonding network formed among CBFalpha(Runt domain) and CBFbeta, and CBFalpha(Runt domain) and DNA revealed the allosteric regulation mechanism of CBFalpha(Runt domain)-DNA binding by CBFbeta. The point mutations of CBFalpha related to the aforementioned diseases were also mapped and their effect on DNA binding is discussed.

Reviews - 1io4 mentioned but not cited (1)

  1. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)

Articles - 1io4 mentioned but not cited (13)

  1. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL. Della Gatta G, Palomero T, Perez-Garcia A, Ambesi-Impiombato A, Bansal M, Carpenter ZW, De Keersmaecker K, Sole X, Xu L, Paietta E, Racevskis J, Wiernik PH, Rowe JM, Meijerink JP, Califano A, Ferrando AA. Nat Med 18 436-440 (2012)
  2. Structural basis of pheromone binding to mouse major urinary protein (MUP-I). Timm DE, Baker LJ, Mueller H, Zidek L, Novotny MV. Protein Sci 10 997-1004 (2001)
  3. MuPIT interactive: webserver for mapping variant positions to annotated, interactive 3D structures. Niknafs N, Kim D, Kim R, Diekhans M, Ryan M, Stenson PD, Cooper DN, Karchin R. Hum Genet 132 1235-1243 (2013)
  4. Structural and functional insights on the Myosin superfamily. Syamaladevi DP, Spudich JA, Sowdhamini R. Bioinform Biol Insights 6 11-21 (2012)
  5. How sequence directs bending in tropomyosin and other two-stranded alpha-helical coiled coils. Brown JH. Protein Sci 19 1366-1375 (2010)
  6. Identification of RUNX3 as a component of the MST/Hpo signaling pathway. Min B, Kim MK, Zhang JW, Kim J, Chung KC, Oh BC, Stein GS, Lee YH, van Wijnen AJ, Bae SC. J Cell Physiol 227 839-849 (2012)
  7. Structural attributes for the recognition of weak and anomalous regions in coiled-coils of myosins and other motor proteins. Sunitha MS, Nair AG, Charya A, Jadhav K, Mukhopadhyay S, Sowdhamini R. BMC Res Notes 5 530 (2012)
  8. PiDNA: Predicting protein-DNA interactions with structural models. Lin CK, Chen CY. Nucleic Acids Res 41 W523-30 (2013)
  9. DNA-binding residues and binding mode prediction with binding-mechanism concerned models. Huang YF, Huang CC, Liu YC, Oyang YJ, Huang CK. BMC Genomics 10 Suppl 3 S23 (2009)
  10. Large-Size Subunit Catalases Are Chimeric Proteins: A H2O2 Selecting Domain with Catalase Activity Fused to a Hsp31-Derived Domain Conferring Protein Stability and Chaperone Activity. Hansberg W, Nava-Ramírez T, Rangel-Silva P, Díaz-Vilchis A, Mendoza-Oliva A. Antioxidants (Basel) 11 979 (2022)
  11. Structural and functional studies of SAV0551 from Staphylococcus aureus as a chaperone and glyoxalase III. Kim HJ, Lee KY, Kwon AR, Lee BJ. Biosci Rep 37 BSR20171106 (2017)
  12. New insights into transcriptional and leukemogenic mechanisms of AML1-ETO and E2A fusion proteins. Li J, Guo C, Steinauer N, Zhang J. Front Biol (Beijing) 11 285-304 (2016)
  13. Thermodynamic investigation of DNA-binding affinity of wild-type and mutant transcription factor RUNX1. Wu F, Song T, Yao Y, Song Y. PLoS One 14 e0216203 (2019)


Reviews citing this publication (56)

  1. CCAAT/enhancer-binding proteins: structure, function and regulation. Ramji DP, Foka P. Biochem J 365 561-575 (2002)
  2. Origins of specificity in protein-DNA recognition. Rohs R, Jin X, West SM, Joshi R, Honig B, Mann RS. Annu Rev Biochem 79 233-269 (2010)
  3. Core-binding factors in haematopoiesis and leukaemia. Speck NA, Gilliland DG. Nat Rev Cancer 2 502-513 (2002)
  4. The RUNX genes: gain or loss of function in cancer. Blyth K, Cameron ER, Neil JC. Nat Rev Cancer 5 376-387 (2005)
  5. The RUNX family: developmental regulators in cancer. Ito Y, Bae SC, Chuang LS. Nat Rev Cancer 15 81-95 (2015)
  6. Oncogenic potential of the RUNX gene family: 'overview'. Ito Y. Oncogene 23 4198-4208 (2004)
  7. Runx2: a master organizer of gene transcription in developing and maturing osteoblasts. Schroeder TM, Jensen ED, Westendorf JJ. Birth Defects Res C Embryo Today 75 213-225 (2005)
  8. Recognition of specific DNA sequences. Garvie CW, Wolberger C. Mol Cell 8 937-946 (2001)
  9. Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Osato M. Oncogene 23 4284-4296 (2004)
  10. Runx2, a multifunctional transcription factor in skeletal development. Komori T. J Cell Biochem 87 1-8 (2002)
  11. The CCAAT/enhancer (C/EBP) family of basic-leucine zipper (bZIP) transcription factors is a multifaceted highly-regulated system for gene regulation. Tsukada J, Yoshida Y, Kominato Y, Auron PE. Cytokine 54 6-19 (2011)
  12. AML1 and the AML1-ETO fusion protein in the pathogenesis of t(8;21) AML. Licht JD. Oncogene 20 5660-5679 (2001)
  13. Regulation of C/EBPβ and resulting functions in cells of the monocytic lineage. Huber R, Pietsch D, Panterodt T, Brand K. Cell Signal 24 1287-1296 (2012)
  14. RUNX1 and RUNX1-ETO: roles in hematopoiesis and leukemogenesis. Lam K, Zhang DE. Front Biosci (Landmark Ed) 17 1120-1139 (2012)
  15. Structural perspective of cooperative transcription factor binding. Morgunova E, Taipale J. Curr Opin Struct Biol 47 1-8 (2017)
  16. Eukaryotic transcriptional regulatory complexes: cooperativity from near and afar. Ogata K, Sato K, Tahirov TH. Curr Opin Struct Biol 13 40-48 (2003)
  17. A role for RUNX1 in hematopoiesis and myeloid leukemia. Ichikawa M, Yoshimi A, Nakagawa M, Nishimoto N, Watanabe-Okochi N, Kurokawa M. Int J Hematol 97 726-734 (2013)
  18. RUNX1 mutations in clonal myeloid disorders: from conventional cytogenetics to next generation sequencing, a story 40 years in the making. Mangan JK, Speck NA. Crit Rev Oncog 16 77-91 (2011)
  19. The core-binding factor leukemias: lessons learned from murine models. Downing JR. Curr Opin Genet Dev 13 48-54 (2003)
  20. Mechanism of leukemogenesis by the inv(16) chimeric gene CBFB/PEBP2B-MHY11. Shigesada K, van de Sluis B, Liu PP. Oncogene 23 4297-4307 (2004)
  21. Complementing mutations in core binding factor leukemias: from mouse models to clinical applications. Müller AM, Duque J, Shizuru JA, Lübbert M. Oncogene 27 5759-5773 (2008)
  22. Normal and transforming functions of RUNX1: a perspective. Mikhail FM, Sinha KK, Saunthararajah Y, Nucifora G. J Cell Physiol 207 582-593 (2006)
  23. RUNX family: Oncogenes or tumor suppressors (Review). Otálora-Otálora BA, Henríquez B, López-Kleine L, Rojas A. Oncol Rep 42 3-19 (2019)
  24. Role of RUNX in autoimmune diseases linking rheumatoid arthritis, psoriasis and lupus. Alarcón-Riquelme ME. Arthritis Res Ther 6 169-173 (2004)
  25. Genome reading by the NF-κB transcription factors. Mulero MC, Wang VY, Huxford T, Ghosh G. Nucleic Acids Res 47 9967-9989 (2019)
  26. Survey of the year 2001 commercial optical biosensor literature. Rich RL, Myszka DG. J Mol Recognit 15 352-376 (2002)
  27. Point mutations of the RUNx1/AML1 gene in sporadic and familial myeloid leukemias. Osato M, Yanagida M, Shigesada K, Ito Y. Int J Hematol 74 245-251 (2001)
  28. RUNX1 meets MLL: epigenetic regulation of hematopoiesis by two leukemia genes. Koh CP, Wang CQ, Ng CE, Ito Y, Araki M, Tergaonkar V, Huang G, Osato M. Leukemia 27 1793-1802 (2013)
  29. Cleidocranial dysplasia and RUNX2-clinical phenotype-genotype correlation. Jaruga A, Hordyjewska E, Kandzierski G, Tylzanowski P. Clin Genet 90 393-402 (2016)
  30. Eukaryotic transcription factors. Warren AJ. Curr Opin Struct Biol 12 107-114 (2002)
  31. RUNX regulates stem cell proliferation and differentiation: insights from studies of C. elegans. Kagoshima H, Shigesada K, Kohara Y. J Cell Biochem 100 1119-1130 (2007)
  32. Targeting protein-protein interactions in hematologic malignancies: still a challenge or a great opportunity for future therapies? Cierpicki T, Grembecka J. Immunol Rev 263 279-301 (2015)
  33. Transcription factor mutations as a cause of familial myeloid neoplasms. Churpek JE, Bresnick EH. J Clin Invest 129 476-488 (2019)
  34. Making Sense of Multifunctional Proteins: Human Immunodeficiency Virus Type 1 Accessory and Regulatory Proteins and Connections to Transcription. Faust TB, Binning JM, Gross JD, Frankel AD. Annu Rev Virol 4 241-260 (2017)
  35. Transcription factor complexes. Burley SK, Kamada K. Curr Opin Struct Biol 12 225-230 (2002)
  36. Transcriptional dysregulation in skeletal malformation syndromes. Hermanns P, Lee B. Am J Med Genet 106 258-271 (2001)
  37. The animal in the genome: comparative genomics and evolution. Copley RR. Philos Trans R Soc Lond B Biol Sci 363 1453-1461 (2008)
  38. Function of the inv(16) fusion gene CBFB-MYH11. Kundu M, Liu PP. Curr Opin Hematol 8 201-205 (2001)
  39. RUNX3-mediated repression of RUNX1 in B cells. Brady G, Farrell PJ. J Cell Physiol 221 283-287 (2009)
  40. RUNX1 Dosage in Development and Cancer. Lie-A-Ling M, Mevel R, Patel R, Blyth K, Baena E, Kouskoff V, Lacaud G. Mol Cells 43 126-138 (2020)
  41. Structural and functional characterization of Runx1, CBF beta, and CBF beta-SMMHC. Zhang L, Lukasik SM, Speck NA, Bushweller JH. Blood Cells Mol Dis 30 147-156 (2003)
  42. Novel Implications of DNA Damage Response in Drug Resistance of Malignant Cancers Obtained from the Functional Interaction between p53 Family and RUNX2. Ozaki T, Nakamura M, Shimozato O. Biomolecules 5 2854-2876 (2015)
  43. Runx proteins and transcriptional mechanisms that govern memory CD8 T cell development. Pipkin ME. Immunol Rev 300 100-124 (2021)
  44. Roles of Histone Deacetylases in Acute Myeloid Leukemia With Fusion Proteins. Zhang J, Gao X, Yu L. Front Oncol 11 741746 (2021)
  45. Mutational analyses of the AML1 gene in patients with myelodysplastic syndrome. Imai O, Kurokawa M, Izutsu K, Hangaishi A, Maki K, Ogawa S, Chiba S, Mitani K, Hirai H. Leuk Lymphoma 43 617-621 (2002)
  46. The assembly of Vif ubiquitin E3 ligase for APOBEC3 degradation. Kim DY. Arch Pharm Res 38 435-445 (2015)
  47. The Role of Somatic Mutations in Acute Myeloid Leukemia Pathogenesis. Kishtagari A, Levine RL. Cold Spring Harb Perspect Med 11 a034975 (2021)
  48. An updated account on molecular heterogeneity of acute leukemia. Rahul E, Goel H, Chopra A, Ranjan A, Gupta AK, Meena JP, Bakhshi S, Misra A, Hussain S, Viswanathan GK, Rath GK, Tanwar P. Am J Blood Res 11 22-43 (2021)
  49. CROX (Cluster Regulation of RUNX) as a Potential Novel Therapeutic Approach. Kamikubo Y. Mol Cells 43 198-202 (2020)
  50. RUNX2 and Cancer. Lin TC. Int J Mol Sci 24 7001 (2023)
  51. The RUNX Family of Proteins, DNA Repair, and Cancer. Krishnan V. Cells 12 1106 (2023)
  52. The Roles of RUNX Proteins in Lymphocyte Function and Anti-Tumor Immunity. Seo W, Nomura A, Taniuchi I. Cells 11 3116 (2022)
  53. The roles of Runx1 in skeletal development and osteoarthritis: A concise review. Liu Y, Huang C, Bai M, Pi C, Zhang D, Xie J. Heliyon 8 e12656 (2022)
  54. Transcription Factors as Novel Therapeutic Targets and Drivers of Prostate Cancer Progression. Xie K, Tan K, Naylor MJ. Front Oncol 12 854151 (2022)
  55. Targeting Pim1 kinase in the treatment of peanut allergy. Wang M, Gelfand EW. Expert Opin Ther Targets 18 177-183 (2014)
  56. The RUNX/CBFβ Complex in Breast Cancer: A Conundrum of Context. Khan AS, Campbell KJ, Cameron ER, Blyth K. Cells 12 641 (2023)

Articles citing this publication (149)

  1. MatInspector and beyond: promoter analysis based on transcription factor binding sites. Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M, Werner T. Bioinformatics 21 2933-2942 (2005)
  2. Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Slattery M, Riley T, Liu P, Abe N, Gomez-Alcala P, Dror I, Zhou T, Rohs R, Honig B, Bussemaker HJ, Mann RS. Cell 147 1270-1282 (2011)
  3. Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Samstein RM, Arvey A, Josefowicz SZ, Peng X, Reynolds A, Sandstrom R, Neph S, Sabo P, Kim JM, Liao W, Li MO, Leslie C, Stamatoyannopoulos JA, Rudensky AY. Cell 151 153-166 (2012)
  4. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Tang JL, Hou HA, Chen CY, Liu CY, Chou WC, Tseng MH, Huang CF, Lee FY, Liu MC, Yao M, Huang SY, Ko BS, Hsu SC, Wu SJ, Tsay W, Chen YC, Lin LI, Tien HF. Blood 114 5352-5361 (2009)
  5. Core-binding factor beta interacts with Runx2 and is required for skeletal development. Yoshida CA, Furuichi T, Fujita T, Fukuyama R, Kanatani N, Kobayashi S, Satake M, Takada K, Komori T. Nat Genet 32 633-638 (2002)
  6. T-cell differentiation factor CBF-β regulates HIV-1 Vif-mediated evasion of host restriction. Zhang W, Du J, Evans SL, Yu Y, Yu XF. Nature 481 376-379 (2011)
  7. IL-1 induces collagenase-3 (MMP-13) promoter activity in stably transfected chondrocytic cells: requirement for Runx-2 and activation by p38 MAPK and JNK pathways. Mengshol JA, Vincenti MP, Brinckerhoff CE. Nucleic Acids Res 29 4361-4372 (2001)
  8. Cbfbeta interacts with Runx2 and has a critical role in bone development. Kundu M, Javed A, Jeon JP, Horner A, Shum L, Eckhaus M, Muenke M, Lian JB, Yang Y, Nuckolls GH, Stein GS, Liu PP. Nat Genet 32 639-644 (2002)
  9. Runx-CBFbeta complexes control expression of the transcription factor Foxp3 in regulatory T cells. Rudra D, Egawa T, Chong MM, Treuting P, Littman DR, Rudensky AY. Nat Immunol 10 1170-1177 (2009)
  10. Structural studies of Ets-1/Pax5 complex formation on DNA. Garvie CW, Hagman J, Wolberger C. Mol Cell 8 1267-1276 (2001)
  11. The core-binding factor beta subunit is required for bone formation and hematopoietic maturation. Miller J, Horner A, Stacy T, Lowrey C, Lian JB, Stein G, Nuckolls GH, Speck NA. Nat Genet 32 645-649 (2002)
  12. Mechanism of c-Myb-C/EBP beta cooperation from separated sites on a promoter. Tahirov TH, Sato K, Ichikawa-Iwata E, Sasaki M, Inoue-Bungo T, Shiina M, Kimura K, Takata S, Fujikawa A, Morii H, Kumasaka T, Yamamoto M, Ishii S, Ogata K. Cell 108 57-70 (2002)
  13. Runx2 transcriptome of prostate cancer cells: insights into invasiveness and bone metastasis. Baniwal SK, Khalid O, Gabet Y, Shah RR, Purcell DJ, Mav D, Kohn-Gabet AE, Shi Y, Coetzee GA, Frenkel B. Mol Cancer 9 258 (2010)
  14. Functional analysis of RUNX2 mutations in Japanese patients with cleidocranial dysplasia demonstrates novel genotype-phenotype correlations. Yoshida T, Kanegane H, Osato M, Yanagida M, Miyawaki T, Ito Y, Shigesada K. Am J Hum Genet 71 724-738 (2002)
  15. RUNX1 gene mutation in primary myelodysplastic syndrome--the mutation can be detected early at diagnosis or acquired during disease progression and is associated with poor outcome. Chen CY, Lin LI, Tang JL, Ko BS, Tsay W, Chou WC, Yao M, Wu SJ, Tseng MH, Tien HF. Br J Haematol 139 405-414 (2007)
  16. The Transcription Factor Runx3 Establishes Chromatin Accessibility of cis-Regulatory Landscapes that Drive Memory Cytotoxic T Lymphocyte Formation. Wang D, Diao H, Getzler AJ, Rogal W, Frederick MA, Milner J, Yu B, Crotty S, Goldrath AW, Pipkin ME. Immunity 48 659-674.e6 (2018)
  17. DBD-Hunter: a knowledge-based method for the prediction of DNA-protein interactions. Gao M, Skolnick J. Nucleic Acids Res 36 3978-3992 (2008)
  18. CBFβ stabilizes HIV Vif to counteract APOBEC3 at the expense of RUNX1 target gene expression. Kim DY, Kwon E, Hartley PD, Crosby DC, Mann S, Krogan NJ, Gross JD. Mol Cell 49 632-644 (2013)
  19. Structural basis for recognition of SMRT/N-CoR by the MYND domain and its contribution to AML1/ETO's activity. Liu Y, Chen W, Gaudet J, Cheney MD, Roudaia L, Cierpicki T, Klet RC, Hartman K, Laue TM, Speck NA, Bushweller JH. Cancer Cell 11 483-497 (2007)
  20. Disease mutations in RUNX1 and RUNX2 create nonfunctional, dominant-negative, or hypomorphic alleles. Matheny CJ, Speck ME, Cushing PR, Zhou Y, Corpora T, Regan M, Newman M, Roudaia L, Speck CL, Gu TL, Griffey SM, Bushweller JH, Speck NA. EMBO J 26 1163-1175 (2007)
  21. Trisomy 13 is strongly associated with AML1/RUNX1 mutations and increased FLT3 expression in acute myeloid leukemia. Dicker F, Haferlach C, Kern W, Haferlach T, Schnittger S. Blood 110 1308-1316 (2007)
  22. Metastatic breast cancer cells inhibit osteoblast differentiation through the Runx2/CBFβ-dependent expression of the Wnt antagonist, sclerostin. Mendoza-Villanueva D, Zeef L, Shore P. Breast Cancer Res 13 R106 (2011)
  23. The evolution of Runx genes I. A comparative study of sequences from phylogenetically diverse model organisms. Rennert J, Coffman JA, Mushegian AR, Robertson AJ. BMC Evol Biol 3 4 (2003)
  24. The crystal structure of the C-terminal fragment of striated-muscle alpha-tropomyosin reveals a key troponin T recognition site. Li Y, Mui S, Brown JH, Strand J, Reshetnikova L, Tobacman LS, Cohen C. Proc Natl Acad Sci U S A 99 7378-7383 (2002)
  25. Differentiation-dependent interactions between RUNX-1 and FLI-1 during megakaryocyte development. Huang H, Yu M, Akie TE, Moran TB, Woo AJ, Tu N, Waldon Z, Lin YY, Steen H, Cantor AB. Mol Cell Biol 29 4103-4115 (2009)
  26. RUNX1, a transcription factor mutated in breast cancer, controls the fate of ER-positive mammary luminal cells. van Bragt MP, Hu X, Xie Y, Li Z. Elife 3 e03881 (2014)
  27. Groucho homologue Grg5 interacts with the transcription factor Runx2-Cbfa1 and modulates its activity during postnatal growth in mice. Wang W, Wang YG, Reginato AM, Glotzer DJ, Fukai N, Plotkina S, Karsenty G, Olsen BR. Dev Biol 270 364-381 (2004)
  28. Identification of RUNX1/AML1 as a classical tumor suppressor gene. Silva FP, Morolli B, Storlazzi CT, Anelli L, Wessels H, Bezrookove V, Kluin-Nelemans HC, Giphart-Gassler M. Oncogene 22 538-547 (2003)
  29. RUNX1-mutated families show phenotype heterogeneity and a somatic mutation profile unique to germline predisposed AML. Brown AL, Arts P, Carmichael CL, Babic M, Dobbins J, Chong CE, Schreiber AW, Feng J, Phillips K, Wang PPS, Ha T, Homan CC, King-Smith SL, Rawlings L, Vakulin C, Dubowsky A, Burdett J, Moore S, McKavanagh G, Henry D, Wells A, Mercorella B, Nicola M, Suttle J, Wilkins E, Li XC, Michaud J, Brautigan P, Cannon P, Altree M, Jaensch L, Fine M, Butcher C, D'Andrea RJ, Lewis ID, Hiwase DK, Papaemmanuil E, Horwitz MS, Natsoulis G, Rienhoff HY, Patton N, Mapp S, Susman R, Morgan S, Cooney J, Currie M, Popat U, Bochtler T, Izraeli S, Bradstock K, Godley LA, Krämer A, Fröhling S, Wei AH, Forsyth C, Mar Fan H, Poplawski NK, Hahn CN, Scott HS. Blood Adv 4 1131-1144 (2020)
  30. Runx1 dose-dependently regulates endochondral ossification during skeletal development and fracture healing. Soung do Y, Talebian L, Matheny CJ, Guzzo R, Speck ME, Lieberman JR, Speck NA, Drissi H. J Bone Miner Res 27 1585-1597 (2012)
  31. Structure of the sporulation-specific transcription factor Ndt80 bound to DNA. Lamoureux JS, Stuart D, Tsang R, Wu C, Glover JN. EMBO J 21 5721-5732 (2002)
  32. CBFbeta allosterically regulates the Runx1 Runt domain via a dynamic conformational equilibrium. Yan J, Liu Y, Lukasik SM, Speck NA, Bushweller JH. Nat Struct Mol Biol 11 901-906 (2004)
  33. Mutations of the AML1 gene in acute myeloid leukemia of FAB types M0 and M7. Langabeer SE, Gale RE, Rollinson SJ, Morgan GJ, Linch DC. Genes Chromosomes Cancer 34 24-32 (2002)
  34. RUNX super-enhancer control through the Notch pathway by Epstein-Barr virus transcription factors regulates B cell growth. Gunnell A, Webb HM, Wood CD, McClellan MJ, Wichaidit B, Kempkes B, Jenner RG, Osborne C, Farrell PJ, West MJ. Nucleic Acids Res 44 4636-4650 (2016)
  35. Runt-related transcription factor RUNX3 is a target of MDM2-mediated ubiquitination. Chi XZ, Kim J, Lee YH, Lee JW, Lee KS, Wee H, Kim WJ, Park WY, Oh BC, Stein GS, Ito Y, van Wijnen AJ, Bae SC. Cancer Res 69 8111-8119 (2009)
  36. Oct-1 counteracts autoinhibition of Runx2 DNA binding to form a novel Runx2/Oct-1 complex on the promoter of the mammary gland-specific gene beta-casein. Inman CK, Li N, Shore P. Mol Cell Biol 25 3182-3193 (2005)
  37. Transcription factor mutations in myelodysplastic/myeloproliferative neoplasms. Ernst T, Chase A, Zoi K, Waghorn K, Hidalgo-Curtis C, Score J, Jones A, Grand F, Reiter A, Hochhaus A, Cross NC. Haematologica 95 1473-1480 (2010)
  38. CBFbeta is critical for AML1-ETO and TEL-AML1 activity. Roudaia L, Cheney MD, Manuylova E, Chen W, Morrow M, Park S, Lee CT, Kaur P, Williams O, Bushweller JH, Speck NA. Blood 113 3070-3079 (2009)
  39. Fusion gene-mediated truncation of RUNX1 as a potential mechanism underlying disease progression in the 8p11 myeloproliferative syndrome. Agerstam H, Lilljebjörn H, Lassen C, Swedin A, Richter J, Vandenberghe P, Johansson B, Fioretos T. Genes Chromosomes Cancer 46 635-643 (2007)
  40. Comment A RUNX trio with a taste for autoimmunity. Alarcón-Riquelme ME. Nat Genet 35 299-300 (2003)
  41. Recruitment of the extracellular signal-regulated kinase/ribosomal S6 kinase signaling pathway to the NFATc4 transcription activation complex. Yang TT, Xiong Q, Graef IA, Crabtree GR, Chow CW. Mol Cell Biol 25 907-920 (2005)
  42. The RUNX1 Runt domain at 1.25A resolution: a structural switch and specifically bound chloride ions modulate DNA binding. Bäckström S, Wolf-Watz M, Grundström C, Härd T, Grundström T, Sauer UH. J Mol Biol 322 259-272 (2002)
  43. A novel inherited mutation of the transcription factor RUNX1 causes thrombocytopenia and may predispose to acute myeloid leukaemia. Walker LC, Stevens J, Campbell H, Corbett R, Spearing R, Heaton D, Macdonald DH, Morris CM, Ganly P. Br J Haematol 117 878-881 (2002)
  44. DNA recognition by the RUNX1 transcription factor is mediated by an allosteric transition in the RUNT domain and by DNA bending. Bartfeld D, Shimon L, Couture GC, Rabinovich D, Frolow F, Levanon D, Groner Y, Shakked Z. Structure 10 1395-1407 (2002)
  45. Lineage-Specific Viral Hijacking of Non-canonical E3 Ubiquitin Ligase Cofactors in the Evolution of Vif Anti-APOBEC3 Activity. Kane JR, Stanley DJ, Hultquist JF, Johnson JR, Mietrach N, Binning JM, Jónsson SR, Barelier S, Newton BW, Johnson TL, Franks-Skiba KE, Li M, Brown WL, Gunnarsson HI, Adalbjornsdóttir A, Fraser JS, Harris RS, Andrésdóttir V, Gross JD, Krogan NJ. Cell Rep 11 1236-1250 (2015)
  46. Recognition of 5'-YpG-3' sequences by coupled stacking/hydrogen bonding interactions with amino acid residues. Lamoureux JS, Maynes JT, Glover JN. J Mol Biol 335 399-408 (2004)
  47. The Runx transcriptional co-activator, CBFbeta, is essential for invasion of breast cancer cells. Mendoza-Villanueva D, Deng W, Lopez-Camacho C, Shore P. Mol Cancer 9 171 (2010)
  48. Functional features of RUNX1 mutants in acute transformation of chronic myeloid leukemia and their contribution to inducing murine full-blown leukemia. Zhao LJ, Wang YY, Li G, Ma LY, Xiong SM, Weng XQ, Zhang WN, Wu B, Chen Z, Chen SJ. Blood 119 2873-2882 (2012)
  49. Functional analysis of RUNX2 mutations in cleidocranial dysplasia: novel insights into genotype-phenotype correlations. Yoshida T, Kanegane H, Osato M, Yanagida M, Miyawaki T, Ito Y, Shigesada K. Blood Cells Mol Dis 30 184-193 (2003)
  50. A RUNX2-Mediated Epigenetic Regulation of the Survival of p53 Defective Cancer Cells. Shin MH, He Y, Marrogi E, Piperdi S, Ren L, Khanna C, Gorlick R, Liu C, Huang J. PLoS Genet 12 e1005884 (2016)
  51. Dimer-tetramer transition controls RUNX1/ETO leukemogenic activity. Wichmann C, Becker Y, Chen-Wichmann L, Vogel V, Vojtkova A, Herglotz J, Moore S, Koch J, Lausen J, Mäntele W, Gohlke H, Grez M. Blood 116 603-613 (2010)
  52. Identification of novel genes of the bone-specific transcription factor Runx2. Stock M, Schäfer H, Fliegauf M, Otto F. J Bone Miner Res 19 959-972 (2004)
  53. AML1/RUNX1 mutations are infrequent, but related to AML-M0, acquired trisomy 21, and leukemic transformation in pediatric hematologic malignancies. Taketani T, Taki T, Takita J, Tsuchida M, Hanada R, Hongo T, Kaneko T, Manabe A, Ida K, Hayashi Y. Genes Chromosomes Cancer 38 1-7 (2003)
  54. Filamin A-bound PEBP2beta/CBFbeta is retained in the cytoplasm and prevented from functioning as a partner of the Runx1 transcription factor. Yoshida N, Ogata T, Tanabe K, Li S, Nakazato M, Kohu K, Takafuta T, Shapiro S, Ohta Y, Satake M, Watanabe T. Mol Cell Biol 25 1003-1012 (2005)
  55. Natural Genetic Variation Reveals Key Features of Epigenetic and Transcriptional Memory in Virus-Specific CD8 T Cells. van der Veeken J, Zhong Y, Sharma R, Mazutis L, Dao P, Pe'er D, Leslie CS, Rudensky AY. Immunity 50 1202-1217.e7 (2019)
  56. The N-terminal Acetyltransferase Naa10/ARD1 Does Not Acetylate Lysine Residues. Magin RS, March ZM, Marmorstein R. J Biol Chem 291 5270-5277 (2016)
  57. Differential requirements for HIV-1 Vif-mediated APOBEC3G degradation and RUNX1-mediated transcription by core binding factor beta. Du J, Zhao K, Rui Y, Li P, Zhou X, Zhang W, Yu XF. J Virol 87 1906-1911 (2013)
  58. Runx1 binds as a dimeric complex to overlapping Runx1 sites within a palindromic element in the human GM-CSF enhancer. Bowers SR, Calero-Nieto FJ, Valeaux S, Fernandez-Fuentes N, Cockerill PN. Nucleic Acids Res 38 6124-6134 (2010)
  59. HIV type 1 viral infectivity factor and the RUNX transcription factors interact with core binding factor β on genetically distinct surfaces. Hultquist JF, McDougle RM, Anderson BD, Harris RS. AIDS Res Hum Retroviruses 28 1543-1551 (2012)
  60. RUNX1/AML1 mutant collaborates with BMI1 overexpression in the development of human and murine myelodysplastic syndromes. Harada Y, Inoue D, Ding Y, Imagawa J, Doki N, Matsui H, Yahata T, Matsushita H, Ando K, Sashida G, Iwama A, Kitamura T, Harada H. Blood 121 3434-3446 (2013)
  61. Signatures of protein-DNA recognition in free DNA binding sites. Locasale JW, Napoli AA, Chen S, Berman HM, Lawson CL. J Mol Biol 386 1054-1065 (2009)
  62. Divergence in DNA Specificity among Paralogous Transcription Factors Contributes to Their Differential In Vivo Binding. Shen N, Zhao J, Schipper JL, Zhang Y, Bepler T, Leehr D, Bradley J, Horton J, Lapp H, Gordan R. Cell Syst 6 470-483.e8 (2018)
  63. Mutational analysis of RUNX2 gene in Chinese patients with cleidocranial dysplasia. Zhang C, Zheng S, Wang Y, Zhao Y, Zhu J, Ge L. Mutagenesis 25 589-594 (2010)
  64. A novel gene, FGA7, is fused to RUNX1/AML1 in a t(4;21)(q28;q22) in a patient with T-cell acute lymphoblastic leukemia. Mikhail FM, Coignet L, Hatem N, Mourad ZI, Farawela HM, El Kaffash DM, Farahat N, Nucifora G. Genes Chromosomes Cancer 39 110-118 (2004)
  65. RUNX family members are covalently modified and regulated by PIAS1-mediated sumoylation. Kim JH, Jang JW, Lee YS, Lee JW, Chi XZ, Li YH, Kim MK, Kim DM, Choi BS, Kim J, Kim HM, van Wijnen A, Park I, Bae SC. Oncogenesis 3 e101 (2014)
  66. Single-cell transcriptomics reveals a new dynamical function of transcription factors during embryonic hematopoiesis. Bergiers I, Andrews T, Vargel Bölükbaşı Ö, Buness A, Janosz E, Lopez-Anguita N, Ganter K, Kosim K, Celen C, Itır Perçin G, Collier P, Baying B, Benes V, Hemberg M, Lancrin C. Elife 7 e29312 (2018)
  67. Structural basis of Ets1 activation by Runx1. Shrivastava T, Mino K, Babayeva ND, Baranovskaya OI, Rizzino A, Tahirov TH. Leukemia 28 2040-2048 (2014)
  68. Cbfb enhances the osteogenic differentiation of both human and mouse mesenchymal stem cells induced by Cbfa-1 via reducing its ubiquitination-mediated degradation. Lien CY, Lee OK, Su Y. Stem Cells 25 1462-1468 (2007)
  69. RNT-1, the C. elegans homologue of mammalian RUNX transcription factors, regulates body size and male tail development. Ji YJ, Nam S, Jin YH, Cha EJ, Lee KS, Choi KY, Song HO, Lee J, Bae SC, Ahnn J. Dev Biol 274 402-412 (2004)
  70. Bone-related gene profiles in developing calvaria. Cho JY, Lee WB, Kim HJ, Mi Woo K, Baek JH, Choi JY, Hur CG, Ryoo HM. Gene 372 71-81 (2006)
  71. Multimerization via its myosin domain facilitates nuclear localization and inhibition of core binding factor (CBF) activities by the CBFbeta-smooth muscle myosin heavy chain myeloid leukemia oncoprotein. Kummalue T, Lou J, Friedman AD. Mol Cell Biol 22 8278-8291 (2002)
  72. A novel allosteric mechanism on protein-DNA interactions underlying the phosphorylation-dependent regulation of Ets1 target gene expressions. Shiina M, Hamada K, Inoue-Bungo T, Shimamura M, Uchiyama A, Baba S, Sato K, Yamamoto M, Ogata K. J Mol Biol 427 1655-1669 (2015)
  73. Hyperglycemia and redox status regulate RUNX2 DNA-binding and an angiogenic phenotype in endothelial cells. Mochin MT, Underwood KF, Cooper B, McLenithan JC, Pierce AD, Nalvarte C, Arbiser J, Karlsson AI, Moise AR, Moskovitz J, Passaniti A. Microvasc Res 97 55-64 (2015)
  74. Novel loss-of-function mutations of the haematopoiesis-related transcription factor, acute myeloid leukaemia 1/runt-related transcription factor 1, detected in acute myeloblastic leukaemia and myelodysplastic syndrome. Nakao M, Horiike S, Fukushima-Nakase Y, Nishimura M, Fujita Y, Taniwaki M, Okuda T. Br J Haematol 125 709-719 (2004)
  75. Homeobox protein TLX3 activates miR-125b expression to promote T-cell acute lymphoblastic leukemia. Renou L, Boelle PY, Deswarte C, Spicuglia S, Benyoucef A, Calvo J, Uzan B, Belhocine M, Cieslak A, Landman-Parker J, Baruchel A, Asnafi V, Pflumio F, Ballerini P, Naguibneva I. Blood Adv 1 733-747 (2017)
  76. Large fontanelles are a shared feature of haploinsufficiency of RUNX2 and its co-activator CBFB. Goto T, Aramaki M, Yoshihashi H, Nishimura G, Hasegawa Y, Takahashi T, Ishii T, Fukushima Y, Kosaki K. Congenit Anom (Kyoto) 44 225-229 (2004)
  77. RUNX3 interactome reveals novel centrosomal targeting of RUNX family of transcription factors. Chuang LS, Lai SK, Murata-Hori M, Yamada A, Li HY, Gunaratne J, Ito Y. Cell Cycle 11 1938-1947 (2012)
  78. Rasip1 is a RUNX1 target gene and promotes migration of NSCLC cells. Chen Y, Zhang L, Liu L, Sun S, Zhao X, Wang Y, Zhang Y, Du J, Gu L. Cancer Manag Res 10 4537-4552 (2018)
  79. Aurora kinase-induced phosphorylation excludes transcription factor RUNX from the chromatin to facilitate proper mitotic progression. Chuang LS, Khor JM, Lai SK, Garg S, Krishnan V, Koh CG, Lee SH, Ito Y. Proc Natl Acad Sci U S A 113 6490-6495 (2016)
  80. CBFB-MYH11 hinders early T-cell development and induces massive cell death in the thymus. Zhao L, Cannons JL, Anderson S, Kirby M, Xu L, Castilla LH, Schwartzberg PL, Bosselut R, Liu PP. Blood 109 3432-3440 (2007)
  81. CBFbeta is a facultative Runx partner in the sea urchin embryo. Robertson AJ, Dickey-Sims C, Ransick A, Rupp DE, McCarthy JJ, Coffman JA. BMC Biol 4 4 (2006)
  82. Cell-specific expression of runt-related transcription factor 2 contributes to pulmonary fibrosis. Mümmler C, Burgy O, Hermann S, Mutze K, Günther A, Königshoff M. FASEB J 32 703-716 (2018)
  83. The Runt domain of AML1 (RUNX1) binds a sequence-conserved RNA motif that mimics a DNA element. Fukunaga J, Nomura Y, Tanaka Y, Amano R, Tanaka T, Nakamura Y, Kawai G, Sakamoto T, Kozu T. RNA 19 927-936 (2013)
  84. Transcriptional Auto-Regulation of RUNX1 P1 Promoter. Martinez M, Hinojosa M, Trombly D, Morin V, Stein J, Stein G, Javed A, Gutierrez SE. PLoS One 11 e0149119 (2016)
  85. Vif determines the requirement for CBF-β in APOBEC3 degradation. Yoshikawa R, Takeuchi JS, Yamada E, Nakano Y, Ren F, Tanaka H, Münk C, Harris RS, Miyazawa T, Koyanagi Y, Sato K. J Gen Virol 96 887-892 (2015)
  86. Analysis of novel RUNX2 mutations in Chinese patients with cleidocranial dysplasia. Zhang X, Liu Y, Wang X, Sun X, Zhang C, Zheng S. PLoS One 12 e0181653 (2017)
  87. Characterization of critical interactions between Ndt80 and MSE DNA defining a novel family of Ig-fold transcription factors. Fingerman IM, Sutphen K, Montano SP, Georgiadis MM, Vershon AK. Nucleic Acids Res 32 2947-2956 (2004)
  88. Characterization of the Runx gene family in a jawless vertebrate, the Japanese lamprey (Lethenteron japonicum). Nah GS, Tay BH, Brenner S, Osato M, Venkatesh B. PLoS One 9 e113445 (2014)
  89. Core binding factor in the early avian embryo: cloning of Cbfbeta and combinatorial expression patterns with Runx1. Bollerot K, Romero S, Dunon D, Jaffredo T. Gene Expr Patterns 6 29-39 (2005)
  90. Molecular analysis of a new variant of the CBF beta-MYH11 gene fusion. Stulberg J, Kamel-Reid S, Chun K, Tokunaga J, Wells RA. Leuk Lymphoma 43 2021-2026 (2002)
  91. Novel function of the unique N-terminal region of RUNX1c in B cell growth regulation. Brady G, Elgueta Karstegl C, Farrell PJ. Nucleic Acids Res 41 1555-1568 (2013)
  92. The novel RUNX3/p33 isoform is induced upon monocyte-derived dendritic cell maturation and downregulates IL-8 expression. Puig-Kröger A, Aguilera-Montilla N, Martínez-Nuñez R, Domínguez-Soto A, Sánchez-Cabo F, Martín-Gayo E, Zaballos A, Toribio ML, Groner Y, Ito Y, Dopazo A, Corcuera MT, Alonso Martín MJ, Vega MA, Corbí AL. Immunobiology 215 812-820 (2010)
  93. CBFβ enhances de novo protein biosynthesis of its binding partners HIV-1 Vif and RUNX1 and potentiates the Vif-induced degradation of APOBEC3G. Miyagi E, Kao S, Yedavalli V, Strebel K. J Virol 88 4839-4852 (2014)
  94. Characterization of RNA aptamers that disrupt the RUNX1-CBFbeta/DNA complex. Barton JL, Bunka DH, Knowling SE, Lefevre P, Warren AJ, Bonifer C, Stockley PG. Nucleic Acids Res 37 6818-6830 (2009)
  95. The Transcription Factor Runx2 Is Required for Long-Term Persistence of Antiviral CD8+ Memory T Cells. Olesin E, Nayar R, Saikumar-Lakshmi P, Berg LJ. Immunohorizons 2 251-261 (2018)
  96. A novel RUNX2 missense mutation predicted to disrupt DNA binding causes cleidocranial dysplasia in a large Chinese family with hyperplastic nails. Tang S, Xu Q, Xu X, Du J, Yang X, Jiang Y, Wang X, Speck N, Huang T. BMC Med Genet 8 82 (2007)
  97. Identification of an N-terminal transactivation domain of Runx1 that separates molecular function from global differentiation function. Liu H, Carlsson L, Grundström T. J Biol Chem 281 25659-25669 (2006)
  98. Selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC. Shi R, Mullins EA, Shen XX, Lay KT, Yuen PK, David SS, Rokas A, Eichman BF. EMBO J 37 63-74 (2018)
  99. Selective deployment of transcription factor paralogs with submaximal strength facilitates gene regulation in the immune system. Bruno L, Ramlall V, Studer RA, Sauer S, Bradley D, Dharmalingam G, Carroll T, Ghoneim M, Chopin M, Nutt SL, Elderkin S, Rueda DS, Fisher AG, Siggers T, Beltrao P, Merkenschlager M. Nat Immunol 20 1372-1380 (2019)
  100. Trichromatic concept optimizes MAD experiments in synchrotron X-ray crystallography. Kumasaka T, Yamamoto M, Yamashita E, Moriyama H, Ueki T. Structure 10 1205-1210 (2002)
  101. Regulation of RUNX2 transcription factor-DNA interactions and cell proliferation by vitamin D3 (cholecalciferol) prohormone activity. Underwood KF, D'Souza DR, Mochin-Peters M, Pierce AD, Kommineni S, Choe M, Bennett J, Gnatt A, Habtemariam B, MacKerell AD, Passaniti A. J Bone Miner Res 27 913-925 (2012)
  102. Functional analysis of a novel RUNX2 missense mutation found in a family with cleidocranial dysplasia. Puppin C, Pellizzari L, Fabbro D, Fogolari F, Tell G, Tessa A, Santorelli FM, Damante G. J Hum Genet 50 679-683 (2005)
  103. Principles of protein-DNA recognition revealed in the structural analysis of Ndt80-MSE DNA complexes. Lamoureux JS, Glover JN. Structure 14 555-565 (2006)
  104. The cleidocranial dysplasia-related R131G mutation in the Runt-related transcription factor RUNX2 disrupts binding to DNA but not CBF-beta. Han MS, Kim HJ, Wee HJ, Lim KE, Park NR, Bae SC, van Wijnen AJ, Stein JL, Lian JB, Stein GS, Choi JY. J Cell Biochem 110 97-103 (2010)
  105. Letter The role of CBFbeta in AML1-ETO's activity. Park S, Speck NA, Bushweller JH. Blood 114 2849-2850 (2009)
  106. A mutation in the S-switch region of the Runt domain alters the dynamics of an allosteric network responsible for CBFbeta regulation. Li Z, Lukasik SM, Liu Y, Grembecka J, Bielnicka I, Bushweller JH, Speck NA. J Mol Biol 364 1073-1083 (2006)
  107. Cbf beta is involved in maturation of all lineages of hematopoietic cells during embryogenesis except erythroid. Kundu M, Liu PP. Blood Cells Mol Dis 30 164-169 (2003)
  108. Cooperative binding of DNA and CBFbeta to the Runt domain of the CBFalpha studied via MD simulations. Habtemariam B, Anisimov VM, MacKerell AD. Nucleic Acids Res 33 4212-4222 (2005)
  109. Glucocorticoids Inhibit Oncogenic RUNX1-ETO in Acute Myeloid Leukemia with Chromosome Translocation t(8;21). Lu L, Wen Y, Yao Y, Chen F, Wang G, Wu F, Wu J, Narayanan P, Redell M, Mo Q, Song Y. Theranostics 8 2189-2201 (2018)
  110. Identification of a new pebp2alphaA2 isoform from zebrafish runx2 capable of inducing osteocalcin gene expression in vitro. Pinto JP, Conceição NM, Viegas CS, Leite RB, Hurst LD, Kelsh RN, Cancela ML. J Bone Miner Res 20 1440-1453 (2005)
  111. Interaction of Epstein-Barr virus BZLF1 C-terminal tail structure and core zipper is required for DNA replication but not for promoter transactivation. McDonald CM, Petosa C, Farrell PJ. J Virol 83 3397-3401 (2009)
  112. RUNX2 mutation reduces osteogenic differentiation of dental follicle cells in cleidocranial dysplasia. Liu Y, Wang Y, Sun X, Zhang X, Wang X, Zhang C, Zheng S. Mutagenesis 33 203-214 (2018)
  113. A DNA-binding-independent pathway of repression by the Drosophila Runt protein. Vander Zwan CJ, Wheeler JC, Li LH, Tracey WD, Gergen JP. Blood Cells Mol Dis 30 207-222 (2003)
  114. Solution structure of a DNA mimicking motif of an RNA aptamer against transcription factor AML1 Runt domain. Nomura Y, Tanaka Y, Fukunaga J, Fujiwara K, Chiba M, Iibuchi H, Tanaka T, Nakamura Y, Kawai G, Kozu T, Sakamoto T. J Biochem 154 513-519 (2013)
  115. A tool compound targeting the core binding factor Runt domain to disrupt binding to CBFβ in leukemic cells. Oo ZM, Illendula A, Grembecka J, Schmidt C, Zhou Y, Esain V, Kwan W, Frost I, North TE, Rajewski RA, Speck NA, Bushweller JH. Leuk Lymphoma 59 2188-2200 (2018)
  116. Inhibition of the RUNX1-CBFβ transcription factor complex compromises mammary epithelial cell identity: a phenotype potentially stabilized by mitotic gene bookmarking. Rose JT, Moskovitz E, Boyd JR, Gordon JA, Bouffard NA, Fritz AJ, Illendula A, Bushweller JH, Lian JB, Stein JL, Zaidi SK, Stein GS. Oncotarget 11 2512-2530 (2020)
  117. Molecular flexibility in protein-DNA interactions. Günther S, Rother K, Frömmel C. Biosystems 85 126-136 (2006)
  118. Myeloid malignancies with acquired trisomy 21 as the sole cytogenetic change are clinically highly variable and display a heterogeneous pattern of copy number alterations and mutations. Larsson N, Lilljebjörn H, Lassen C, Johansson B, Fioretos T. Eur J Haematol 88 136-143 (2012)
  119. Regulation of murine Ada gene expression in the placenta by transcription factor RUNX1. Schaubach BM, Wen HY, Kellems RE. Placenta 27 269-277 (2006)
  120. Dual transcriptional regulation by runx2 of matrix Gla protein in Xenopus laevis. Fazenda C, Simões B, Kelsh RN, Cancela ML, Conceição N. Gene 450 94-102 (2010)
  121. Genetic evidence of PEBP2beta-independent activation of Runx1 in the murine embryo. Yokomizo T, Yanagida M, Yanagida M, Huang G, Osato M, Honda C, Ema M, Takahashi S, Yamamoto M, Ito Y. Int J Hematol 88 134-138 (2008)
  122. Pan-cancer Landscape of the RUNX Protein Family Reveals their Potential as Carcinogenic Biomarkers and the Mechanisms Underlying their Action. Pan S, Sun S, Liu B, Hou Y. J Transl Int Med 10 156-174 (2022)
  123. The essential roles of core binding factors CfRunt and CfCBFβ in hemocyte production of scallop Chlamys farreri. Yue F, Zhou Z, Wang L, Sun R, Jiang Q, Yi Q, Zhang T, Song L. Dev Comp Immunol 44 291-302 (2014)
  124. A novel in-frame deletion of the RUNX2 gene causes a classic form of cleidocranial dysplasia. Matsushita M, Kitoh H, Kaneko H, Mishima K, Itoh Y, Tokita Y, Ishiguro N. J Bone Miner Metab 32 96-99 (2014)
  125. Analysis of the minimal specificity of caspase-2 and identification of Ac-VDTTD-AFC as a caspase-2-selective peptide substrate. Kitevska T, Roberts SJ, Pantaki-Eimany D, Boyd SE, Scott FL, Hawkins CJ. Biosci Rep 34 e00100 (2014)
  126. Central Role of Core Binding Factor β2 in Mucosa-Associated Lymphoid Tissue Organogenesis in Mouse. Nagatake T, Fukuyama S, Sato S, Okura H, Tachibana M, Taniuchi I, Ito K, Shimojou M, Matsumoto N, Suzuki H, Kunisawa J, Kiyono H. PLoS One 10 e0127460 (2015)
  127. Decoding of exon splicing patterns in the human RUNX1-RUNX1T1 fusion gene. Grinev VV, Migas AA, Kirsanava AD, Mishkova OA, Siomava N, Ramanouskaya TV, Vaitsiankova AV, Ilyushonak IM, Nazarov PV, Vallar L, Aleinikova OV. Int J Biochem Cell Biol 68 48-58 (2015)
  128. Functional analysis of novel RUNX2 mutations in cleidocranial dysplasia. Zeng L, Wei J, Han D, Liu H, Liu Y, Zhao N, Sun S, Wang Y, Feng H. Mutagenesis 32 437-443 (2017)
  129. RNA aptamer inhibitors of a restriction endonuclease. Mondragón E, Maher LJ. Nucleic Acids Res 43 7544-7555 (2015)
  130. Runx family genes in a cartilaginous fish, the elephant shark (Callorhinchus milii). Nah GS, Lim ZW, Tay BH, Osato M, Venkatesh B. PLoS One 9 e93816 (2014)
  131. Two novel translocations disrupt the RUNX1 gene in acute myeloid leukemia. Dai H, Xue Y, Pan J, Wu Y, Wang Y, Shen J, Zhang J. Cancer Genet Cytogenet 177 120-124 (2007)
  132. Abnormal bone remodelling activity of dental follicle cells from a cleidocranial dysplasia patient. Liu Y, Zhang X, Sun X, Wang X, Zhang C, Zheng S. Oral Dis 24 1270-1281 (2018)
  133. Allosteric interference in oncogenic FLI1 and ERG transactions by mithramycins. Hou C, Mandal A, Rohr J, Tsodikov OV. Structure 29 404-412.e4 (2021)
  134. Expression, purification, crystallization and preliminary X-ray analysis of a C-terminal fragment of the Epstein-Barr virus ZEBRA protein. Morand P, Budayova-Spano M, Perrissin M, Müller CW, Petosa C. Acta Crystallogr Sect F Struct Biol Cryst Commun 62 210-214 (2006)
  135. Novel Mutation of the RUNX2 Gene in Patients with Cleidocranial Dysplasia. Hordyjewska E, Jaruga A, Kandzierski G, Tylzanowski P. Mol Syndromol 8 253-260 (2017)
  136. Structural aspects of the FOXP3 regulatory complex as an immunopharmacological target. Zhou Z, Song X, Berezov A, Li B, Greene MI. Int Immunopharmacol 9 518-520 (2009)
  137. Characterisation of an aptamer against the Runt domain of AML1 (RUNX1) by NMR and mutational analyses. Takada K, Amano R, Nomura Y, Tanaka Y, Sugiyama S, Nagata T, Katahira M, Nakamura Y, Kozu T, Sakamoto T. FEBS Open Bio 8 264-270 (2018)
  138. Conjugation of two RNA aptamers improves binding affinity to AML1 Runt domain. Nomura Y, Yamazaki K, Amano R, Takada K, Nagata T, Kobayashi N, Tanaka Y, Fukunaga J, Katahira M, Kozu T, Nakamura Y, Haishima Y, Torigoe H, Sakamoto T. J Biochem 162 431-436 (2017)
  139. Dopamine-dependent, swimming-induced paralysis arises as a consequence of loss of function mutations in the RUNX transcription factor RNT-1. Robinson SB, Refai O, Hardaway JA, Sturgeon S, Popay T, Bermingham DP, Freeman P, Wright J, Blakely RD. PLoS One 14 e0216417 (2019)
  140. Comment Pharmacological inhibition of aberrant transcription factor complexes in inversion 16 acute myeloid leukemia. Potluri S, Coleman D, Bonifer C. Stem Cell Investig 5 30 (2018)
  141. RUN-CBFbeta interaction in C. elegans: computational prediction and experimental verification. Suad O, Eyal E, Blumenzweig I, Kessler N, Levanon D, Groner Y, Shakked Z. J Biomol Struct Dyn 24 343-358 (2007)
  142. Structural basis for cell type specific DNA binding of C/EBPβ: The case of cell cycle inhibitor p15INK4b promoter. Lountos GT, Cherry S, Tropea JE, Wlodawer A, Miller M. J Struct Biol 214 107918 (2022)
  143. A dual role for DNA binding by Runt in activation and repression of sloppy paired transcription. Prazak L, Iwasaki Y, Kim AR, Kozlov K, King K, Gergen JP. Mol Biol Cell 32 ar26 (2021)
  144. An Exploration Into Improving DNA Motif Inference by Looking for Highly Conserved Core Regions. Thompson JA, Congdon CB. IEEE Symp Comput Intell Bioinforma Comput Biol Proc 2013 60-67 (2013)
  145. Core binding factor subunit β plays diverse and essential roles in the male germline. Rahmawati M, Stadler KM, Lopez-Biladeau B, Hoisington TM, Law NC. Front Cell Dev Biol 11 1284184 (2023)
  146. Functional consequences of C-terminal mutations in RUNX2. Thaweesapphithak S, Theerapanon T, Rattanapornsompong K, Intarak N, Kanpittaya P, Trachoo V, Porntaveetus T, Shotelersuk V. Sci Rep 13 12202 (2023)
  147. Heterozygous pathogenic variants involving CBFB cause a new skeletal disorder resembling cleidocranial dysplasia. Beyltjens T, Boudin E, Revencu N, Boeckx N, Bertrand M, Schütz L, Haack TB, Weber A, Biliouri E, Vinkšel M, Zagožen A, Peterlin B, Pai S, Telegrafi A, Henderson LB, Ells C, Turner L, Wuyts W, Van Hul W, Hendrickx G, Mortier GR. J Med Genet 60 498-504 (2023)
  148. RUNX3 inactivates oncogenic MYC through disruption of MYC/MAX complex and subsequent recruitment of GSK3β-FBXW7 cascade. Oei V, Chuang LSH, Matsuo J, Srivastava S, Teh M, Ito Y. Commun Biol 6 689 (2023)
  149. Runx1-R188Q germ line mutation induces inflammation and predisposition to hematologic malignancies in mice. Ahmad MH, Hegde M, Wong WJ, Mohammadhosseini M, Garrett L, Carrascoso A, Issac N, Ebert B, Silva JC, Pihan G, Zhu LJ, Wolfe SA, Agarwal A, Liu PP, Castilla LH. Blood Adv 7 7304-7318 (2023)


Related citations provided by authors (1)