1i7i Citations

Structure of the PPARalpha and -gamma ligand binding domain in complex with AZ 242; ligand selectivity and agonist activation in the PPAR family.

Abstract

Background

The peroxisome proliferator-activated receptors (PPAR) are ligand-activated transcription factors belonging to the nuclear receptor family. The roles of PPARalpha in fatty acid oxidation and PPARgamma in adipocyte differentiation and lipid storage have been characterized extensively. PPARs are activated by fatty acids and eicosanoids and are also targets for antidyslipidemic drugs, but the molecular interactions governing ligand selectivity for specific subtypes are unclear due to the lack of a PPARalpha ligand binding domain structure.

Results

We have solved the crystal structure of the PPARalpha ligand binding domain (LBD) in complex with the combined PPARalpha and -gamma agonist AZ 242, a novel dihydro cinnamate derivative that is structurally different from thiazolidinediones. In addition, we present the crystal structure of the PPARgamma_LBD/AZ 242 complex and provide a rationale for ligand selectivity toward the PPARalpha and -gamma subtypes. Heteronuclear NMR data on PPARalpha in both the apo form and in complex with AZ 242 shows an overall stabilization of the LBD upon agonist binding. A comparison of the novel PPARalpha/AZ 242 complex with the PPARgamma/AZ 242 complex and previously solved PPARgamma structures reveals a conserved hydrogen bonding network between agonists and the AF2 helix.

Conclusion

The complex of PPARalpha and PPARgamma with the dual specificity agonist AZ 242 highlights the conserved interactions required for receptor activation. Together with the NMR data, this suggests a general model for ligand activation in the PPAR family. A comparison of the ligand binding sites reveals a molecular explanation for subtype selectivity and provides a basis for rational drug design.

Reviews - 1i7i mentioned but not cited (3)

  1. An overview on medicinal perspective of thiazolidine-2,4-dione: A remarkable scaffold in the treatment of type 2 diabetes. Bansal G, Thanikachalam PV, Maurya RK, Chawla P, Ramamurthy S. J Adv Res 23 163-205 (2020)
  2. A Bibliometric and In Silico-Based Analysis of Anti-Lung Cancer Compounds from Sea Cucumber. Zare A, Izanloo S, Khaledi S, Maratovich MN, Kaliyev AA, Abenova NA, Rahmanifar F, Mahdipour M, Bakhshalizadeh S, Shirazi R, Tanideh N, Tamadon A. Mar Drugs 21 283 (2023)
  3. Berberine and Its Study as an Antidiabetic Compound. Utami AR, Maksum IP, Deawati Y. Biology (Basel) 12 973 (2023)

Articles - 1i7i mentioned but not cited (20)

  1. The nuclear receptor PPARγ individually responds to serotonin- and fatty acid-metabolites. Waku T, Shiraki T, Oyama T, Maebara K, Nakamori R, Morikawa K. EMBO J 29 3395-3407 (2010)
  2. Identification of PPARgamma partial agonists of natural origin (I): development of a virtual screening procedure and in vitro validation. Guasch L, Sala E, Castell-Auví A, Cedó L, Liedl KR, Wolber G, Muehlbacher M, Mulero M, Pinent M, Ardévol A, Valls C, Pujadas G, Garcia-Vallvé S. PLoS One 7 e50816 (2012)
  3. β-Sitosterol Circumvents Obesity Induced Inflammation and Insulin Resistance by down-Regulating IKKβ/NF-κB and JNK Signaling Pathway in Adipocytes of Type 2 Diabetic Rats. Jayaraman S, Devarajan N, Rajagopal P, Babu S, Ganesan SK, Veeraraghavan VP, Palanisamy CP, Cui B, Periyasamy V, Chandrasekar K. Molecules 26 2101 (2021)
  4. Virtual Screening as a Technique for PPAR Modulator Discovery. Lewis SN, Bassaganya-Riera J, Bevan DR. PPAR Res 2010 861238 (2010)
  5. Plasticizers used in food-contact materials affect adipogenesis in 3T3-L1 cells. Pomatto V, Cottone E, Cocci P, Mozzicafreddo M, Mosconi G, Nelson ER, Palermo FA, Bovolin P. J Steroid Biochem Mol Biol 178 322-332 (2018)
  6. Effect of heterodimer partner RXRalpha on PPARgamma activation function-2 helix in solution. Lu J, Chen M, Stanley SE, Li E. Biochem Biophys Res Commun 365 42-46 (2008)
  7. Molecular modelling study of the PPARγ receptor in relation to the mode of action/adverse outcome pathway framework for liver steatosis. Tsakovska I, Al Sharif M, Alov P, Diukendjieva A, Fioravanzo E, Cronin MT, Pajeva I. Int J Mol Sci 15 7651-7666 (2014)
  8. Design, Synthesis and in Combo Antidiabetic Bioevaluation of Multitarget Phenylpropanoic Acids. Colín-Lozano B, Estrada-Soto S, Chávez-Silva F, Gutiérrez-Hernández A, Cerón-Romero L, Giacoman-Martínez A, Almanza-Pérez JC, Hernández-Núñez E, Wang Z, Xie X, Cappiello M, Balestri F, Mura U, Navarrete-Vazquez G. Molecules 23 E340 (2018)
  9. Study of new interactions of glitazone's stereoisomers and the endogenous ligand 15d-PGJ2 on six different PPAR gamma proteins. Álvarez-Almazán S, Bello M, Tamay-Cach F, Martínez-Archundia M, Alemán-González-Duhart D, Correa-Basurto J, Mendieta-Wejebe JE. Biochem Pharmacol 142 168-193 (2017)
  10. Understanding the polypharmacological anticancer effects of Xiao Chai Hu Tang via a computational pharmacological model. Zheng CS, Wu YS, Bao HJ, Xu XJ, Chen XQ, Ye HZ, Wu GW, Xu HF, Li XH, Chen JS, Liu XX. Exp Ther Med 7 1777-1783 (2014)
  11. Effect of 6-Benzoyl-benzothiazol-2-one scaffold on the pharmacological profile of α-alkoxyphenylpropionic acid derived PPAR agonists. Hurtevent A, Le Naour M, Leclerc V, Carato P, Melnyk P, Hennuyer N, Staels B, Beucher-Gaudin M, Caignard DH, Dacquet C, Lebegue N. J Enzyme Inhib Med Chem 35 524-538 (2020)
  12. In Silico-Based Design and In Vivo Evaluation of an Anthranilic Acid Derivative as a Multitarget Drug in a Diet-Induced Metabolic Syndrome Model. González-Álvarez H, Bravo-Jiménez A, Martínez-Arellanes M, Gamboa-Osorio GO, Chávez-Gutiérrez E, González-Hernández LA, Gallardo-Ignacio K, Quintana-Romero OJ, Ariza-Castolo A, Guerra-Araiza C, Martino-Roaro L, Meneses-Ruiz DM, Pinto-Almazán R, Loza-Mejía MA. Pharmaceuticals (Basel) 14 914 (2021)
  13. Role of Hepatocyte- and Macrophage-Specific PPARγ in Hepatotoxicity Induced by Diethylhexyl Phthalate in Mice. Xu M, Li Y, Wang X, Zhang Q, Wang L, Zhang X, Cui W, Han X, Ma N, Li H, Fang H, Tang S, Li J, Liu Z, Yang H, Jia X. Environ Health Perspect 130 17005 (2022)
  14. Tri-m-cresyl phosphate and PPAR/LXR interactions in seabream hepatocytes: revealed by computational modeling (docking) and transcriptional regulation of signaling pathways. Palermo FA, Cocci P, Mozzicafreddo M, Arukwe A, Angeletti M, Aretusi G, Mosconi G. Toxicol Res (Camb) 5 471-481 (2016)
  15. Systematic Review Banxia baizhu tianma decoction, a Chinese herbal formula, for hypertension: Integrating meta-analysis and network pharmacology. Lin J, Wang Q, Xu S, Zhou S, Zhong D, Tan M, Zhang X, Yao K. Front Pharmacol 13 1025104 (2022)
  16. Cytotoxic Activity of Phytoconstituents Isolated from Monotheca buxifolia against Hepatocellular Carcinoma Cell Line HepG2: In Vitro and Molecular Docking Studies. Hassan S, Ahmad B, Khan MW, Shah ZA, Ullah A, Ullah S, Khan D, Rizwan M, Ahmad A, Ali Q, Kaushik P, Yilmaz S. ACS Omega 8 33572-33579 (2023)
  17. In Combo Studies for the Optimization of 5-Aminoanthranilic Acid Derivatives as Potential Multitarget Drugs for the Management of Metabolic Syndrome. Chávez-Gutiérrez E, Martínez-Arellanes M, Murillo-López M, Medina-Guzmán MF, Mobarak-Richaud L, Pelcastre-Guzmán K, Quintana-Romero OJ, Ariza-Castolo A, Ayala-Moreno MDR, Salazar JR, Guerra-Araiza C, Rodríguez-Páez L, Pinto-Almazán R, Loza-Mejía MA. Pharmaceuticals (Basel) 15 1461 (2022)
  18. In Silico and In Vivo Evaluation of the Maqui Berry (Aristotelia chilensis (Mol.) Stuntz) on Biochemical Parameters and Oxidative Stress Markers in a Metabolic Syndrome Model. Castillo-García EL, Cossio-Ramírez AL, Córdoba-Méndez ÓA, Loza-Mejía MA, Salazar JR, Chávez-Gutiérrez E, Bautista-Poblet G, Castillo-Mendieta NT, Moreno DA, García-Viguera C, Pinto-Almazán R, Almanza-Pérez JC, Gallardo JM, Guerra-Araiza C. Metabolites 13 1189 (2023)
  19. Investigation of the Potential Mechanism of Alpinia officinarum Hance in Improving Type 2 Diabetes Mellitus Based on Network Pharmacology and Molecular Docking. Zhang X, Li X, Li H, Zhou M, Zhang Y, Lai W, Zheng X, Bai F, Zhang J. Evid Based Complement Alternat Med 2023 4934711 (2023)
  20. Leaf Extract of Perilla frutescens (L.) Britt Promotes Adipocyte Browning via the p38 MAPK Pathway and PI3K-AKT Pathway. Chen F, Wu S, Li D, Dong J, Huang X. Nutrients 15 1487 (2023)


Reviews citing this publication (33)

  1. Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. Lefebvre P, Chinetti G, Fruchart JC, Staels B. J Clin Invest 116 571-580 (2006)
  2. Overview of nomenclature of nuclear receptors. Germain P, Staels B, Dacquet C, Spedding M, Laudet V. Pharmacol Rev 58 685-704 (2006)
  3. PPARalpha: energy combustion, hypolipidemia, inflammation and cancer. Pyper SR, Viswakarma N, Yu S, Reddy JK. Nucl Recept Signal 8 e002 (2010)
  4. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, De Bosscher K. Endocr Rev 39 760-802 (2018)
  5. Ligand control of coregulator recruitment to nuclear receptors. Nettles KW, Greene GL. Annu Rev Physiol 67 309-333 (2005)
  6. Regulation of skeletal muscle physiology and metabolism by peroxisome proliferator-activated receptor delta. Ehrenborg E, Krook A. Pharmacol Rev 61 373-393 (2009)
  7. Acyl glucuronides: the good, the bad and the ugly. Regan SL, Maggs JL, Hammond TG, Lambert C, Williams DP, Park BK. Biopharm Drug Dispos 31 367-395 (2010)
  8. Peroxisome proliferator-activated receptor agonists, hyperlipidaemia, and atherosclerosis. Vosper H, Khoudoli GA, Graham TL, Palmer CN. Pharmacol Ther 95 47-62 (2002)
  9. The Opportunities and Challenges of Peroxisome Proliferator-Activated Receptors Ligands in Clinical Drug Discovery and Development. Hong F, Xu P, Zhai Y. Int J Mol Sci 19 E2189 (2018)
  10. Interference of pollutants with PPARs: endocrine disruption meets metabolism. Casals-Casas C, Feige JN, Desvergne B. Int J Obes (Lond) 32 Suppl 6 S53-61 (2008)
  11. Selective PPAR modulators, dual and pan PPAR agonists: multimodal drugs for the treatment of type 2 diabetes and atherosclerosis. Pourcet B, Fruchart JC, Staels B, Glineur C. Expert Opin Emerg Drugs 11 379-401 (2006)
  12. Physiological and therapeutic roles of peroxisome proliferator-activated receptors. Berger J, Wagner JA. Diabetes Technol Ther 4 163-174 (2002)
  13. Small molecule modulation of nuclear receptor conformational dynamics: implications for function and drug discovery. Kojetin DJ, Burris TP. Mol Pharmacol 83 1-8 (2013)
  14. Structural dynamics, intrinsic disorder, and allostery in nuclear receptors as transcription factors. Hilser VJ, Thompson EB. J Biol Chem 286 39675-39682 (2011)
  15. Peroxisome proliferator-activated receptors and the metabolic syndrome. Bragt MC, Popeijus HE. Physiol Behav 94 187-197 (2008)
  16. Structure and activation of rhodopsin. Zhou XE, Melcher K, Xu HE. Acta Pharmacol Sin 33 291-299 (2012)
  17. Caenorhabditis elegans nuclear receptors: insights into life traits. Magner DB, Antebi A. Trends Endocrinol Metab 19 153-160 (2008)
  18. Sphingosine 1-phosphate and lysophosphatidic acid receptors: agonist and antagonist binding and progress toward development of receptor-specific ligands. Parrill AL, Sardar VM, Yuan H. Semin Cell Dev Biol 15 467-476 (2004)
  19. Conformational adaptation of nuclear receptor ligand binding domains to agonists: potential for novel approaches to ligand design. Togashi M, Borngraeber S, Sandler B, Fletterick RJ, Webb P, Baxter JD. J Steroid Biochem Mol Biol 93 127-137 (2005)
  20. Drugs on the horizon for diabesity. Bailey CJ. Curr Diab Rep 5 353-359 (2005)
  21. Novel peroxisome proliferator-activated receptor ligands for Type 2 diabetes and the metabolic syndrome. Miller AR, Etgen GJ. Expert Opin Investig Drugs 12 1489-1500 (2003)
  22. Peroxisome proliferator activated receptor gamma and oxidized docosahexaenoic acids as new class of ligand. Itoh T, Yamamoto K. Naunyn Schmiedebergs Arch Pharmacol 377 541-547 (2008)
  23. Designing drugs with multi-target activity: the next step in the treatment of neurodegenerative disorders. Geldenhuys WJ, Van der Schyf CJ. Expert Opin Drug Discov 8 115-129 (2013)
  24. Investigational PPAR-gamma agonists for the treatment of Type 2 diabetes. Savkur RS, Miller AR. Expert Opin Investig Drugs 15 763-778 (2006)
  25. Relevance of Peroxisome Proliferator Activated Receptors in Multitarget Paradigm Associated with the Endocannabinoid System. Lago-Fernandez A, Zarzo-Arias S, Jagerovic N, Morales P. Int J Mol Sci 22 1001 (2021)
  26. Activation of PPARδ: from computer modelling to biological effects. Kahremany S, Livne A, Gruzman A, Senderowitz H, Sasson S. Br J Pharmacol 172 754-770 (2015)
  27. The treatment of dyslipidemia--what's left in the pipeline? Rau O, Zettl H, Popescu L, Steinhilber D, Schubert-Zsilavecz M. ChemMedChem 3 206-221 (2008)
  28. Multi-Target Drugs Against Metabolic Disorders. Scotti L, Monteiro AFM, de Oliveira Viana J, Mendonça Junior FJB, Ishiki HM, Tchouboun EN, Santos R, Scotti MT. Endocr Metab Immune Disord Drug Targets 19 402-418 (2019)
  29. Peroxisome proliferator-activated receptor α ligands and modulators from dietary compounds: Types, screening methods and functions. Yang H, Xiao L, Wang N. J Diabetes 9 341-352 (2017)
  30. The Structure Basis of Phytochemicals as Metabolic Signals for Combating Obesity. Li X, Zheng L, Zhang B, Deng ZY, Luo T. Front Nutr 9 913883 (2022)
  31. [Design and synthesis of subtype- and species-selective peroxisome proliferator-activated receptor (PPAR) alpha ligands]. Miyachi H. Yakugaku Zasshi 124 803-813 (2004)
  32. PPAR-γ Partial Agonists in Disease-Fate Decision with Special Reference to Cancer. Ballav S, Biswas B, Sahu VK, Ranjan A, Basu S. Cells 11 3215 (2022)
  33. [New antilipemics: prospects]. Farnier M. Therapie 58 97-105 (2003)

Articles citing this publication (127)

  1. Peroxisome proliferator-activated receptor alpha target genes. Rakhshandehroo M, Knoch B, Müller M, Kersten S. PPAR Res 2010 612089 (2010)
  2. Structural basis for the activation of PPARgamma by oxidized fatty acids. Itoh T, Fairall L, Amin K, Inaba Y, Szanto A, Balint BL, Nagy L, Yamamoto K, Schwabe JW. Nat Struct Mol Biol 15 924-931 (2008)
  3. Partial agonists activate PPARgamma using a helix 12 independent mechanism. Bruning JB, Chalmers MJ, Prasad S, Busby SA, Kamenecka TM, He Y, Nettles KW, Griffin PR. Structure 15 1258-1271 (2007)
  4. Coactivator binding promotes the specific interaction between ligand and the pregnane X receptor. Watkins RE, Davis-Searles PR, Lambert MH, Redinbo MR. J Mol Biol 331 815-828 (2003)
  5. Alpha,beta-unsaturated ketone is a core moiety of natural ligands for covalent binding to peroxisome proliferator-activated receptor gamma. Shiraki T, Kamiya N, Shiki S, Kodama TS, Kakizuka A, Jingami H. J Biol Chem 280 14145-14153 (2005)
  6. Amorfrutins are potent antidiabetic dietary natural products. Weidner C, de Groot JC, Prasad A, Freiwald A, Quedenau C, Kliem M, Witzke A, Kodelja V, Han CT, Giegold S, Baumann M, Klebl B, Siems K, Müller-Kuhrt L, Schürmann A, Schüler R, Pfeiffer AF, Schroeder FC, Büssow K, Sauer S. Proc Natl Acad Sci U S A 109 7257-7262 (2012)
  7. Soluble epoxide inhibition is protective against cerebral ischemia via vascular and neural protection. Simpkins AN, Rudic RD, Schreihofer DA, Roy S, Manhiani M, Tsai HJ, Hammock BD, Imig JD. Am J Pathol 174 2086-2095 (2009)
  8. AZ 242, a novel PPARalpha/gamma agonist with beneficial effects on insulin resistance and carbohydrate and lipid metabolism in ob/ob mice and obese Zucker rats. Ljung B, Bamberg K, Dahllöf B, Kjellstedt A, Oakes ND, Ostling J, Svensson L, Camejo G. J Lipid Res 43 1855-1863 (2002)
  9. Leukotriene B4 is a physiologically relevant endogenous peroxisome proliferator-activated receptor-alpha agonist. Narala VR, Adapala RK, Suresh MV, Brock TG, Peters-Golden M, Reddy RC. J Biol Chem 285 22067-22074 (2010)
  10. Very-long-chain and branched-chain fatty acyl-CoAs are high affinity ligands for the peroxisome proliferator-activated receptor alpha (PPARalpha). Hostetler HA, Kier AB, Schroeder F. Biochemistry 45 7669-7681 (2006)
  11. Peroxisome proliferator-activated receptors α and γ are linked with alcohol consumption in mice and withdrawal and dependence in humans. Blednov YA, Benavidez JM, Black M, Ferguson LB, Schoenhard GL, Goate AM, Edenberg HJ, Wetherill L, Hesselbrock V, Foroud T, Harris RA. Alcohol Clin Exp Res 39 136-145 (2015)
  12. Regulation of GPR119 receptor activity with endocannabinoid-like lipids. Syed SK, Bui HH, Beavers LS, Farb TB, Ficorilli J, Chesterfield AK, Kuo MS, Bokvist K, Barrett DG, Efanov AM. Am J Physiol Endocrinol Metab 303 E1469-78 (2012)
  13. Identification of putative metabolites of docosahexaenoic acid as potent PPARgamma agonists and antidiabetic agents. Yamamoto K, Itoh T, Abe D, Shimizu M, Kanda T, Koyama T, Nishikawa M, Tamai T, Ooizumi H, Yamada S. Bioorg Med Chem Lett 15 517-522 (2005)
  14. Recombinant human PPAR-beta/delta ligand-binding domain is locked in an activated conformation by endogenous fatty acids. Fyffe SA, Alphey MS, Buetow L, Smith TK, Ferguson MA, Sørensen MD, Björkling F, Hunter WN. J Mol Biol 356 1005-1013 (2006)
  15. Simple defined autoinduction medium for high-level recombinant protein production using T7-based Escherichia coli expression systems. Li Z, Kessler W, van den Heuvel J, Rinas U. Appl Microbiol Biotechnol 91 1203-1213 (2011)
  16. Pharmacological characterization of hydrolysis-resistant analogs of oleoylethanolamide with potent anorexiant properties. Astarita G, Di Giacomo B, Gaetani S, Oveisi F, Compton TR, Rivara S, Tarzia G, Mor M, Piomelli D. J Pharmacol Exp Ther 318 563-570 (2006)
  17. INT131: a selective modulator of PPAR gamma. Motani A, Wang Z, Weiszmann J, McGee LR, Lee G, Liu Q, Staunton J, Fang Z, Fuentes H, Lindstrom M, Liu J, Biermann DH, Jaen J, Walker NP, Learned RM, Chen JL, Li Y. J Mol Biol 386 1301-1311 (2009)
  18. Ertiprotafib improves glycemic control and lowers lipids via multiple mechanisms. Erbe DV, Wang S, Zhang YL, Harding K, Kung L, Tam M, Stolz L, Xing Y, Furey S, Qadri A, Klaman LD, Tobin JF. Mol Pharmacol 67 69-77 (2005)
  19. Design and synthesis of highly potent and selective human peroxisome proliferator-activated receptor alpha agonists. Yamazaki Y, Abe K, Toma T, Nishikawa M, Ozawa H, Okuda A, Araki T, Oda S, Inoue K, Shibuya K, Staels B, Fruchart JC. Bioorg Med Chem Lett 17 4689-4693 (2007)
  20. Molecular mechanism of peroxisome proliferator-activated receptor α activation by WY14643: a new mode of ligand recognition and receptor stabilization. Bernardes A, Souza PC, Muniz JR, Ricci CG, Ayers SD, Parekh NM, Godoy AS, Trivella DB, Reinach P, Webb P, Skaf MS, Polikarpov I. J Mol Biol 425 2878-2893 (2013)
  21. Nuclear receptor antagonists designed based on the helix-folding inhibition hypothesis. Hashimoto Y, Miyachi H. Bioorg Med Chem 13 5080-5093 (2005)
  22. Binding analyses between Human PPARgamma-LBD and ligands. Yu C, Chen L, Luo H, Chen J, Cheng F, Gui C, Zhang R, Shen J, Chen K, Jiang H, Shen X. Eur J Biochem 271 386-397 (2004)
  23. Phthalates efficiently bind to human peroxisome proliferator activated receptor and retinoid X receptor α, β, γ subtypes: an in silico approach. Sarath Josh MK, Pradeep S, Vijayalekshmi Amma KS, Balachandran S, Abdul Jaleel UC, Doble M, Spener F, Benjamin S. J Appl Toxicol 34 754-765 (2014)
  24. Crystal structure of the human liver X receptor beta ligand-binding domain in complex with a synthetic agonist. Hoerer S, Schmid A, Heckel A, Budzinski RM, Nar H. J Mol Biol 334 853-861 (2003)
  25. Ajulemic acid, a synthetic nonpsychoactive cannabinoid acid, bound to the ligand binding domain of the human peroxisome proliferator-activated receptor gamma. Ambrosio ALB, Dias SMG, Polikarpov I, Zurier RB, Burstein SH, Garratt RC. J Biol Chem 282 18625-18633 (2007)
  26. Structure-dependent binding and activation of perfluorinated compounds on human peroxisome proliferator-activated receptor γ. Zhang L, Ren XM, Wan B, Guo LH. Toxicol Appl Pharmacol 279 275-283 (2014)
  27. Genomic Activation of PPARG Reveals a Candidate Therapeutic Axis in Bladder Cancer. Goldstein JT, Berger AC, Shih J, Duke FF, Furst L, Kwiatkowski DJ, Cherniack AD, Meyerson M, Strathdee CA. Cancer Res 77 6987-6998 (2017)
  28. Design novel dual agonists for treating type-2 diabetes by targeting peroxisome proliferator-activated receptors with core hopping approach. Ma Y, Wang SQ, Xu WR, Wang RL, Chou KC. PLoS One 7 e38546 (2012)
  29. Interactions between Human Liver Fatty Acid Binding Protein and Peroxisome Proliferator Activated Receptor Selective Drugs. Velkov T. PPAR Res 2013 938401 (2013)
  30. Structure-based design of indole propionic acids as novel PPARalpha/gamma co-agonists. Kuhn B, Hilpert H, Benz J, Binggeli A, Grether U, Humm R, Märki HP, Meyer M, Mohr P. Bioorg Med Chem Lett 16 4016-4020 (2006)
  31. Glucose directly links to lipid metabolism through high affinity interaction with peroxisome proliferator-activated receptor alpha. Hostetler HA, Huang H, Kier AB, Schroeder F. J Biol Chem 283 2246-2254 (2008)
  32. Tesaglitazar, a dual PPAR{alpha}/{gamma} agonist, ameliorates glucose and lipid intolerance in obese Zucker rats. Oakes ND, Thalén P, Hultstrand T, Jacinto S, Camejo G, Wallin B, Ljung B. Am J Physiol Regul Integr Comp Physiol 289 R938-46 (2005)
  33. Molecular recognition of docosahexaenoic acid by peroxisome proliferator-activated receptors and retinoid-X receptor alpha. Gani OA, Sylte I. J Mol Graph Model 27 217-224 (2008)
  34. Ligand-escape pathways from the ligand-binding domain of PPARgamma receptor as probed by molecular dynamics simulations. Genest D, Garnier N, Arrault A, Marot C, Morin-Allory L, Genest M. Eur Biophys J 37 369-379 (2008)
  35. PPARγ and PPARα synergize to induce robust browning of white fat in vivo. Kroon T, Harms M, Maurer S, Bonnet L, Alexandersson I, Lindblom A, Ahnmark A, Nilsson D, Gennemark P, O'Mahony G, Osinski V, McNamara C, Boucher J. Mol Metab 36 100964 (2020)
  36. Sulfonylureas and glinides exhibit peroxisome proliferator-activated receptor gamma activity: a combined virtual screening and biological assay approach. Scarsi M, Podvinec M, Roth A, Hug H, Kersten S, Albrecht H, Schwede T, Meyer UA, Rücker C. Mol Pharmacol 71 398-406 (2007)
  37. Adaptability and selectivity of human peroxisome proliferator-activated receptor (PPAR) pan agonists revealed from crystal structures. Oyama T, Toyota K, Waku T, Hirakawa Y, Nagasawa N, Kasuga JI, Hashimoto Y, Miyachi H, Morikawa K. Acta Crystallogr D Biol Crystallogr 65 786-795 (2009)
  38. Fatty acid chain length and saturation influences PPARα transcriptional activation and repression in HepG2 cells. Popeijus HE, van Otterdijk SD, van der Krieken SE, Konings M, Serbonij K, Plat J, Mensink RP. Mol Nutr Food Res 58 2342-2349 (2014)
  39. Tesaglitazar, a PPARalpha/gamma agonist, induces interstitial mesenchymal cell DNA synthesis and fibrosarcomas in subcutaneous tissues in rats. Hellmold H, Zhang H, Andersson U, Blomgren B, Holland T, Berg AL, Elebring M, Sjögren N, Bamberg K, Dahl B, Westerberg R, Dillner B, Tugwood J, Tugwood J, Roberts R, Lundholm E, Camejo G, Skånberg I, Evans J. Toxicol Sci 98 63-74 (2007)
  40. Arjunolic acid, a peroxisome proliferator-activated receptor α agonist, regresses cardiac fibrosis by inhibiting non-canonical TGF-β signaling. Bansal T, Chatterjee E, Singh J, Ray A, Kundu B, Thankamani V, Sengupta S, Sarkar S. J Biol Chem 292 16440-16462 (2017)
  41. Pirfenidone Is an Agonistic Ligand for PPARα and Improves NASH by Activation of SIRT1/LKB1/pAMPK. Sandoval-Rodriguez A, Monroy-Ramirez HC, Meza-Rios A, Garcia-Bañuelos J, Vera-Cruz J, Gutiérrez-Cuevas J, Silva-Gomez J, Staels B, Dominguez-Rosales J, Galicia-Moreno M, Vazquez-Del Mercado M, Navarro-Partida J, Santos-Garcia A, Armendariz-Borunda J. Hepatol Commun 4 434-449 (2020)
  42. Are fish oil omega-3 long-chain fatty acids and their derivatives peroxisome proliferator-activated receptor agonists? Gani OA. Cardiovasc Diabetol 7 6 (2008)
  43. Di-(2-ethylhexyl) phthalate could disrupt the insulin signaling pathway in liver of SD rats and L02 cells via PPARγ. Zhang W, Shen XY, Zhang WW, Chen H, Xu WP, Wei W. Toxicol Appl Pharmacol 316 17-26 (2017)
  44. 1,3,5-Trisubstituted aryls as highly selective PPARdelta agonists. Epple R, Azimioara M, Russo R, Bursulaya B, Tian SS, Gerken A, Iskandar M. Bioorg Med Chem Lett 16 2969-2973 (2006)
  45. A new class of non-thiazolidinedione, non-carboxylic-acid-based highly selective peroxisome proliferator-activated receptor (PPAR) γ agonists: design and synthesis of benzylpyrazole acylsulfonamides. Rikimaru K, Wakabayashi T, Abe H, Imoto H, Maekawa T, Ujikawa O, Murase K, Matsuo T, Matsumoto M, Nomura C, Tsuge H, Arimura N, Kawakami K, Sakamoto J, Funami M, Mol CD, Snell GP, Bragstad KA, Sang BC, Dougan DR, Tanaka T, Katayama N, Horiguchi Y, Momose Y. Bioorg Med Chem 20 714-733 (2012)
  46. Analysis of the critical structural determinant(s) of species-selective peroxisome proliferator-activated receptor alpha (PPAR alpha)-activation by phenylpropanoic acid-type PPAR alpha agonists. Miyachi H, Uchiki H. Bioorg Med Chem Lett 13 3145-3149 (2003)
  47. Overview of clinically approved oral antidiabetic agents for the treatment of type 2 diabetes mellitus. He ZX, Zhou ZW, Yang Y, Yang T, Pan SY, Qiu JX, Zhou SF. Clin Exp Pharmacol Physiol 42 125-138 (2015)
  48. A novel selective peroxisome proliferator-activated receptor alpha agonist, 2-methyl-c-5-[4-[5-methyl-2-(4-methylphenyl)-4-oxazolyl]butyl]-1,3-dioxane-r-2-carboxylic acid (NS-220), potently decreases plasma triglyceride and glucose levels and modifies lipoprotein profiles in KK-Ay mice. Kuwabara K, Murakami K, Todo M, Aoki T, Asaki T, Murai M, Yano J. J Pharmacol Exp Ther 309 970-977 (2004)
  49. Inhibition of smooth muscle proliferation by urea-based alkanoic acids via peroxisome proliferator-activated receptor alpha-dependent repression of cyclin D1. Ng VY, Morisseau C, Falck JR, Hammock BD, Kroetz DL. Arterioscler Thromb Vasc Biol 26 2462-2468 (2006)
  50. Stability of fatty acyl-coenzyme A thioester ligands of hepatocyte nuclear factor-4alpha and peroxisome proliferator-activated receptor-alpha. Schroeder F, Huang H, Hostetler HA, Petrescu AD, Hertz R, Bar-Tana J, Kier AB. Lipids 40 559-568 (2005)
  51. 2-Alkoxydihydrocinnamates as PPAR agonists. Activity modulation by the incorporation of phenoxy substituents. Martín JA, Brooks DA, Prieto L, González R, Torrado A, Rojo I, López de Uralde B, Lamas C, Ferritto R, Dolores Martín-Ortega M, Agejas J, Parra F, Rizzo JR, Rhodes GA, Robey RL, Alt CA, Wendel SR, Zhang TY, Reifel-Miller A, Montrose-Rafizadeh C, Brozinick JT, Hawkins E, Misener EA, Briere DA, Ardecky R, Fraser JD, Warshawsky AM. Bioorg Med Chem Lett 15 51-55 (2005)
  52. Design and biological evaluation of novel, balanced dual PPARalpha/gamma agonists. Grether U, Bénardeau A, Benz J, Binggeli A, Blum D, Hilpert H, Kuhn B, Märki HP, Meyer M, Mohr P, Püntener K, Raab S, Ruf A, Schlatter D. ChemMedChem 4 951-956 (2009)
  53. Spectroscopic analyses of the binding kinetics of 15d-PGJ2 to the PPARgamma ligand-binding domain by multi-wavelength global fitting. Shiraki T, Kodama TS, Shiki S, Nakagawa T, Jingami H. Biochem J 393 749-755 (2006)
  54. The PPAR α / γ Agonist, Tesaglitazar, Improves Insulin Mediated Switching of Tissue Glucose and Free Fatty Acid Utilization In Vivo in the Obese Zucker Rat. Wallenius K, Kjellstedt A, Thalén P, Löfgren L, Oakes ND. PPAR Res 2013 305347 (2013)
  55. The effect of antagonists on the conformational exchange of the retinoid X receptor alpha ligand-binding domain. Lu J, Dawson MI, Hu QY, Xia Z, Dambacher JD, Ye M, Zhang XK, Li E. Magn Reson Chem 47 1071-1080 (2009)
  56. Elucidation of Molecular Mechanism of a Selective PPARα Modulator, Pemafibrate, through Combinational Approaches of X-ray Crystallography, Thermodynamic Analysis, and First-Principle Calculations. Kawasaki M, Kambe A, Yamamoto Y, Arulmozhiraja S, Ito S, Nakagawa Y, Tokiwa H, Nakano S, Shimano H. Int J Mol Sci 21 E361 (2020)
  57. Design, synthesis, and evaluation of a new class of noncyclic 1,3-dicarbonyl compounds as PPARalpha selective activators. Li Z, Liao C, Ko BC, Shan S, Tong EH, Yin Z, Pan D, Wong VK, Shi L, Ning ZQ, Hu W, Zhou J, Chung SS, Lu XP. Bioorg Med Chem Lett 14 3507-3511 (2004)
  58. Synthesis, biological evaluation, and molecular modeling investigation of chiral phenoxyacetic acid analogues with PPARalpha and PPARgamma agonist activity. Fracchiolla G, Laghezza A, Piemontese L, Carbonara G, Lavecchia A, Tortorella P, Crestani M, Novellino E, Loiodice F. ChemMedChem 2 641-654 (2007)
  59. Dynamic correlation networks in human peroxisome proliferator-activated receptor-γ nuclear receptor protein. Fidelak J, Ferrer S, Oberlin M, Moras D, Dejaegere A, Stote RH. Eur Biophys J 39 1503-1512 (2010)
  60. Enantio-dependent binding and transactivation of optically active phenylpropanoic acid derivatives at human peroxisome proliferator-activated receptor alpha. Miyachi H, Nomura M, Tanase T, Suzuki M, Murakami K, Awano K. Bioorg Med Chem Lett 12 333-335 (2002)
  61. Peroxisome proliferator-activated receptors target family landscape: a chemometrical approach to ligand selectivity based on protein binding site analysis. Pirard B. J Comput Aided Mol Des 17 785-796 (2003)
  62. Design and synthesis of oxime ethers of alpha-acyl-beta-phenylpropanoic acids as PPAR dual agonists. Oon Han H, Kim SH, Kim KH, Hur GC, Joo Yim H, Chung HK, Ho Woo S, Dong Koo K, Lee CS, Sung Koh J, Kim GT. Bioorg Med Chem Lett 17 937-941 (2007)
  63. Discovery of ligands for Nurr1 by combined use of NMR screening with different isotopic and spin-labeling strategies. Poppe L, Harvey TS, Mohr C, Zondlo J, Tegley CM, Nuanmanee O, Cheetham J. J Biomol Screen 12 301-311 (2007)
  64. Molecular modelling of phthalates - PPARs interactions. Kambia N, Renault N, Dilly S, Farce A, Dine T, Gressier B, Luyckx M, Brunet C, Chavatte P. J Enzyme Inhib Med Chem 23 611-616 (2008)
  65. Design and synthesis of 6-methyl-2-oxo-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid derivatives as PPARgamma activators. Kumar R, Mittal A, Ramachandran U. Bioorg Med Chem Lett 17 4613-4618 (2007)
  66. Differential effects of triclosan on the activation of mouse and human peroxisome proliferator-activated receptor alpha. Wu Y, Wu Q, Beland FA, Ge P, Manjanatha MG, Fang JL. Toxicol Lett 231 17-28 (2014)
  67. Structure-based pharmacophore screening for natural-product-derived PPARgamma agonists. Tanrikulu Y, Rau O, Schwarz O, Proschak E, Siems K, Müller-Kuhrt L, Schubert-Zsilavecz M, Schneider G. Chembiochem 10 75-78 (2009)
  68. Sulfur-substituted and alpha-methylated fatty acids as peroxisome proliferator-activated receptor activators. Larsen LN, Granlund L, Holmeide AK, Skattebøl L, Nebb HI, Bremer J. Lipids 40 49-57 (2005)
  69. Activation helix orientation of the estrogen receptor is mediated by receptor dimerization: evidence from molecular dynamics simulations. Fratev F. Phys Chem Chem Phys 17 13403-13420 (2015)
  70. Different binding and recognition modes of GL479, a dual agonist of Peroxisome Proliferator-Activated Receptor α/γ. dos Santos JC, Bernardes A, Giampietro L, Ammazzalorso A, De Filippis B, Amoroso R, Polikarpov I. J Struct Biol 191 332-340 (2015)
  71. Effects of modifications of the linker in a series of phenylpropanoic acid derivatives: Synthesis, evaluation as PPARalpha/gamma dual agonists, and X-ray crystallographic studies. Casimiro-Garcia A, Bigge CF, Davis JA, Padalino T, Pulaski J, Ohren JF, McConnell P, Kane CD, Royer LJ, Stevens KA, Auerbach BJ, Collard WT, McGregor C, Fakhoury SA, Schaum RP, Zhou H. Bioorg Med Chem 16 4883-4907 (2008)
  72. A Molecular Dynamics-Shared Pharmacophore Approach to Boost Early-Enrichment Virtual Screening: A Case Study on Peroxisome Proliferator-Activated Receptor α. Perricone U, Wieder M, Seidel T, Langer T, Padova A, Almerico AM, Tutone M. ChemMedChem 12 1399-1407 (2017)
  73. Antcins, triterpenoids from Antrodia cinnamomea, as new agonists for peroxisome proliferator-activated receptor α. Wang YJ, Lee SC, Hsu CH, Kuo YH, Yang CC, Lin FJ. J Food Drug Anal 27 295-304 (2019)
  74. Design, synthesis, and evaluation of 2-alkoxydihydrocinnamates as PPAR agonists. Lu Y, Guo Z, Guo Y, Feng J, Chu F. Bioorg Med Chem Lett 16 915-919 (2006)
  75. Identification of novel multitargeted PPARα/γ/δ pan agonists by core hopping of rosiglitazone. Wang XJ, Zhang J, Wang SQ, Xu WR, Cheng XC, Wang RL. Drug Des Devel Ther 8 2255-2262 (2014)
  76. New diphenylmethane derivatives as peroxisome proliferator-activated receptor alpha/gamma dual agonists endowed with anti-proliferative effects and mitochondrial activity. Piemontese L, Cerchia C, Laghezza A, Ziccardi P, Sblano S, Tortorella P, Iacobazzi V, Infantino V, Convertini P, Dal Piaz F, Lupo A, Colantuoni V, Lavecchia A, Loiodice F. Eur J Med Chem 127 379-397 (2017)
  77. Novel (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acids: peroxisome proliferator-activated receptor γ selective agonists with protein-tyrosine phosphatase 1B inhibition. Otake K, Azukizawa S, Fukui M, Kunishiro K, Kamemoto H, Kanda M, Miike T, Kasai M, Shirahase H. Bioorg Med Chem 20 1060-1075 (2012)
  78. Quinoline-based derivatives of pirinixic acid as dual PPAR alpha/gamma agonists. Popescu L, Rau O, Böttcher J, Syha Y, Schubert-Zsilavecz M. Arch Pharm (Weinheim) 340 367-371 (2007)
  79. Synthesis and biological evaluation of new clofibrate analogues as potential PPARalpha agonists. Perrone MG, Santandrea E, Dell'Uomo N, Giannessi F, Milazzo FM, Sciarroni AF, Scilimati A, Tortorella V. Eur J Med Chem 40 143-154 (2005)
  80. The effects of short-chain fatty acids on the transcription and secretion of apolipoprotein A-I in human hepatocytes in vitro. Tayyeb JZ, Popeijus HE, Mensink RP, Konings MCJM, Mulders KHR, Plat J. J Cell Biochem 120 17219-17227 (2019)
  81. Selective binding of the fluorescent dye 1-anilinonaphthalene-8-sulfonic acid to peroxisome proliferator-activated receptor gamma allows ligand identification and characterization. Zorrilla S, Garzón B, Pérez-Sala D. Anal Biochem 399 84-92 (2010)
  82. The conserved residue Phe273(282) of PPARalpha(gamma), beyond the ligand-binding site, functions in binding affinity through solvation effect. Yue L, Ye F, Xu X, Shen J, Chen K, Shen X, Jiang H. Biochimie 87 539-550 (2005)
  83. Design and synthesis of novel PPARalpha/gamma/delta triple activators using a known PPARalpha/gamma dual activator as structural template. Mogensen JP, Jeppesen L, Bury PS, Pettersson I, Fleckner J, Nehlin J, Frederiksen KS, Albrektsen T, Din N, Mortensen SB, Svensson LA, Wassermann K, Wulff EM, Ynddal L, Sauerberg P. Bioorg Med Chem Lett 13 257-260 (2003)
  84. Effects of Dual Peroxisome Proliferator-Activated Receptors α and γ Activation in Two Rat Models of Neuropathic Pain. Alsalem M, Haddad M, Aldossary SA, Kalbouneh H, Azab B, Dweik A, Imraish A, El-Salem K. PPAR Res 2019 2630232 (2019)
  85. Molecular modelling of the peroxisome proliferator-activated receptor alpha (PPAR alpha) from human, rat and mouse, based on homology with the human PPAR gamma crystal structure. Lewis DF, Jacobs MN, Dickins M, Lake BG. Toxicol In Vitro 16 275-280 (2002)
  86. Scaffold-based pan-agonist design for the PPARα, PPARβ and PPARγ receptors. Zhang LS, Wang SQ, Xu WR, Wang RL, Wang JF. PLoS One 7 e48453 (2012)
  87. A protocol for the combined sub-fractionation and delipidation of lipid binding proteins using hydrophobic interaction chromatography. Velkov T, Lim ML, Capuano B, Prankerd R. J Chromatogr B Analyt Technol Biomed Life Sci 867 238-246 (2008)
  88. A restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles. Möglich A, Weinfurtner D, Maurer T, Gronwald W, Kalbitzer HR. BMC Bioinformatics 6 91 (2005)
  89. Design and synthesis of novel Y-shaped barbituric acid derivatives as PPARγ activators. Dixit VA, Rathi PC, Bhagat S, Gohlke H, Petersen RK, Kristiansen K, Chakraborti AK, Bharatam PV. Eur J Med Chem 108 423-435 (2016)
  90. Ligand-enhanced expression and in-cell assay of human peroxisome proliferator-activated receptor alpha ligand binding domain. Velkov T, Rimmer KA, Headey SJ. Protein Expr Purif 70 260-269 (2010)
  91. Ligand-induced stabilization and activation of peroxisome proliferator-activated receptor gamma. Gani OA, Sylte I. Chem Biol Drug Des 72 50-57 (2008)
  92. Monitoring Solution Structures of Peroxisome Proliferator-Activated Receptor β/δ upon Ligand Binding. Schwarz R, Tänzler D, Ihling CH, Sinz A. PLoS One 11 e0151412 (2016)
  93. Structural mechanism underlying ligand binding and activation of PPARγ. Shang J, Kojetin DJ. Structure 29 940-950.e4 (2021)
  94. Synthesis and evaluation of novel alpha-heteroaryl-phenylpropanoic acid derivatives as PPARalpha/gamma dual agonists. Casimiro-Garcia A, Bigge CF, Davis JA, Padalino T, Pulaski J, Ohren JF, McConnell P, Kane CD, Royer LJ, Stevens KA, Auerbach B, Collard W, McGregor C, Song K. Bioorg Med Chem 17 7113-7125 (2009)
  95. Tesaglitazar, a dual PPAR-α/γ agonist, hamster carcinogenicity, investigative animal and clinical studies. Lindblom P, Berg AL, Zhang H, Westerberg R, Tugwood J, Lundgren H, Marcusson-Ståhl M, Sjögren N, Blomgren B, Öhman P, Skånberg I, Evans J, Hellmold H. Toxicol Pathol 40 18-32 (2012)
  96. Cooperativity as quantification and optimization paradigm for nuclear receptor modulators. de Vink PJ, Koops AA, D'Arrigo G, Cruciani G, Spyrakis F, Brunsveld L. Chem Sci 13 2744-2752 (2022)
  97. Docking study: PPARs interaction with the selected alternative plasticizers to di(2-ethylhexyl) phthalate. Kambia N, Farce A, Belarbi K, Gressier B, Luyckx M, Chavatte P, Dine T. J Enzyme Inhib Med Chem 31 448-455 (2016)
  98. Expression and purification of the ligand-binding domain of peroxisome proliferator-activated receptor alpha (PPARalpha). Müller MQ, Roth C, Sträter N, Sinz A. Protein Expr Purif 62 185-189 (2008)
  99. In silico design, chemical synthesis and toxicological evaluation of 1,3-thiazolidine-2,4-dione derivatives as PPARγ agonists. Alemán-González-Duhart D, Tamay-Cach F, Correa-Basurto J, Padilla-Martínez II, Álvarez-Almazán S, Mendieta-Wejebe JE. Regul Toxicol Pharmacol 86 25-32 (2017)
  100. Molecular mechanics and molecular orbital simulations on specific interactions between peroxisome proliferator-activated receptor PPARalpha and plasticizer. Nakagawa T, Kurita N, Kozakai S, Iwabuchi S, Yamaguchi Y, Hayakawa M, Ito Y, Aoyama T, Nakajima T. J Mol Graph Model 27 45-58 (2008)
  101. Permuting input for more effective sampling of 3D conformer space. Carta G, Onnis V, Knox AJ, Fayne D, Lloyd DG. J Comput Aided Mol Des 20 179-190 (2006)
  102. A novel series of (S)-2,7-substituted-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acids: peroxisome proliferator-activated receptor α/γ dual agonists with protein-tyrosine phosphatase 1B inhibitory activity. Otake K, Azukizawa S, Fukui M, Shibabayashi M, Kamemoto H, Miike T, Kunishiro K, Kasai M, Shirahase H. Chem Pharm Bull (Tokyo) 59 1233-1242 (2011)
  103. Molecular recognition of agonist and antagonist for peroxisome proliferator-activated receptor-α studied by molecular dynamics simulations. Liu M, Wang L, Zhao X, Sun X. Int J Mol Sci 15 8743-8752 (2014)
  104. Synthesis and evaluation of 2,3-dinorprostaglandins: Dinor-PGD1 and 13-epi-dinor-PGD1 are peroxisome proliferator-activated receptor α/γ dual agonists. Sato A, Dodo K, Makishima M, Hashimoto Y, Sodeoka M. Bioorg Med Chem Lett 23 3013-3017 (2013)
  105. Analysis of PPAR-α/γ Activity by Combining 2-D QSAR and Molecular Simulation. Vallianatou T, Lambrinidis G, Giaginis C, Mikros E, Tsantili-Kakoulidou A. Mol Inform 32 431-445 (2013)
  106. Deciphering PPARγ activation in cardiometabolic syndrome: studies by in silico and in vivo experimental assessment. Agrawal R, Nath V, Kumar H, Kumar V. J Recept Signal Transduct Res 38 122-132 (2018)
  107. Discovery of a Novel Selective Dual Peroxisome Proliferator-Activated Receptor α/δ Agonist for the Treatment of Primary Biliary Cirrhosis. Jiang Z, Liu X, Yuan Z, He H, Wang J, Zhang X, Gong Z, Hou L, Shen L, Guo F, Zhang J, Wang J, Xu D, Liu Z, Li H, Chen X, Long C, Li J, Chen S. ACS Med Chem Lett 10 1068-1073 (2019)
  108. Identification of novel PPARα/γ dual agonists by virtual screening, ADMET prediction and molecular dynamics simulations. Liu X, Jing Z, Jia WQ, Wang SQ, Ma Y, Xu WR, Liu JW, Cheng XC. J Biomol Struct Dyn 36 2988-3002 (2018)
  109. Molecular determinants for improved activity at PPARα: structure-activity relationship of pirinixic acid derivatives, docking study and site-directed mutagenesis of PPARα. Lamers C, Dittrich M, Steri R, Proschak E, Schubert-Zsilavecz M. Bioorg Med Chem Lett 24 4048-4052 (2014)
  110. Oncoglabrinol C, a new flavan from Oncocalyx glabratus protects endothelial cells against oxidative stress and apoptosis, and modulates hepatic CYP3A4 activity. Parvez MK, Al-Dosari MS, Ahmed S, Rehman MT, Al-Rehaily AJ, Alajmi MF. Saudi Pharm J 28 648-656 (2020)
  111. Transient expression, purification and characterisation of human full-length PPARγ2 in HEK293 cells. Liu J, Ormö M, Nyström AC, Claesson J, Giordanetto F. Protein Expr Purif 89 189-195 (2013)
  112. Chiral phenoxyacetic acid analogues inhibit colon cancer cell proliferation acting as PPARγ partial agonists. Sabatino L, Ziccardi P, Cerchia C, Muccillo L, Piemontese L, Loiodice F, Colantuoni V, Lupo A, Lavecchia A. Sci Rep 9 5434 (2019)
  113. Co-Incubation with PPARβ/δ Agonists and Antagonists Modeled Using Computational Chemistry: Effect on LPS Induced Inflammatory Markers in Pulmonary Artery. Perez Diaz N, Lione LA, Hutter V, Mackenzie LS. Int J Mol Sci 22 3158 (2021)
  114. Design, sythesis and evaluation of a series of 3- or 4-alkoxy substituted phenoxy derivatives as PPARs agonists. Zhang J, Wang XJ, Liu X, Huan Y, Yang MM, Shen ZF, Jia WQ, Jing Z, Wang SQ, Xu WR, Cheng XC, Wang RL. Oncotarget 8 20766-20783 (2017)
  115. Food does not affect the pharmacokinetics of tesaglitazar, a novel dual peroxisome proliferator-activated receptor alpha/gamma agonist. Samuelsson S, Johansson S, Halldórsdóttir S, Stenhoff H, Ohman KP. J Clin Pharmacol 46 1017-1022 (2006)
  116. Selective, potent PPARgamma agonists with cyclopentenone core structure. Otero MP, Pérez Santín E, Rodríguez-Barrios F, Vaz B, de Lera AR. Bioorg Med Chem Lett 19 1883-1886 (2009)
  117. Synthesis, Molecular Modeling and Biological Evaluation of Metabolically Stable Analogues of the Endogenous Fatty Acid Amide Palmitoylethanolamide. D'Aloia A, Arrigoni F, Tisi R, Palmioli A, Ceriani M, Artusa V, Airoldi C, Zampella G, Costa B, Cipolla L. Int J Mol Sci 21 E9074 (2020)
  118. To Probe Full and Partial Activation of Human Peroxisome Proliferator-Activated Receptors by Pan-Agonist Chiglitazar Using Molecular Dynamics Simulations. Sullivan HJ, Wang X, Nogle S, Liao S, Wu C. PPAR Res 2020 5314187 (2020)
  119. Virtual identification of novel PPARα/γ dual agonists by scaffold hopping of saroglitazar. Jia WQ, Jing Z, Liu X, Feng XY, Liu YY, Wang SQ, Xu WR, Liu JW, Cheng XC. J Biomol Struct Dyn 36 3496-3512 (2018)
  120. Deciphering the relational dynamics of AF-2 domain of PAN PPAR through drug repurposing and comparative simulations. Gul F, Parvaiz N, Azam SS. PLoS One 18 e0283743 (2023)
  121. Drug repurposing by in silico prediction of cyclizine derivatives as antihyperlipemic agents. Afanamol MS, Dinesh AD, Ali KS, Vengamthodi A, Rasheed A. In Silico Pharmacol 11 27 (2023)
  122. Hepatic fibrosis: Targeting peroxisome proliferator-activated receptor alpha from mechanism to medicines. Gong L, Wei F, Gonzalez FJ, Li G. Hepatology 78 1625-1653 (2023)
  123. Metabolic/hypoxial axis predicts tamoxifen resistance in breast cancer. Azzam HN, El-Derany MO, Wahdan SA, Faheim RM, Helal GK, El-Demerdash E. Sci Rep 12 16118 (2022)
  124. Molecular docking of Glyceroneogenesis pathway intermediates with Peroxisome Proliferator- Activated Receptor-Alpha (PPAR-α). Subramani PA, Panati K, Narala VR. Bioinformation 9 629-632 (2013)
  125. Novel 1,2,4-oxadiazole compounds as PPAR-α ligand agonists: a new strategy for the design of antitumour compounds. Apaza Ticona L, Sánchez Sánchez-Corral J, Flores Sepúlveda A, Soriano Vázquez C, Hernán Vieco C, Rumbero Sánchez Á. RSC Med Chem 14 1377-1388 (2023)
  126. Prediction of the PPARα agonism of fibrates by combined MM-docking approaches. Lannutti F, Marrone A, Re N. J Mol Graph Model 29 865-875 (2011)
  127. The conformational dynamics of H2-H3n and S2-H6 in gating ligand entry into the buried binding cavity of vitamin D receptor. Tee WV, Ripen AM, Mohamad SB. Sci Rep 6 35937 (2016)