1igt Citations

Refined structure of an intact IgG2a monoclonal antibody.

Biochemistry 36 1581-97 (1997)
Cited: 185 times
EuropePMC logo PMID: 9048542


The structure of an intact, anti-canine lymphoma monoclonal antibody (Mab231) was determined by molecular replacement and refined in a triclinic cell to an R-value of 20.9%, using synchrotron diffraction data from 2.8 to 20 A resolution. All segments of the antibody, including the hinge region and carbohydrate component, are visible in electron density maps. There is no overall symmetry to the antibody, as the Fc is disposed in an entirely oblique manner with respect to the Fabs. The CH2 and CH3 domains do, however, possess a nearly exact, local 2-fold relationship. The Fab segments are related by a second, independent, local dyad axis, exact only with respect to constant domains. Variable domains exhibit no symmetry relationship as a consequence of the 16 degrees difference in Fab elbow angles. Variable domain pair associations VL:VH for the Fabs are virtually the same, and corresponding CDRs of the two Fabs also are nearly identical in structure. CDR-H3 displays the greatest difference. Hypervariable loops of both Fabs are involved in contacts with symmetry-related Fc segments at the CH2-CH3 switch junction, suggesting a "complex" structure. The hinge segment connecting Fabs with the Fc is quite extended and exhibits thermal factors indicative of a high degree of mobility. It consists of a well-defined upper hinge that partially maintains dyad symmetry and a fairly rigid core bounded above and below by fluid polypeptides that provide segmental flexibility. This structure represents the first visualization by X-ray analysis of a murine Fc segment, and its CH2 domains exhibit substantial rigid body conformational changes with respect to the human Fc used as an initial molecular replacement model. The oligosaccharides were found by difference Fourier syntheses to be very similar to those of the free human Fc fragment, although differences are present in the terminal residues. The detailed structure of the IgG presented here, and the distribution of effector binding sites, appears consistent with effector activation mechanisms involving translocation and/or aggregation of the Fc following antigen binding by the Fabs.

Reviews - 1igt mentioned but not cited (10)

  1. Molecular basis of high viscosity in concentrated antibody solutions: Strategies for high concentration drug product development. Tomar DS, Kumar S, Singh SK, Goswami S, Li L. MAbs 8 216-228 (2016)
  2. Fc-Binding Ligands of Immunoglobulin G: An Overview of High Affinity Proteins and Peptides. Choe W, Durgannavar TA, Chung SJ. Materials (Basel) 9 (2016)
  3. From single molecules to life: microscopy at the nanoscale. Turkowyd B, Virant D, Endesfelder U. Anal Bioanal Chem 408 6885-6911 (2016)
  4. Distinct antibody species: structural differences creating therapeutic opportunities. Muyldermans S, Smider VV. Curr. Opin. Immunol. 40 7-13 (2016)
  5. Field Guide to Challenges and Opportunities in Antibody-Drug Conjugates for Chemists. Gordon MR, Canakci M, Li L, Zhuang J, Osborne B, Thayumanavan S. Bioconjug. Chem. 26 2198-2215 (2015)
  6. A tug-of-war between the host and the pathogen generates strategic hotspots for the development of novel therapeutic interventions against infectious diseases. Rana A, Ahmed M, Rub A, Akhter Y. Virulence 6 566-580 (2015)
  7. Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research. Ercius P, Alaidi O, Rames MJ, Ren G. Adv. Mater. Weinheim 27 5638-5663 (2015)
  8. The structural basis of antibody-antigen recognition. Sela-Culang I, Kunik V, Ofran Y. Front Immunol 4 302 (2013)
  9. Lipid-mediated endocytosis. Ewers H, Helenius A. Cold Spring Harb Perspect Biol 3 a004721 (2011)
  10. Chemically modified antibodies as diagnostic imaging agents. Day JJ, Marquez BV, Beck HE, Aweda TA, Gawande PD, Meares CF. Curr Opin Chem Biol 14 803-809 (2010)

Articles - 1igt mentioned but not cited (35)

  1. Bioorthogonal chemistry amplifies nanoparticle binding and enhances the sensitivity of cell detection. Haun JB, Devaraj NK, Hilderbrand SA, Lee H, Weissleder R. Nat Nanotechnol 5 660-665 (2010)
  2. Mutations on the external surfaces of adeno-associated virus type 2 capsids that affect transduction and neutralization. Lochrie MA, Tatsuno GP, Christie B, McDonnell JW, Zhou S, Surosky R, Pierce GF, Colosi P. J. Virol. 80 821-834 (2006)
  3. Potential aggregation prone regions in biotherapeutics: A survey of commercial monoclonal antibodies. Wang X, Das TK, Singh SK, Kumar S. MAbs 1 254-267 (2009)
  4. The structure of p53 tumour suppressor protein reveals the basis for its functional plasticity. Okorokov AL, Sherman MB, Plisson C, Grinkevich V, Sigmundsson K, Selivanova G, Milner J, Orlova EV. EMBO J. 25 5191-5200 (2006)
  5. Positioning protein molecules on surfaces: a nanoengineering approach to supramolecular chemistry. Liu GY, Amro NA. Proc. Natl. Acad. Sci. U.S.A. 99 5165-5170 (2002)
  6. Fabrication of nanometer-sized protein patterns using atomic force microscopy and selective immobilization. Wadu-Mesthrige K, Amro NA, Garno JC, Xu S, Liu G. Biophys. J. 80 1891-1899 (2001)
  7. The molecular basis for modulation of human Vγ9Vδ2 T cell responses by CD277/butyrophilin-3 (BTN3A)-specific antibodies. Palakodeti A, Sandstrom A, Sundaresan L, Harly C, Nedellec S, Olive D, Scotet E, Bonneville M, Adams EJ. J. Biol. Chem. 287 32780-32790 (2012)
  8. Dynamic nature of disulphide bond formation catalysts revealed by crystal structures of DsbB. Inaba K, Murakami S, Nakagawa A, Iida H, Kinjo M, Ito K, Suzuki M. EMBO J. 28 779-791 (2009)
  9. A nanoengineering approach for investigation and regulation of protein immobilization. Tan YH, Liu M, Nolting B, Go JG, Gervay-Hague J, Liu GY. ACS Nano 2 2374-2384 (2008)
  10. Structure of the core editing complex (L-complex) involved in uridine insertion/deletion RNA editing in trypanosomatid mitochondria. Li F, Ge P, Hui WH, Atanasov I, Rogers K, Guo Q, Osato D, Falick AM, Zhou ZH, Simpson L. Proc. Natl. Acad. Sci. U.S.A. 106 12306-12310 (2009)
  11. IPET and FETR: experimental approach for studying molecular structure dynamics by cryo-electron tomography of a single-molecule structure. Zhang L, Ren G. PLoS ONE 7 e30249 (2012)
  12. Immobilized antibody orientation analysis using secondary ion mass spectrometry and fluorescence imaging of affinity-generated patterns. Liu F, Dubey M, Takahashi H, Castner DG, Grainger DW. Anal. Chem. 82 2947-2958 (2010)
  13. Crystal structure of the conserved domain of the DC lysosomal associated membrane protein: implications for the lysosomal glycocalyx. Wilke S, Krausze J, Büssow K. BMC Biol. 10 62 (2012)
  14. Natural and man-made V-gene repertoires for antibody discovery. Finlay WJ, Almagro JC. Front Immunol 3 342 (2012)
  15. Conformational flexibility in immunoglobulin E-Fc 3-4 revealed in multiple crystal forms. Wurzburg BA, Jardetzky TS. J. Mol. Biol. 393 176-190 (2009)
  16. Illuminating the life of GPCRs. Böhme I, Beck-Sickinger AG. Cell Commun. Signal 7 16 (2009)
  17. Control of cytoplasmic dynein force production and processivity by its C-terminal domain. Nicholas MP, Höök P, Brenner S, Wynne CL, Vallee RB, Gennerich A. Nat Commun 6 6206 (2015)
  18. Construction, MD simulation, and hydrodynamic validation of an all-atom model of a monoclonal IgG antibody. Brandt JP, Patapoff TW, Aragon SR. Biophys. J. 99 905-913 (2010)
  19. Complementary MS methods assist conformational characterization of antibodies with altered S-S bonding networks. Jones LM, Zhang H, Cui W, Kumar S, Sperry JB, Carroll JA, Gross ML. J. Am. Soc. Mass Spectrom. 24 835-845 (2013)
  20. Identifying foldable regions in protein sequence from the hydrophobic signal. Pang CN, Lin K, Wouters MA, Heringa J, George RA. Nucleic Acids Res. 36 578-588 (2008)
  21. P-fimbriae in the presence of anti-PapA antibodies: new insight of antibodies action against pathogens. Mortezaei N, Singh B, Bullitt E, Uhlin BE, Andersson M. Sci Rep 3 3393 (2013)
  22. A relation between the principal axes of inertia and ligand binding. Foote J, Raman A. Proc. Natl. Acad. Sci. U.S.A. 97 978-983 (2000)
  23. Optimized negative staining: a high-throughput protocol for examining small and asymmetric protein structure by electron microscopy. Rames M, Yu Y, Ren G. J Vis Exp e51087 (2014)
  24. A differential cell capture assay for evaluating antibody interactions with cell surface targets. Sherman DJ, Kenanova VE, Lepin EJ, McCabe KE, Kamei K, Ohashi M, Wang S, Tseng HR, Wu AM, Behrenbruch CP. Anal. Biochem. 401 173-181 (2010)
  25. Structural basis for antibody discrimination between two hormones that recognize the parathyroid hormone receptor. McKinstry WJ, Polekhina G, Diefenbach-Jagger H, Ho PW, Sato K, Onuma E, Gillespie MT, Martin TJ, Parker MW. J. Biol. Chem. 284 15557-15563 (2009)
  26. Anti-interleukin-6 therapy through application of a monogenic protein inhibitor via gene delivery. Görtz D, Braun GS, Maruta Y, Djudjaj S, van Roeyen CR, Martin IV, Küster A, Schmitz-Van de Leur H, Scheller J, Ostendorf T, Floege J, Müller-Newen G. Sci Rep 5 14685 (2015)
  27. Structural Basis of GD2 Ganglioside and Mimetic Peptide Recognition by 14G2a Antibody. Horwacik I, Golik P, Grudnik P, Kolinski M, Zdzalik M, Rokita H, Dubin G. Mol. Cell Proteomics 14 2577-2590 (2015)
  28. Structural Insights into Reovirus σ1 Interactions with Two Neutralizing Antibodies. Dietrich MH, Ogden KM, Katen SP, Reiss K, Sutherland DM, Carnahan RH, Goff M, Cooper T, Dermody TS, Stehle T. J. Virol. 91 (2017)
  29. Conformation-controlled binding kinetics of antibodies. Galanti M, Fanelli D, Piazza F. Sci Rep 6 18976 (2016)
  30. Lamprey VLRB response to influenza virus supports universal rules of immunogenicity and antigenicity. Altman MO, Bennink JR, Yewdell JW, Herrin BR. Elife 4 (2015)
  31. Degradation of C-terminal tag sequences on domain antibodies purified from E. coli supernatant. Lykkemark S, Mandrup OA, Friis NA, Kristensen P. MAbs 6 1551-1559 (2014)
  32. Intramesoporous silica structure differentiating protein loading density. Qi W, Li X, Chen B, Yao P, Lei C, Liu J. Mater Lett 75 102-106 (2012)
  33. A covalent and cleavable antibody-DNA conjugation strategy for sensitive protein detection via immuno-PCR. van Buggenum JA, Gerlach JP, Eising S, Schoonen L, van Eijl RA, Tanis SE, Hogeweg M, Hubner NC, van Hest JC, Bonger KM, Mulder KW. Sci Rep 6 22675 (2016)
  34. Mapping of Ebolavirus Neutralization by Monoclonal Antibodies in the ZMapp Cocktail Using Cryo-Electron Tomography and Studies of Cellular Entry. Tran EE, Nelson EA, Bonagiri P, Simmons JA, Shoemaker CJ, Schmaljohn CS, Kobinger GP, Zeitlin L, Subramaniam S, White JM. J. Virol. 90 7618-7627 (2016)
  35. Direct measurement of conformational strain energy in protofilaments curling outward from disassembling microtubule tips. Driver JW, Geyer EA, Bailey ME, Rice LM, Asbury CL. Elife 6 (2017)

Reviews citing this publication (22)

  1. Development of therapeutic antibodies to G protein-coupled receptors and ion channels: Opportunities, challenges and their therapeutic potential in respiratory diseases. Douthwaite JA, Finch DK, Mustelin T, Wilkinson TC. Pharmacol. Ther. 169 113-123 (2017)
  2. Using X-Ray Crystallography to Simplify and Accelerate Biologics Drug Development. Brader ML, Baker EN, Dunn MF, Laue TM, Carpenter JF. J Pharm Sci 106 477-494 (2017)
  3. Challenges and opportunities for monoclonal antibody therapy in veterinary oncology. Beirão BC, Raposo T, Jain S, Hupp T, Argyle DJ. Vet. J. 218 40-50 (2016)
  4. Acoustic biosensors. Fogel R, Limson J, Seshia AA. Essays Biochem. 60 101-110 (2016)
  5. Ig Constant Region Effects on Variable Region Structure and Function. Janda A, Bowen A, Greenspan NS, Casadevall A. Front Microbiol 7 22 (2016)
  6. Discovery of functional antibodies targeting ion channels. Wilkinson TC, Gardener MJ, Williams WA. J Biomol Screen 20 454-467 (2015)
  7. Human IgG4: a structural perspective. Davies AM, Sutton BJ. Immunol. Rev. 268 139-159 (2015)
  8. Paving the Way to Understand Autoantibody-Mediated Epilepsy on the Molecular Level. Seebohm G, Piccini I, Strutz-Seebohm N. Front Neurol 6 149 (2015)
  9. Large-scale crystallization of proteins for purification and formulation. Hekmat D. Bioprocess Biosyst Eng 38 1209-1231 (2015)
  10. The supramolecular chemistry of β-sheets. Cheng PN, Pham JD, Nowick JS. J. Am. Chem. Soc. 135 5477-5492 (2013)
  11. Function and 3D structure of the N-glycans on glycoproteins. Nagae M, Yamaguchi Y. Int J Mol Sci 13 8398-8429 (2012)
  12. Immunoglobulin superfamily virus receptors and the evolution of adaptive immunity. Dermody TS, Kirchner E, Guglielmi KM, Stehle T. PLoS Pathog. 5 e1000481 (2009)
  13. Synthetic antibodies as therapeutics. Fuh G. Expert Opin Biol Ther 7 73-87 (2007)
  14. The role of molecular modelling in biomedical research. Tramontano A. FEBS Lett. 580 2928-2934 (2006)
  15. Biosynthesis of human-type N-glycans in heterologous systems. Betenbaugh MJ, Tomiya N, Narang S, Hsu JT, Lee YC. Curr. Opin. Struct. Biol. 14 601-606 (2004)
  16. The biology of IGE and the basis of allergic disease. Gould HJ, Sutton BJ, Beavil AJ, Beavil RL, McCloskey N, Coker HA, Fear D, Smurthwaite L. Annu. Rev. Immunol. 21 579-628 (2003)
  17. Structural insights into the interactions between human IgE and its high affinity receptor FcepsilonRI. Wurzburg BA, Jardetzky TS. Mol. Immunol. 38 1063-1072 (2002)
  18. [Structural basis of the interaction between immunoglobulins and Fc receptors provided by NMR spectroscopy] Kato K. Yakugaku Zasshi 121 345-354 (2001)
  19. Roles for glycosylation of cell surface receptors involved in cellular immune recognition. Rudd PM, Wormald MR, Stanfield RL, Huang M, Mattsson N, Speir JA, DiGennaro JA, Fetrow JS, Dwek RA, Wilson IA. J. Mol. Biol. 293 351-366 (1999)
  20. Comparison of the conformations of two intact monoclonal antibodies with hinges. Harris LJ, Larson SB, Skaletsky E, McPherson A. Immunol. Rev. 163 35-43 (1998)
  21. IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation. Jefferis R, Lund J, Pound JD. Immunol. Rev. 163 59-76 (1998)
  22. Analogy and solution scattering modelling: new structural strategies for the multidomain proteins of complement, cartilage and the immunoglobulin superfamily. Perkins SJ, Ullman CG, Brissett NC, Chamberlain D, Boehm MK. Immunol. Rev. 163 237-250 (1998)

Articles citing this publication (118)

  1. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK. Nature 450 383-387 (2007)
  2. Crystal structure at 2.8 A of an FcRn/heterodimeric Fc complex: mechanism of pH-dependent binding. Martin WL, West AP, Gan L, Bjorkman PJ. Mol. Cell 7 867-877 (2001)
  3. Crystallographic structure of an intact IgG1 monoclonal antibody. Harris LJ, Skaletsky E, McPherson A. J. Mol. Biol. 275 861-872 (1998)
  4. Contrasting IgG structures reveal extreme asymmetry and flexibility. Saphire EO, Stanfield RL, Crispin MD, Parren PW, Rudd PM, Dwek RA, Burton DR, Wilson IA. J. Mol. Biol. 319 9-18 (2002)
  5. Domain interactions in the Fab fragment: a comparative evaluation of the single-chain Fv and Fab format engineered with variable domains of different stability. Röthlisberger D, Honegger A, Plückthun A. J. Mol. Biol. 347 773-789 (2005)
  6. The Fab and Fc fragments of IgA1 exhibit a different arrangement from that in IgG: a study by X-ray and neutron solution scattering and homology modelling. Boehm MK, Woof JM, Kerr MA, Perkins SJ. J. Mol. Biol. 286 1421-1447 (1999)
  7. Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. Wartiovaara J, Ofverstedt LG, Khoshnoodi J, Zhang J, Mäkelä E, Sandin S, Ruotsalainen V, Cheng RH, Jalanko H, Skoglund U, Tryggvason K. J. Clin. Invest. 114 1475-1483 (2004)
  8. Reduction-alkylation strategies for the modification of specific monoclonal antibody disulfides. Sun MM, Beam KS, Cerveny CG, Hamblett KJ, Blackmore RS, Torgov MY, Handley FG, Ihle NC, Senter PD, Alley SC. Bioconjug. Chem. 16 1282-1290 (2005)
  9. TRIM21 is an IgG receptor that is structurally, thermodynamically, and kinetically conserved. Keeble AH, Khan Z, Forster A, James LC. Proc. Natl. Acad. Sci. U.S.A. 105 6045-6050 (2008)
  10. Characterization of IgG1 conformation and conformational dynamics by hydrogen/deuterium exchange mass spectrometry. Houde D, Arndt J, Domeier W, Berkowitz S, Engen JR. Anal. Chem. 81 2644-2651 (2009)
  11. A new quantitative optical biosensor for protein characterisation. Cross GH, Reeves AA, Brand S, Popplewell JF, Peel LL, Swann MJ, Freeman NJ. Biosens Bioelectron 19 383-390 (2003)
  12. A statistical analysis of N- and O-glycan linkage conformations from crystallographic data. Petrescu AJ, Petrescu SM, Dwek RA, Wormald MR. Glycobiology 9 343-352 (1999)
  13. Postentry neutralization of adenovirus type 5 by an antihexon antibody. Varghese R, Mikyas Y, Stewart PL, Ralston R. J. Virol. 78 12320-12332 (2004)
  14. Nanobody-aided structure determination of the EpsI:EpsJ pseudopilin heterodimer from Vibrio vulnificus. Lam AY, Pardon E, Korotkov KV, Hol WGJ, Steyaert J. J. Struct. Biol. 166 8-15 (2009)
  15. Complex between Peptostreptococcus magnus protein L and a human antibody reveals structural convergence in the interaction modes of Fab binding proteins. Graille M, Stura EA, Housden NG, Beckingham JA, Bottomley SP, Beale D, Taussig MJ, Sutton BJ, Gore MG, Charbonnier JB. Structure 9 679-687 (2001)
  16. Pairing of oligosaccharides in the Fc region of immunoglobulin G. Masuda K, Yamaguchi Y, Kato K, Takahashi N, Shimada I, Arata Y. FEBS Lett. 473 349-357 (2000)
  17. Carbon nanotube atomic force microscopy tips: direct growth by chemical vapor deposition and application to high-resolution imaging. Cheung CL, Hafner JH, Lieber CM. Proc. Natl. Acad. Sci. U.S.A. 97 3809-3813 (2000)
  18. Structural basis of the interaction between IgG and Fcgamma receptors. Kato K, Sautès-Fridman C, Yamada W, Kobayashi K, Uchiyama S, Kim H, Enokizono J, Galinha A, Kobayashi Y, Fridman WH, Arata Y, Shimada I. J. Mol. Biol. 295 213-224 (2000)
  19. Structure of the human IgE-Fc C epsilon 3-C epsilon 4 reveals conformational flexibility in the antibody effector domains. Wurzburg BA, Garman SC, Jardetzky TS. Immunity 13 375-385 (2000)
  20. Structural determinants of unique properties of human IgG4-Fc. Davies AM, Rispens T, Ooijevaar-de Heer P, Gould HJ, Jefferis R, Aalberse RC, Sutton BJ. J. Mol. Biol. 426 630-644 (2014)
  21. Phase behavior of an intact monoclonal antibody. Ahamed T, Esteban BN, Ottens M, van Dedem GW, van der Wielen LA, Bisschops MA, Lee A, Pham C, Thömmes J. Biophys. J. 93 610-619 (2007)
  22. Characterization of antibody aggregation: role of buried, unpaired cysteines in particle formation. Brych SR, Gokarn YR, Hultgen H, Stevenson RJ, Rajan R, Matsumura M. J Pharm Sci 99 764-781 (2010)
  23. Design and expression of a dimeric form of human immunodeficiency virus type 1 antibody 2G12 with increased neutralization potency. West AP, Galimidi RP, Foglesong CP, Gnanapragasam PN, Huey-Tubman KE, Klein JS, Suzuki MD, Tiangco NE, Vielmetter J, Bjorkman PJ. J. Virol. 83 98-104 (2009)
  24. Increased aggregation propensity of IgG2 subclass over IgG1: role of conformational changes and covalent character in isolated aggregates. Franey H, Brych SR, Kolvenbach CG, Rajan RS. Protein Sci. 19 1601-1615 (2010)
  25. Function of the CysD domain of the gel-forming MUC2 mucin. Ambort D, van der Post S, Johansson ME, Mackenzie J, Thomsson E, Krengel U, Hansson GC. Biochem. J. 436 61-70 (2011)
  26. The analysis of the human high affinity IgE receptor Fc epsilon Ri alpha from multiple crystal forms. Garman SC, Sechi S, Kinet JP, Jardetzky TS. J. Mol. Biol. 311 1049-1062 (2001)
  27. Freezing immunoglobulins to see them move. Bongini L, Fanelli D, Piazza F, De Los Rios P, Sandin S, Skoglund U. Proc. Natl. Acad. Sci. U.S.A. 101 6466-6471 (2004)
  28. Interactions and phase behavior of a monoclonal antibody. Lewus RA, Darcy PA, Lenhoff AM, Sandler SI. Biotechnol. Prog. 27 280-289 (2011)
  29. Humoral immune response recognizes a complex set of epitopes on human papillomavirus type 6 l1 capsomers. Orozco JJ, Carter JJ, Koutsky LA, Galloway DA. J. Virol. 79 9503-9514 (2005)
  30. Native-state solubility and transfer free energy as predictive tools for selecting excipients to include in protein formulation development studies. Banks DD, Latypov RF, Ketchem RR, Woodard J, Scavezze JL, Siska CC, Razinkov VI. J Pharm Sci 101 2720-2732 (2012)
  31. Multicolored nanometre-resolution mapping of single protein-ligand binding complexes using far-field photostable optical nanoscopy (PHOTON). Huang T, Nancy Xu XH. Nanoscale 3 3567-3572 (2011)
  32. Two routes for production and purification of Fab fragments in biopharmaceutical discovery research: Papain digestion of mAb and transient expression in mammalian cells. Zhao Y, Gutshall L, Jiang H, Baker A, Beil E, Obmolova G, Carton J, Taudte S, Amegadzie B. Protein Expr. Purif. 67 182-189 (2009)
  33. Structural analysis of herpes simplex virus by optical super-resolution imaging. Laine RF, Albecka A, van de Linde S, Rees EJ, Crump CM, Kaminski CF. Nat Commun 6 5980 (2015)
  34. REEP2 enhances sweet receptor function by recruitment to lipid rafts. Ilegems E, Iwatsuki K, Kokrashvili Z, Benard O, Ninomiya Y, Margolskee RF. J. Neurosci. 30 13774-13783 (2010)
  35. Conformational changes in the antibody constant domains upon hapten-binding. Sagawa T, Oda M, Morii H, Takizawa H, Kozono H, Azuma T. Mol. Immunol. 42 9-18 (2005)
  36. Dynamics of intact immunoglobulin G explored by drift-tube ion-mobility mass spectrometry and molecular modeling. Pacholarz KJ, Porrini M, Garlish RA, Burnley RJ, Taylor RJ, Henry AJ, Barran PE. Angew. Chem. Int. Ed. Engl. 53 7765-7769 (2014)
  37. T cell recognition of the dominant I-A(k)-restricted hen egg lysozyme epitope: critical role for asparagine deamidation. McAdam SN, Fleckenstein B, Rasmussen IB, Schmid DG, Sandlie I, Bogen B, Viner NJ, Sollid LM. J. Exp. Med. 193 1239-1246 (2001)
  38. Structural insights and biomedical potential of IgNAR scaffolds from sharks. Zielonka S, Empting M, Grzeschik J, Könning D, Barelle CJ, Kolmar H. MAbs 7 15-25 (2015)
  39. Protein reactions with surface-bound molecular targets detected by oblique-incidence reflectivity difference microscopes. Landry JP, Sun YS, Guo XW, Zhu XD. Appl Opt 47 3275-3288 (2008)
  40. The shape of protein crowders is a major determinant of protein diffusion. Balbo J, Mereghetti P, Herten DP, Wade RC. Biophys. J. 104 1576-1584 (2013)
  41. Masking of the Fc region in human IgG4 by constrained X-ray scattering modelling: implications for antibody function and therapy. Abe Y, Gor J, Bracewell DG, Perkins SJ, Dalby PA. Biochem. J. 432 101-111 (2010)
  42. A fluorescent biosensor reveals conformational changes in human immunoglobulin E Fc: implications for mechanisms of receptor binding, inhibition, and allergen recognition. Hunt J, Keeble AH, Dale RE, Corbett MK, Beavil RL, Levitt J, Swann MJ, Suhling K, Ameer-Beg S, Sutton BJ, Beavil AJ. J. Biol. Chem. 287 17459-17470 (2012)
  43. Detection of frequency resonance energy transfer pair on double-labeled microsphere and Bacillus anthracis spores by flow cytometry. Zahavy E, Fisher M, Bromberg A, Olshevsky U. Appl. Environ. Microbiol. 69 2330-2339 (2003)
  44. Regional and segmental flexibility of antibodies in interaction with antigens of different size. Oda M, Uchiyama S, Robinson CV, Fukui K, Kobayashi Y, Azuma T. FEBS J. 273 1476-1487 (2006)
  45. Characterization of the loricrin (LOR) gene as a positional candidate for the PSORS4 psoriasis susceptibility locus. Giardina E, Capon F, De Rosa MC, Mango R, Zambruno G, Orecchia A, Chimenti S, Giardina B, Novelli G. Ann. Hum. Genet. 68 639-645 (2004)
  46. Use of a phosphotyrosine-antibody pair as a general detection method in homogeneous time-resolved fluorescence: application to human immunodeficiency viral protease. Cummings RT, McGovern HM, Zheng S, Park YW, Hermes JD. Anal. Biochem. 269 79-93 (1999)
  47. Cancer targeting with biomolecules: a comparative study of photodynamic therapy efficacy using antibody or lectin conjugated phthalocyanine-PEG gold nanoparticles. Obaid G, Chambrier I, Cook MJ, Russell DA. Photochem. Photobiol. Sci. 14 737-747 (2015)
  48. Impact of deglycosylation and thermal stress on conformational stability of a full length murine IgG2a monoclonal antibody: observations from molecular dynamics simulations. Wang X, Kumar S, Buck PM, Singh SK. Proteins 81 443-460 (2013)
  49. Macromolecular scaffolds for immobilizing small molecule microarrays in label-free detection of protein-ligand interactions on solid support. Sun YS, Landry JP, Fei YY, Zhu XD, Luo JT, Wang XB, Lam KS. Anal. Chem. 81 5373-5380 (2009)
  50. Chimeric human-simian anti-CD4 antibodies form crystalline high symmetry particles. Kuznetsov YG, Day J, Newman R, McPherson A. J. Struct. Biol. 131 108-115 (2000)
  51. Elbow flexibility and ligand-induced domain rearrangements in antibody Fab NC6.8: large effects of a small hapten. Sotriffer CA, Rode BM, Varga JM, Liedl KR. Biophys. J. 79 614-628 (2000)
  52. Modulation of antigenicity related to changes in antibody flexibility upon lyophilization. Taschner N, Müller SA, Alumella VR, Goldie KN, Drake AF, Aebi U, Arvinte T. J. Mol. Biol. 310 169-179 (2001)
  53. The Fab conformations in the solution structure of human immunoglobulin G4 (IgG4) restrict access to its Fc region: implications for functional activity. Rayner LE, Hui GK, Gor J, Heenan RK, Dalby PA, Perkins SJ. J. Biol. Chem. 289 20740-20756 (2014)
  54. Disulfide scrambling in IgG2 monoclonal antibodies: insights from molecular dynamics simulations. Wang X, Kumar S, Singh SK. Pharm. Res. 28 3128-3144 (2011)
  55. Systemic lupus erythematosus and C1q: A quantitative ELISA for determining C1q levels in serum. Dillon SP, D'Souza A, Kurien BT, Scofield RH. Biotechnol J 4 1210-1214 (2009)
  56. A tetravalent RGD ligand for integrin-mediated cell adhesion. Watson N, Duncan G, Annan WS, van der Walle CF. J. Pharm. Pharmacol. 58 959-966 (2006)
  57. Peptide-conjugation induced conformational changes in human IgG1 observed by optimized negative-staining and individual-particle electron tomography. Tong H, Zhang L, Kaspar A, Rames MJ, Huang L, Woodnutt G, Ren G. Sci Rep 3 1089 (2013)
  58. Computational reconstruction of multidomain proteins using atomic force microscopy data. Trinh MH, Odorico M, Pique ME, Teulon JM, Roberts VA, Ten Eyck LF, Getzoff ED, Parot P, Chen SW, Pellequer JL. Structure 20 113-120 (2012)
  59. Whole serum BSA antibody screening using a label-free biophotonic nanoparticle array. Olkhov RV, Fowke JD, Shaw AM. Anal. Biochem. 385 234-241 (2009)
  60. New insights into intra- and intermolecular interactions of immunoglobulins: crystal structure of mouse IgG2b-Fc at 2.1-A resolution. Kolenko P, Dohnálek J, Dusková J, Skálová T, Collard R, Hasek J. Immunology 126 378-385 (2009)
  61. Ligand-induced domain movement in an antibody Fab: molecular dynamics studies confirm the unique domain movement observed experimentally for Fab NC6.8 upon complexation and reveal its segmental flexibility. Sotriffer CA, Liedl KR, Linthicum DS, Rode BM, Varga JM. J. Mol. Biol. 278 301-306 (1998)
  62. Formation of helical protein assemblies of IgG and transducin on varied lipid tubules. Melia TJ, Sowa ME, Schutze L, Wensel TG. J. Struct. Biol. 128 119-130 (1999)
  63. 3D Structural Fluctuation of IgG1 Antibody Revealed by Individual Particle Electron Tomography. Zhang X, Zhang L, Tong H, Peng B, Rames MJ, Zhang S, Ren G. Sci Rep 5 9803 (2015)
  64. Global structures of IgG isotypes expressing identical variable regions. Eryilmaz E, Janda A, Kim J, Cordero RJ, Cowburn D, Casadevall A. Mol. Immunol. 56 588-598 (2013)
  65. Fast and scalable purification of a therapeutic full-length antibody based on process crystallization. Smejkal B, Agrawal NJ, Helk B, Schulz H, Giffard M, Mechelke M, Ortner F, Heckmeier P, Trout BL, Hekmat D. Biotechnol. Bioeng. 110 2452-2461 (2013)
  66. Immuno-interferometric sensor for the detection of influenza A nucleoprotein. Farris LR, Wu N, Wang W, Clarizia LJ, Wang X, McDonald MJ. Anal Bioanal Chem 396 667-674 (2010)
  67. A mutant human IgG molecule with only one C1q binding site can activate complement and induce lysis of target cells. Michaelsen TE, Thommesen JE, Ihle O, Gregers TF, Sandin RH, Brekke OH, Sandlie I. Eur. J. Immunol. 36 129-138 (2006)
  68. Solid-phase synthesis and cyclization of a large branched peptide from IgG Fc with affinity for Fc gammaRI. Sheridan JM, Hayes GM, Austen BM. J. Pept. Sci. 5 555-562 (1999)
  69. The solution structures of two human IgG1 antibodies show conformational stability and accommodate their C1q and FcγR ligands. Rayner LE, Hui GK, Gor J, Heenan RK, Dalby PA, Perkins SJ. J. Biol. Chem. 290 8420-8438 (2015)
  70. Conformational shift of a major poliovirus antigen confirmed by immuno-cryogenic electron microscopy. Lin J, Cheng N, Hogle JM, Steven AC, Belnap DM. J. Immunol. 191 884-891 (2013)
  71. Multispot, label-free biodetection at a phantom plastic-water interface. Giavazzi F, Salina M, Cerbino R, Bassi M, Prosperi D, Ceccarello E, Damin F, Sola L, Rusnati M, Chiari M, Chini B, Bellini T, Buscaglia M. Proc. Natl. Acad. Sci. U.S.A. 110 9350-9355 (2013)
  72. Synergistic effect of orientation and lateral spacing of protein G on an on-chip immunoassay. Kim ES, Shim CK, Lee JW, Park JW, Choi KY. Analyst 137 2421-2430 (2012)
  73. Measurement of two-dimensional binding constants between cell-bound major histocompatibility complex and immobilized antibodies with an acoustic biosensor. Saitakis M, Dellaporta A, Gizeli E. Biophys. J. 95 4963-4971 (2008)
  74. Core hinge of human immunoglobulin G3 as a system of four independent co-operative blocks. Tischenko VM, Zav'yalov VP. Immunol. Lett. 86 281-285 (2003)
  75. Developing the IVIG biomimetic, hexa-Fc, for drug and vaccine applications. Czajkowsky DM, Andersen JT, Fuchs A, Wilson TJ, Mekhaiel D, Colonna M, He J, Shao Z, Mitchell DA, Wu G, Dell A, Haslam S, Lloyd KA, Moore SC, Sandlie I, Blundell PA, Pleass RJ. Sci Rep 5 9526 (2015)
  76. Generic structures of cytotoxic liprotides: nano-sized complexes with oleic acid cores and shells of disordered proteins. Kaspersen JD, Pedersen JN, Hansted JG, Nielsen SB, Sakthivel S, Wilhelm K, Nemashkalova EL, Permyakov SE, Permyakov EA, Pinto Oliveira CL, Morozova-Roche LA, Otzen DE, Pedersen JS. Chembiochem 15 2693-2702 (2014)
  77. Structural basis for enhanced HIV-1 neutralization by a dimeric immunoglobulin G form of the glycan-recognizing antibody 2G12. Wu Y, West AP, Kim HJ, Thornton ME, Ward AB, Bjorkman PJ. Cell Rep 5 1443-1455 (2013)
  78. The immune synapse clears and excludes molecules above a size threshold. Cartwright AN, Griggs J, Davis DM. Nat Commun 5 5479 (2014)
  79. Post-translational modifications of immunoglobulin G: a mouse IgG variant that lacks the entire CH1 domain. Masuda K, Yamaguchi Y, Kato K, Kim HH, Takahashi N, Shimada I, Arata Y. Mol. Immunol. 36 993-1003 (1999)
  80. Structural characterization of mouse monoclonal antibody 13-1 against a porphyrin derivative: identification of a disulfide bond in CDR-H3 of Mab 13-1. Akashi S, Kato K, Torizawa T, Dohmae N, Yamaguchi H, Kamachi M, Harada A, Imanaka T, Shimada I, Takio K. Biochem. Biophys. Res. Commun. 240 566-572 (1997)
  81. Molecular Architecture of Contactin-associated Protein-like 2 (CNTNAP2) and Its Interaction with Contactin 2 (CNTN2). Lu Z, Reddy MV, Liu J, Kalichava A, Liu J, Zhang L, Chen F, Wang Y, Holthauzen LM, White MA, Seshadrinathan S, Zhong X, Ren G, Rudenko G. J. Biol. Chem. 291 24133-24147 (2016)
  82. Adepth: New Representation and its implications for atomic depths of macromolecules. Chen SW, Pellequer JL. Nucleic Acids Res. 41 W412-6 (2013)
  83. Nanowire transistor-based ultrasensitive virus detection with reversible surface functionalization. Chiang PL, Chou TC, Wu TH, Li CC, Liao CD, Lin JY, Tsai MH, Tsai CC, Sun CJ, Wang CH, Fang JM, Chen YT. Chem Asian J 7 2073-2079 (2012)
  84. Isolation of monoclonal antibodies with predetermined conformational epitope specificity. Sholukh AM, Mukhtar MM, Humbert M, Essono SS, Watkins JD, Vyas HK, Shanmuganathan V, Hemashettar G, Kahn M, Hu SL, Montefiori DC, Polonis VR, Schur PH, Ruprecht RM. PLoS ONE 7 e38943 (2012)
  85. Resolving antibody-peptide complexes with different ligand stoichiometries reveals a marked affinity enhancement through multivalency. Wang J, Jiang P, Qiu L, Wang C, Xia J. Talanta 115 394-400 (2013)
  86. Structural and dynamic properties of monoclonal antibodies immobilized on CNTs: a computational study. De Leo F, Sgrignani J, Bonifazi D, Magistrato A. Chemistry 19 12281-12293 (2013)
  87. Differential inhibition of receptor activation by two mouse monoclonal antibodies specific for the human leukotriene B4 receptor, BLT1. Sabirsh A, Pettersson A, Boketoft A, Kotarsky K, Owman C. Int. Immunopharmacol. 3 1829-1839 (2003)
  88. Adsorption orientations and immunological recognition of antibodies on graphene. Vilhena JG, Dumitru AC, Herruzo ET, Mendieta-Moreno JI, Garcia R, Serena PA, Pérez R. Nanoscale 8 13463-13475 (2016)
  89. Molecular modeling of antibodies for the treatment of TNFα-related immunological diseases. Pierri CL, Bossis F, Punzi G, De Grassi A, Cetrone M, Parisi G, Tricarico D. Pharmacol Res Perspect 4 e00197 (2016)
  90. Systematic screening of soluble expression of antibody fragments in the cytoplasm of E. coli. Gaciarz A, Veijola J, Uchida Y, Saaranen MJ, Wang C, Hörkkö S, Ruddock LW. Microb. Cell Fact. 15 22 (2016)
  91. From osmotic second virial coefficient (B22 ) to phase behavior of a monoclonal antibody. Rakel N, Bauer KC, Galm L, Hubbuch J. Biotechnol. Prog. 31 438-451 (2015)
  92. Kinetic analysis of cytokine-mediated receptor assembly using engineered FC heterodimers. Deshpande A, Putcha BD, Kuruganti S, Walter MR. Protein Sci. 22 1100-1108 (2013)
  93. Oligomerisation and thermal stability of polyvalent integrin alpha5beta1 ligands. Kreiner M, Byron O, Domingues D, van der Walle CF. Biophys. Chem. 142 34-39 (2009)
  94. Resolving the geometry of biomolecules imaged by cryo electron tomography. Bongini L, Fanelli D, Svensson S, Gedda M, Piazza F, Skoglund U. J Microsc 228 174-184 (2007)
  95. Immunoglobulin T from sea bass (Dicentrarchus labrax L.): molecular characterization, tissue localization and expression after nodavirus infection. Buonocore F, Stocchi V, Nunez-Ortiz N, Randelli E, Gerdol M, Pallavicini A, Facchiano A, Bernini C, Guerra L, Scapigliati G, Picchietti S. BMC Mol. Biol. 18 8 (2017)
  96. Experimental and computational surface hydrophobicity analysis of a non-enveloped virus and proteins. Heldt CL, Zahid A, Vijayaragavan KS, Mi X. Colloids Surf B Biointerfaces 153 77-84 (2017)
  97. Molecular perspective of antibody aggregates and their adsorption on Protein A resin. Yu D, Song Y, Huang RY, Swanson RK, Tan Z, Schutsky E, Lewandowski A, Chen G, Li ZJ. J Chromatogr A 1457 66-75 (2016)
  98. Studies on the binding sites of IgG2 monoclonal antibodies recognized by terpyridine-based affinity ligands. Lin CP, Boysen RI, Campi EM, Saito K, Hearn MT. J. Mol. Recognit. 29 334-342 (2016)
  99. An incremental double-layer capacitance of a planar nano gap and its application in cardiac-troponin T detection. Hsueh HT, Lin CT. Biosens Bioelectron 79 636-643 (2016)
  100. Computation in electron microscopy. Kirkland EJ. Acta Crystallogr A Found Adv 72 1-27 (2016)
  101. The Intrinsic Dynamics and Unfolding Process of an Antibody Fab Fragment Revealed by Elastic Network Model. Su JG, Zhang X, Han XM, Zhao SX, Li CH. Int J Mol Sci 16 29720-29731 (2015)
  102. Communication: Antibody stability and behavior on surfaces. Bush DB, Knotts TA. J Chem Phys 143 061101 (2015)
  103. Engineered self-assembling monolayers for label free detection of influenza nucleoprotein. Le Brun AP, Soliakov A, Shah DS, Holt SA, McGill A, Lakey JH. Biomed Microdevices 17 9951 (2015)
  104. Adsorption and adhesion of common serum proteins to nanotextured gallium nitride. Bain LE, Hoffmann MP, Bryan I, Collazo R, Ivanisevic A. Nanoscale 7 2360-2365 (2015)
  105. Defining the recognition elements of Lewis Y-reactive antibodies. Saha S, Pashov A, Siegel ER, Murali R, Kieber-Emmons T. PLoS ONE 9 e104208 (2014)
  106. The effect of sugar removal on the structure of the Fc region of an IgG antibody as observed with single molecule Förster Resonance Energy Transfer. Kelliher MT, Jacks RD, Piraino MS, Southern CA. Mol. Immunol. 60 103-108 (2014)
  107. AFM imaging of ALYGNSA polymer-protein surfaces: evidence of antibody orientation. Farris LR, McDonald MJ. Anal Bioanal Chem 401 2821-2829 (2011)
  108. Mechanism for pre-B cell loss in VH-mutant rabbits. Robbins GR, Knight KL. J. Immunol. 187 4714-4720 (2011)
  109. Computational analysis of non-covalent polymer-protein interactions governing antibody orientation. Farris LR, McDonald MJ. Anal Bioanal Chem 402 1731-1736 (2012)
  110. A molecular tuning fork in single-molecule mechanochemical sensing. Mandal S, Koirala D, Selvam S, Ghimire C, Mao H. Angew. Chem. Int. Ed. Engl. 54 7607-7611 (2015)
  111. TRAIL-R2 Superoligomerization Induced by Human Monoclonal Agonistic Antibody KMTR2. Tamada T, Shinmi D, Ikeda M, Yonezawa Y, Kataoka S, Kuroki R, Mori E, Motoki K. Sci Rep 5 17936 (2015)
  112. Label-free C-reactive protein electronic detection with an electrolyte-gated organic field-effect transistor-based immunosensor. Magliulo M, De Tullio D, Vikholm-Lundin I, Albers WM, Munter T, Manoli K, Palazzo G, Torsi L. Anal Bioanal Chem 408 3943-3952 (2016)
  113. Modeling the Role of Epitope Arrangement on Antibody Binding Stoichiometry in Flaviviruses. Ripoll DR, Khavrutskii I, Wallqvist A, Chaudhury S. Biophys. J. 111 1641-1654 (2016)
  114. Natural and non-natural amino-acid side-chain substitutions: affinity and diffraction studies of meditope-Fab complexes. Bzymek KP, Avery KA, Ma Y, Horne DA, Williams JC. Acta Crystallogr F Struct Biol Commun 72 820-830 (2016)
  115. In-silico prediction of concentration-dependent viscosity curves for monoclonal antibody solutions. Tomar DS, Li L, Broulidakis MP, Luksha NG, Burns CT, Singh SK, Kumar S. MAbs 9 476-489 (2017)
  116. Enzymatic synthesis and protein adsorption properties of crystalline nanoribbons composed of cellulose oligomer derivatives with primary amino groups. Nohara T, Sawada T, Tanaka H, Serizawa T. J Biomater Sci Polym Ed 28 925-938 (2017)
  117. Efficient Generation of Bispecific Murine Antibodies for Pre-Clinical Investigations in Syngeneic Rodent Models. Labrijn AF, Meesters JI, Bunce M, Armstrong AA, Somani S, Nesspor TC, Chiu ML, Altintaş I, Verploegen S, Schuurman J, Parren PWHI. Sci Rep 7 2476 (2017)
  118. Antibodies under pressure: A Small-Angle X-ray Scattering study of Immunoglobulin G under high hydrostatic pressure. König N, Paulus M, Julius K, Schulze J, Voetz M, Tolan M. Biophys. Chem. (2017)

Related citations provided by authors (1)

  1. The Three-Dimensional Structure of an Intact Monoclonal Antibody for Canine Lymphoma. Harris LJ, Larson SB, Hasel KW, Day J, Greenwood A, McPherson A Nature 360 369- (1992)