1i4d Citations

The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways.

Nature 411 215-9 (2001)
Related entries: 1i49, 1i4l, 1i4t

Cited: 186 times
EuropePMC logo PMID: 11346801

Abstract

Small G proteins are GTP-dependent molecular switches that regulate numerous cellular functions. They can be classified into homologous subfamilies that are broadly associated with specific biological processes. Cross-talk between small G-protein families has an important role in signalling, but the mechanism by which it occurs is poorly understood. The coordinated action of Arf and Rho family GTPases is required to regulate many cellular processes including lipid signalling, cell motility and Golgi function. Arfaptin is a ubiquitously expressed protein implicated in mediating cross-talk between Rac (a member of the Rho family) and Arf small GTPases. Here we show that Arfaptin binds specifically to GTP-bound Arf1 and Arf6, but binds to Rac.GTP and Rac.GDP with similar affinities. The X-ray structure of Arfaptin reveals an elongated, crescent-shaped dimer of three-helix coiled-coils. Structures of Arfaptin with Rac bound to either GDP or the slowly hydrolysable analogue GMPPNP show that the switch regions adopt similar conformations in both complexes. Our data highlight fundamental differences between the molecular mechanisms of Rho and Ras family signalling, and suggest a model of Arfaptin-mediated synergy between the Arf and Rho family signalling pathways.

Reviews - 1i4d mentioned but not cited (2)

  1. Always look on the bright site of Rho: structural implications for a conserved intermolecular interface. Dvorsky R, Ahmadian MR. EMBO Rep 5 1130-1136 (2004)
  2. Rac1 as a Target to Treat Dysfunctions and Cancer of the Bladder. Sauzeau V, Beignet J, Bailly C. Biomedicines 10 1357 (2022)

Articles - 1i4d mentioned but not cited (30)

  1. Accelerating protein docking in ZDOCK using an advanced 3D convolution library. Pierce BG, Hourai Y, Weng Z. PLoS One 6 e24657 (2011)
  2. Endophilin BAR domain drives membrane curvature by two newly identified structure-based mechanisms. Masuda M, Takeda S, Sone M, Ohki T, Mori H, Kamioka Y, Mochizuki N. EMBO J 25 2889-2897 (2006)
  3. Benchmarking and analysis of protein docking performance in Rosetta v3.2. Chaudhury S, Berrondo M, Weitzner BD, Muthu P, Bergman H, Gray JJ. PLoS One 6 e22477 (2011)
  4. Protein-protein docking benchmark version 3.0. Hwang H, Pierce B, Mintseris J, Janin J, Weng Z. Proteins 73 705-709 (2008)
  5. Protein-protein docking using region-based 3D Zernike descriptors. Venkatraman V, Yang YD, Sael L, Kihara D. BMC Bioinformatics 10 407 (2009)
  6. Prediction of functional sites by analysis of sequence and structure conservation. Panchenko AR, Kondrashov F, Bryant S. Protein Sci 13 884-892 (2004)
  7. The Phosphatidylinositol (3,4,5)-Trisphosphate-dependent Rac Exchanger 1·Ras-related C3 Botulinum Toxin Substrate 1 (P-Rex1·Rac1) Complex Reveals the Basis of Rac1 Activation in Breast Cancer Cells. Lucato CM, Halls ML, Ooms LM, Liu HJ, Mitchell CA, Whisstock JC, Ellisdon AM. J Biol Chem 290 20827-20840 (2015)
  8. Evolutionary plasticity of protein families: coupling between sequence and structure variation. Panchenko AR, Wolf YI, Panchenko LA, Madej T. Proteins 61 535-544 (2005)
  9. Designing coarse grained-and atom based-potentials for protein-protein docking. Tobi D. BMC Struct Biol 10 40 (2010)
  10. Coronin-1C and RCC2 guide mesenchymal migration by trafficking Rac1 and controlling GEF exposure. Williamson RC, Cowell CA, Hammond CL, Bergen DJ, Roper JA, Feng Y, Rendall TC, Race PR, Bass MD. J Cell Sci 127 4292-4307 (2014)
  11. Binding interface prediction by combining protein-protein docking results. Hwang H, Vreven T, Weng Z. Proteins 82 57-66 (2014)
  12. Protein-protein binding site identification by enumerating the configurations. Guo F, Li SC, Wang L, Zhu D. BMC Bioinformatics 13 158 (2012)
  13. Allosteric inhibition of the guanine nucleotide exchange factor DOCK5 by a small molecule. Ferrandez Y, Zhang W, Peurois F, Akendengué L, Blangy A, Zeghouf M, Cherfils J. Sci Rep 7 14409 (2017)
  14. DrugScorePPI knowledge-based potentials used as scoring and objective function in protein-protein docking. Krüger DM, Ignacio Garzón J, Chacón P, Gohlke H. PLoS One 9 e89466 (2014)
  15. Comparison of tertiary structures of proteins in protein-protein complexes with unbound forms suggests prevalence of allostery in signalling proteins. Swapna LS, Mahajan S, de Brevern AG, Srinivasan N. BMC Struct Biol 12 6 (2012)
  16. Structural deformation upon protein-protein interaction: a structural alphabet approach. Martin J, Regad L, Lecornet H, Camproux AC. BMC Struct Biol 8 12 (2008)
  17. Structural assembly of molecular complexes based on residual dipolar couplings. Berlin K, O'Leary DP, Fushman D. J Am Chem Soc 132 8961-8972 (2010)
  18. Deciphering the three-domain architecture in schlafens and the structures and roles of human schlafen12 and serpinB12 in transcriptional regulation. Chen J, Kuhn LA. J Mol Graph Model 90 59-76 (2019)
  19. Disorder driven allosteric control of protein activity. Tee WV, Guarnera E, Berezovsky IN. Curr Res Struct Biol 2 191-203 (2020)
  20. Naegleria fowleri: Protein structures to facilitate drug discovery for the deadly, pathogenic free-living amoeba. Tillery L, Barrett K, Goldstein J, Lassner JW, Osterhout B, Tran NL, Xu L, Young RM, Craig J, Chun I, Dranow DM, Abendroth J, Delker SL, Davies DR, Mayclin SJ, Calhoun B, Bolejack MJ, Staker B, Subramanian S, Phan I, Lorimer DD, Myler PJ, Edwards TE, Kyle DE, Rice CA, Morris JC, Leahy JW, Manetsch R, Barrett LK, Smith CL, Van Voorhis WC. PLoS One 16 e0241738 (2021)
  21. How to use not-always-reliable binding site information in protein-protein docking prediction. Li L, Huang Y, Xiao Y. PLoS One 8 e75936 (2013)
  22. In Silico Approach for SAR Analysis of the Predicted Model of DEPDC1B: A Novel Target for Oral Cancer. Ahuja P, Singh K. Adv Bioinformatics 2016 3136024 (2016)
  23. Letter Integration of the Rac1- and actin-binding properties of Coronin-1C. Tilley FC, Williamson RC, Race PR, Rendall TC, Bass MD. Small GTPases 6 36-42 (2015)
  24. Selectivity Determinants of RHO GTPase Binding to IQGAPs. Mosaddeghzadeh N, Nouri K, Krumbach OHF, Amin E, Dvorsky R, Ahmadian MR. Int J Mol Sci 22 12596 (2021)
  25. From complete cross-docking to partners identification and binding sites predictions. Dequeker C, Mohseni Behbahani Y, David L, Laine E, Carbone A. PLoS Comput Biol 18 e1009825 (2022)
  26. Applying Side-chain Flexibility in Motifs for Protein Docking. Liu H, Lin F, Yang JL, Wang HR, Liu XL. Genomics Insights 8 1-10 (2015)
  27. Mechanistic Differences of Activation of Rac1P29S and Rac1A159V. Senyuz S, Jang H, Nussinov R, Keskin O, Gursoy A. J Phys Chem B 125 3790-3802 (2021)
  28. Protein docking with predicted constraints. Krippahl L, Barahona P. Algorithms Mol Biol 10 9 (2015)
  29. Structure collisions between interacting proteins. Emig D, Sander O, Mayr G, Albrecht M. PLoS One 6 e19581 (2011)
  30. Ca 2+ Regulates Dimerization of the BAR Domain Protein PICK1 and Consequent Membrane Curvature. Stan GF, Shoemark DK, Alibhai D, Hanley JG. Front Mol Neurosci 15 893739 (2022)


Reviews citing this publication (47)

  1. Local force and geometry sensing regulate cell functions. Vogel V, Sheetz M. Nat Rev Mol Cell Biol 7 265-275 (2006)
  2. Rho and Rac take center stage. Burridge K, Wennerberg K. Cell 116 167-179 (2004)
  3. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Ridley AJ. Trends Cell Biol 16 522-529 (2006)
  4. The endocytic pathway: a mosaic of domains. Gruenberg J. Nat Rev Mol Cell Biol 2 721-730 (2001)
  5. Activation and assembly of the NADPH oxidase: a structural perspective. Groemping Y, Rittinger K. Biochem J 386 401-416 (2005)
  6. The hunt for huntingtin function: interaction partners tell many different stories. Harjes P, Wanker EE. Trends Biochem Sci 28 425-433 (2003)
  7. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Saarikangas J, Zhao H, Lappalainen P. Physiol Rev 90 259-289 (2010)
  8. Regulation of actin cytoskeleton dynamics in cells. Lee SH, Dominguez R. Mol Cells 29 311-325 (2010)
  9. The BAR-domain family of proteins: a case of bending and binding? Habermann B. EMBO Rep 5 250-255 (2004)
  10. Membrane curvature and its generation by BAR proteins. Mim C, Unger VM. Trends Biochem Sci 37 526-533 (2012)
  11. Let's go bananas: revisiting the endocytic BAR code. Qualmann B, Koch D, Kessels MM. EMBO J 30 3501-3515 (2011)
  12. Arf and its many interactors. Nie Z, Hirsch DS, Randazzo PA. Curr Opin Cell Biol 15 396-404 (2003)
  13. Making protein interactions druggable: targeting PDZ domains. Dev KK. Nat Rev Drug Discov 3 1047-1056 (2004)
  14. The BAR domain proteins: molding membranes in fission, fusion, and phagy. Ren G, Vajjhala P, Lee JS, Winsor B, Munn AL. Microbiol Mol Biol Rev 70 37-120 (2006)
  15. G protein-coupled receptors stimulation and the control of cell migration. Cotton M, Claing A. Cell Signal 21 1045-1053 (2009)
  16. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins. Suetsugu S, Kurisu S, Takenawa T. Physiol Rev 94 1219-1248 (2014)
  17. RhoGDIs revisited: novel roles in Rho regulation. Dransart E, Olofsson B, Cherfils J. Traffic 6 957-966 (2005)
  18. Multiple activities for Arf1 at the Golgi complex. Donaldson JG, Honda A, Weigert R. Biochim Biophys Acta 1744 364-373 (2005)
  19. Structure and function of PICK1. Xu J, Xia J. Neurosignals 15 190-201 (2006)
  20. The RHO Family GTPases: Mechanisms of Regulation and Signaling. Mosaddeghzadeh N, Ahmadian MR. Cells 10 1831 (2021)
  21. Membrane shaping by the Bin/amphiphysin/Rvs (BAR) domain protein superfamily. Rao Y, Haucke V. Cell Mol Life Sci 68 3983-3993 (2011)
  22. BAR domain proteins-a linkage between cellular membranes, signaling pathways, and the actin cytoskeleton. Carman PJ, Dominguez R. Biophys Rev 10 1587-1604 (2018)
  23. Phagocytic signaling strategies: Fc(gamma)receptor-mediated phagocytosis as a model system. Cox D, Greenberg S. Semin Immunol 13 339-345 (2001)
  24. The many faces of Ras: recognition of small GTP-binding proteins. Corbett KD, Alber T. Trends Biochem Sci 26 710-716 (2001)
  25. Structural characteristics of BAR domain superfamily to sculpt the membrane. Masuda M, Mochizuki N. Semin Cell Dev Biol 21 391-398 (2010)
  26. Structures of Ras superfamily effector complexes: What have we learnt in two decades? Mott HR, Owen D. Crit Rev Biochem Mol Biol 50 85-133 (2015)
  27. Membrane-associated cargo recycling by tubule-based endosomal sorting. van Weering JR, Cullen PJ. Semin Cell Dev Biol 31 40-47 (2014)
  28. Arf GTPases and their effectors: assembling multivalent membrane-binding platforms. Cherfils J. Curr Opin Struct Biol 29 67-76 (2014)
  29. Survey of the year 2001 commercial optical biosensor literature. Rich RL, Myszka DG. J Mol Recognit 15 352-376 (2002)
  30. Deciphering the BAR code of membrane modulators. Salzer U, Kostan J, Djinović-Carugo K. Cell Mol Life Sci 74 2413-2438 (2017)
  31. The wild-type Ras: road ahead. Singh A, Sowjanya AP, Ramakrishna G. FASEB J 19 161-169 (2005)
  32. Membrane-bending proteins. Prinz WA, Hinshaw JE. Crit Rev Biochem Mol Biol 44 278-291 (2009)
  33. Deconstructing signaling in three dimensions. Rubashkin MG, Ou G, Weaver VM. Biochemistry 53 2078-2090 (2014)
  34. Attachment of rod-like (BAR) proteins and membrane shape. Kabaso D, Gongadze E, Elter P, van Rienen U, Gimsa J, Kralj-Iglič V, Iglič A. Mini Rev Med Chem 11 272-282 (2011)
  35. Arf GAPs as Regulators of the Actin Cytoskeleton-An Update. Tanna CE, Goss LB, Ludwig CG, Chen PW. Int J Mol Sci 20 E442 (2019)
  36. Arf GAPs: A family of proteins with disparate functions that converge on a common structure, the integrin adhesion complex. Vitali T, Girald-Berlingeri S, Randazzo PA, Chen PW. Small GTPases 10 280-288 (2019)
  37. Crosstalk of Arf and Rab GTPases en route to cilia. Deretic D. Small GTPases 4 70-77 (2013)
  38. "Wunder" F-BAR domains: going from pits to vesicles. Fütterer K, Machesky LM. Cell 129 655-657 (2007)
  39. Bidirectional transport between the trans-Golgi network and the endosomal system. Anitei M, Wassmer T, Stange C, Hoflack B. Mol Membr Biol 27 443-456 (2010)
  40. Contribution of AZAP-Type Arf GAPs to cancer cell migration and invasion. Ha VL, Luo R, Nie Z, Randazzo PA. Adv Cancer Res 101 1-28 (2008)
  41. Allostery and dynamics in small G proteins. Mott HR, Owen D. Biochem Soc Trans 46 1333-1343 (2018)
  42. Membrane Binding and Modulation of the PDZ Domain of PICK1. Erlendsson S, Madsen KL. Membranes (Basel) 5 597-615 (2015)
  43. Critical evaluation of in silico methods for prediction of coiled-coil domains in proteins. Li C, Ching Han Chang C, Nagel J, Porebski BT, Hayashida M, Akutsu T, Song J, Buckle AM. Brief Bioinform 17 270-282 (2016)
  44. Biochemical and functional significance of F-BAR domain proteins interaction with WASP/N-WASP. Chen Y, Aardema J, Corey SJ. Semin Cell Dev Biol 24 280-286 (2013)
  45. Higher-order assemblies of BAR domain proteins for shaping membranes. Suetsugu S. Microscopy (Oxf) 65 201-210 (2016)
  46. Barfly: sculpting membranes at the Drosophila neuromuscular junction. Oh E, Robinson I. Dev Neurobiol 72 33-56 (2012)
  47. Induction of membrane curvature by proteins involved in Golgi trafficking. Makowski SL, Kuna RS, Field SJ. Adv Biol Regul 75 100661 (2020)

Articles citing this publication (107)

  1. APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Miaczynska M, Christoforidis S, Giner A, Shevchenko A, Uttenweiler-Joseph S, Habermann B, Wilm M, Parton RG, Zerial M. Cell 116 445-456 (2004)
  2. The BAR domain superfamily: membrane-molding macromolecules. Frost A, Unger VM, De Camilli P. Cell 137 191-196 (2009)
  3. Targeted in vivo mutations of the AMPA receptor subunit GluR2 and its interacting protein PICK1 eliminate cerebellar long-term depression. Steinberg JP, Takamiya K, Shen Y, Xia J, Rubio ME, Yu S, Jin W, Thomas GM, Linden DJ, Huganir RL. Neuron 49 845-860 (2006)
  4. Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature. Henne WM, Kent HM, Ford MG, Hegde BG, Daumke O, Butler PJ, Mittal R, Langen R, Evans PR, McMahon HT. Structure 15 839-852 (2007)
  5. Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53. Millard TH, Bompard G, Heung MY, Dafforn TR, Scott DJ, Machesky LM, Fütterer K. EMBO J 24 240-250 (2005)
  6. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Chen F, Liu H, Sun H, Pan P, Li Y, Li D, Hou T. Phys Chem Chem Phys 18 22129-22139 (2016)
  7. The complex of Arl2-GTP and PDE delta: from structure to function. Hanzal-Bayer M, Renault L, Roversi P, Wittinghofer A, Hillig RC. EMBO J 21 2095-2106 (2002)
  8. An alpha4 integrin-paxillin-Arf-GAP complex restricts Rac activation to the leading edge of migrating cells. Nishiya N, Kiosses WB, Han J, Ginsberg MH. Nat Cell Biol 7 343-352 (2005)
  9. NSF ATPase and alpha-/beta-SNAPs disassemble the AMPA receptor-PICK1 complex. Hanley JG, Khatri L, Hanson PI, Ziff EB. Neuron 34 53-67 (2002)
  10. Structural basis for the actin-binding function of missing-in-metastasis. Lee SH, Kerff F, Chereau D, Ferron F, Klug A, Dominguez R. Structure 15 145-155 (2007)
  11. The PX-BAR membrane-remodeling unit of sorting nexin 9. Pylypenko O, Lundmark R, Rasmuson E, Carlsson SR, Rak A. EMBO J 26 4788-4800 (2007)
  12. Evolution of protein complexes by duplication of homomeric interactions. Pereira-Leal JB, Levy ED, Kamp C, Teichmann SA. Genome Biol 8 R51 (2007)
  13. Lipid binding regulates synaptic targeting of PICK1, AMPA receptor trafficking, and synaptic plasticity. Jin W, Ge WP, Xu J, Cao M, Peng L, Yung W, Liao D, Duan S, Zhang M, Xia J. J Neurosci 26 2380-2390 (2006)
  14. Structural basis for Arl1-dependent targeting of homodimeric GRIP domains to the Golgi apparatus. Panic B, Perisic O, Veprintsev DB, Williams RL, Munro S. Mol Cell 12 863-874 (2003)
  15. Structure of the APPL1 BAR-PH domain and characterization of its interaction with Rab5. Zhu G, Chen J, Liu J, Brunzelle JS, Huang B, Wakeham N, Terzyan S, Li X, Rao Z, Li G, Zhang XC. EMBO J 26 3484-3493 (2007)
  16. Angiomotin belongs to a novel protein family with conserved coiled-coil and PDZ binding domains. Bratt A, Wilson WJ, Troyanovsky B, Aase K, Kessler R, Van Meir EG, Holmgren L. Gene 298 69-77 (2002)
  17. A phosphatidylinositol-3-kinase-dependent signal transition regulates ARF1 and ARF6 during Fcgamma receptor-mediated phagocytosis. Beemiller P, Hoppe AD, Swanson JA. PLoS Biol 4 e162 (2006)
  18. The structure of bovine IF(1), the regulatory subunit of mitochondrial F-ATPase. Cabezón E, Runswick MJ, Leslie AG, Walker JE. EMBO J 20 6990-6996 (2001)
  19. Crystal structure of the endophilin-A1 BAR domain. Weissenhorn W. J Mol Biol 351 653-661 (2005)
  20. ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIIβ. Judith D, Jefferies HBJ, Boeing S, Frith D, Snijders AP, Tooze SA. J Cell Biol 218 1634-1652 (2019)
  21. PIKE (phosphatidylinositol 3-kinase enhancer)-A GTPase stimulates Akt activity and mediates cellular invasion. Ahn JY, Rong R, Kroll TG, Van Meir EG, Snyder SH, Ye K. J Biol Chem 279 16441-16451 (2004)
  22. Armus is a Rac1 effector that inactivates Rab7 and regulates E-cadherin degradation. Frasa MA, Maximiano FC, Smolarczyk K, Francis RE, Betson ME, Lozano E, Goldenring J, Seabra MC, Rak A, Ahmadian MR, Braga VM. Curr Biol 20 198-208 (2010)
  23. Nano-topography sensing by osteoclasts. Geblinger D, Addadi L, Geiger B. J Cell Sci 123 1503-1510 (2010)
  24. Nonlinear sorting, curvature generation, and crowding of endophilin N-BAR on tubular membranes. Zhu C, Das SL, Baumgart T. Biophys J 102 1837-1845 (2012)
  25. APPL1, APPL2, Akt2 and FOXO1a interact with FSHR in a potential signaling complex. Nechamen CA, Thomas RM, Dias JA. Mol Cell Endocrinol 260-262 93-99 (2007)
  26. Arf GTPase-activating protein ASAP1 interacts with Rab11 effector FIP3 and regulates pericentrosomal localization of transferrin receptor-positive recycling endosome. Inoue H, Ha VL, Prekeris R, Randazzo PA. Mol Biol Cell 19 4224-4237 (2008)
  27. The BAR domain protein Arfaptin-1 controls secretory granule biogenesis at the trans-Golgi network. Gehart H, Goginashvili A, Beck R, Morvan J, Erbs E, Formentini I, De Matteis MA, Schwab Y, Wieland FT, Ricci R. Dev Cell 23 756-768 (2012)
  28. PICK1-ICA69 heteromeric BAR domain complex regulates synaptic targeting and surface expression of AMPA receptors. Cao M, Xu J, Shen C, Kam C, Huganir RL, Xia J. J Neurosci 27 12945-12956 (2007)
  29. The TC10-interacting protein CIP4/2 is required for insulin-stimulated Glut4 translocation in 3T3L1 adipocytes. Chang L, Adams RD, Saltiel AR. Proc Natl Acad Sci U S A 99 12835-12840 (2002)
  30. Eisosome-driven plasma membrane organization is mediated by BAR domains. Ziółkowska NE, Karotki L, Rehman M, Huiskonen JT, Walther TC. Nat Struct Mol Biol 18 854-856 (2011)
  31. Autoinhibition of Arf GTPase-activating protein activity by the BAR domain in ASAP1. Jian X, Brown P, Schuck P, Gruschus JM, Balbo A, Hinshaw JE, Randazzo PA. J Biol Chem 284 1652-1663 (2009)
  32. Endogenous ARF6 interacts with Rac1 upon angiotensin II stimulation to regulate membrane ruffling and cell migration. Cotton M, Boulay PL, Houndolo T, Vitale N, Pitcher JA, Claing A. Mol Biol Cell 18 501-511 (2007)
  33. The crystal structure of the BAR domain from human Bin1/amphiphysin II and its implications for molecular recognition. Casal E, Federici L, Zhang W, Fernandez-Recio J, Priego EM, Miguel RN, DuHadaway JB, Prendergast GC, Luisi BF, Laue ED. Biochemistry 45 12917-12928 (2006)
  34. Structural insights into formation of an active signaling complex between Rac and phospholipase C gamma 2. Bunney TD, Opaleye O, Roe SM, Vatter P, Baxendale RW, Walliser C, Everett KL, Josephs MB, Christow C, Rodrigues-Lima F, Gierschik P, Pearl LH, Katan M. Mol Cell 34 223-233 (2009)
  35. The design of artificial retroviral restriction factors. Yap MW, Mortuza GB, Taylor IA, Stoye JP. Virology 365 302-314 (2007)
  36. Crystal structures of the BAR-PH and PTB domains of human APPL1. Li J, Mao X, Dong LQ, Liu F, Tong L. Structure 15 525-533 (2007)
  37. Dual role of BAR domain-containing proteins in regulating vesicle release catalyzed by the GTPase, dynamin-2. Neumann S, Schmid SL. J Biol Chem 288 25119-25128 (2013)
  38. Membrane targeting by APPL1 and APPL2: dynamic scaffolds that oligomerize and bind phosphoinositides. Chial HJ, Wu R, Ustach CV, McPhail LC, Mobley WC, Chen YQ. Traffic 9 215-229 (2008)
  39. Differential binding of arfaptin 2/POR1 to ADP-ribosylation factors and Rac1. Shin OH, Exton JH. Biochem Biophys Res Commun 285 1267-1273 (2001)
  40. The Rac1 polybasic region is required for interaction with its effector PRK1. Modha R, Campbell LJ, Nietlispach D, Buhecha HR, Owen D, Mott HR. J Biol Chem 283 1492-1500 (2008)
  41. Arf6 plays an early role in platelet activation by collagen and convulxin. Choi W, Karim ZA, Whiteheart SW. Blood 107 3145-3152 (2006)
  42. Proteomic analysis of adaptor protein 1A coats selectively assembled on liposomes. Baust T, Czupalla C, Krause E, Bourel-Bonnet L, Hoflack B. Proc Natl Acad Sci U S A 103 3159-3164 (2006)
  43. Arfaptins are localized to the trans-Golgi by interaction with Arl1, but not Arfs. Man Z, Kondo Y, Koga H, Umino H, Nakayama K, Shin HW. J Biol Chem 286 11569-11578 (2011)
  44. Membrane localization is critical for activation of the PICK1 BAR domain. Madsen KL, Eriksen J, Milan-Lobo L, Han DS, Niv MY, Ammendrup-Johnsen I, Henriksen U, Bhatia VK, Stamou D, Sitte HH, McMahon HT, Weinstein H, Gether U. Traffic 9 1327-1343 (2008)
  45. Effector proteins exert an important influence on the signaling-active state of the small GTPase Cdc42. Phillips MJ, Calero G, Chan B, Ramachandran S, Cerione RA. J Biol Chem 283 14153-14164 (2008)
  46. Multiple modes of endophilin-mediated conversion of lipid vesicles into coated tubes: implications for synaptic endocytosis. Mizuno N, Jao CC, Langen R, Steven AC. J Biol Chem 285 23351-23358 (2010)
  47. ARAP1 regulates EGF receptor trafficking and signalling. Daniele T, Di Tullio G, Santoro M, Turacchio G, De Matteis MA. Traffic 9 2221-2235 (2008)
  48. Intersectin (ITSN) family of scaffolds function as molecular hubs in protein interaction networks. Wong KA, Wilson J, Russo A, Wang L, Okur MN, Wang X, Martin NP, Scappini E, Carnegie GK, O'Bryan JP. PLoS One 7 e36023 (2012)
  49. Adult neuronal Arf6 controls ethanol-induced behavior with Arfaptin downstream of Rac1 and RhoGAP18B. Peru Y Colón de Portugal RL, Acevedo SF, Rodan AR, Chang LY, Eaton BA, Rothenfluh A. J Neurosci 32 17706-17713 (2012)
  50. Arfaptin 2 regulates the aggregation of mutant huntingtin protein. Peters PJ, Ning K, Palacios F, Boshans RL, Kazantsev A, Thompson LM, Woodman B, Bates GP, D'Souza-Schorey C. Nat Cell Biol 4 240-245 (2002)
  51. PDZ binding to the BAR domain of PICK1 is elucidated by coarse-grained molecular dynamics. He Y, Liwo A, Weinstein H, Scheraga HA. J Mol Biol 405 298-314 (2011)
  52. The crystal structure Escherichia coli Spy. Kwon E, Kim DY, Gross CA, Gross JD, Kim KK. Protein Sci 19 2252-2259 (2010)
  53. Comparison of Saccharomyces cerevisiae F-BAR domain structures reveals a conserved inositol phosphate binding site. Moravcevic K, Alvarado D, Schmitz KR, Kenniston JA, Mendrola JM, Ferguson KM, Lemmon MA. Structure 23 352-363 (2015)
  54. ARAP2 signals through Arf6 and Rac1 to control focal adhesion morphology. Chen PW, Jian X, Yoon HY, Randazzo PA. J Biol Chem 288 5849-5860 (2013)
  55. Structural basis for membrane binding specificity of the Bin/Amphiphysin/Rvs (BAR) domain of Arfaptin-2 determined by Arl1 GTPase. Nakamura K, Man Z, Xie Y, Hanai A, Makyio H, Kawasaki M, Kato R, Shin HW, Nakayama K, Wakatsuki S. J Biol Chem 287 25478-25489 (2012)
  56. The DHR1 domain of DOCK180 binds to SNX5 and regulates cation-independent mannose 6-phosphate receptor transport. Hara S, Kiyokawa E, Iemura S, Natsume T, Wassmer T, Cullen PJ, Hiai H, Matsuda M. Mol Biol Cell 19 3823-3835 (2008)
  57. A fluorescence polarization assay for the identification of inhibitors of the p53-DM2 protein-protein interaction. Knight SM, Umezawa N, Lee HS, Gellman SH, Kay BK. Anal Biochem 300 230-236 (2002)
  58. Disruption of a RAC1-centred network is associated with Alzheimer's disease pathology and causes age-dependent neurodegeneration. Kikuchi M, Sekiya M, Hara N, Miyashita A, Kuwano R, Ikeuchi T, Iijima KM, Nakaya A. Hum Mol Genet 29 817-833 (2020)
  59. The BAR Domain Superfamily Proteins from Subcellular Structures to Human Diseases. Safari F, Suetsugu S. Membranes (Basel) 2 91-117 (2012)
  60. Arf6 exchange factor EFA6 and endophilin directly interact at the plasma membrane to control clathrin-mediated endocytosis. Boulakirba S, Macia E, Partisani M, Lacas-Gervais S, Brau F, Luton F, Franco M. Proc Natl Acad Sci U S A 111 9473-9478 (2014)
  61. Closed membrane shapes with attached BAR domains subject to external force of actin filaments. Mesarec L, Góźdź W, Iglič VK, Kralj S, Iglič A. Colloids Surf B Biointerfaces 141 132-140 (2016)
  62. Primary platelet signaling cascades and integrin-mediated signaling control ADP-ribosylation factor (Arf) 6-GTP levels during platelet activation and aggregation. Karim ZA, Choi W, Whiteheart SW. J Biol Chem 283 11995-12003 (2008)
  63. Single point mutation in Bin/Amphiphysin/Rvs (BAR) sequence of endophilin impairs dimerization, membrane shaping, and Src homology 3 domain-mediated partnership. Gortat A, San-Roman MJ, Vannier C, Schmidt AA. J Biol Chem 287 4232-4247 (2012)
  64. Regulation of dynamin-2 assembly-disassembly and function through the SH3A domain of intersectin-1s. Knezevic I, Predescu D, Bardita C, Wang M, Sharma T, Keith B, Neamu R, Malik AB, Predescu S. J Cell Mol Med 15 2364-2376 (2011)
  65. High-throughput in planta expression screening identifies an ADP-ribosylation factor (ARF1) involved in non-host resistance and R gene-mediated resistance. Coemans B, Takahashi Y, Berberich T, Ito A, Kanzaki H, Matsumura H, Saitoh H, Tsuda S, Kamoun S, Sági L, Swennen R, Terauchi R. Mol Plant Pathol 9 25-36 (2008)
  66. A novel, retromer-independent role for sorting nexins 1 and 2 in RhoG-dependent membrane remodeling. Prosser DC, Tran D, Schooley A, Wendland B, Ngsee JK. Traffic 11 1347-1362 (2010)
  67. Membrane curvature protein exhibits interdomain flexibility and binds a small GTPase. King GJ, Stöckli J, Hu SH, Winnen B, Duprez WG, Meoli CC, Junutula JR, Jarrott RJ, James DE, Whitten AE, Martin JL. J Biol Chem 287 40996-41006 (2012)
  68. Structural mimicry of DH domains by Arfaptin suggests a model for the recognition of Rac-GDP by its guanine nucleotide exchange factors. Cherfils J. FEBS Lett 507 280-284 (2001)
  69. The differential regulation of phosphatidylinositol 4-phosphate 5-kinases and phospholipase D1 by ADP-ribosylation factors 1 and 6. Perez-Mansilla B, Ha VL, Justin N, Wilkins AJ, Carpenter CL, Thomas GM. Biochim Biophys Acta 1761 1429-1442 (2006)
  70. Geometry sensing through POR1 regulates Rac1 activity controlling early osteoblast differentiation in response to nanofiber diameter. Higgins AM, Banik BL, Brown JL. Integr Biol (Camb) 7 229-236 (2015)
  71. Normal dynactin complex function during synapse growth in Drosophila requires membrane binding by Arfaptin. Chang L, Kreko T, Davison H, Cusmano T, Wu Y, Rothenfluh A, Eaton BA. Mol Biol Cell 24 1749-64, S1-5 (2013)
  72. Peptide modulators of Rac1/Tiam1 protein-protein interaction: An alternative approach for cardiovascular diseases. Contini A, Ferri N, Bucci R, Lupo MG, Erba E, Gelmi ML, Pellegrino S. Biopolymers (2017)
  73. The Role of BAR Domain Proteins in the Regulation of Membrane Dynamics. Stanishneva-Konovalova TB, Derkacheva NI, Polevova SV, Sokolova OS. Acta Naturae 8 60-69 (2016)
  74. Betacap73-ARF6 interactions modulate cell shape and motility after injury in vitro. Riley KN, Maldonado AE, Tellier P, D'Souza-Schorey C, Herman IM. Mol Biol Cell 14 4155-4161 (2003)
  75. Brefeldin a inhibits circadian remodeling of chloroplast structure in the dinoflagellate gonyaulax. Nassoury N, Wang Y, Morse D. Traffic 6 548-561 (2005)
  76. EhNCABP166: a nucleocytoplasmic actin-binding protein from Entamoeba histolytica. Campos-Parra AD, Hernández-Cuevas NA, Hernandez-Rivas R, Vargas M. Mol Biochem Parasitol 172 19-30 (2010)
  77. A mutational analysis of the endophilin-A N-BAR domain performed in living flies. Jung AG, Labarrera C, Jansen AM, Qvortrup K, Wild K, Kjaerulff O. PLoS One 5 e9492 (2010)
  78. Arf1 and membrane curvature cooperate to recruit Arfaptin2 to liposomes. Ambroggio EE, Sillibourne J, Antonny B, Manneville JB, Goud B. PLoS One 8 e62963 (2013)
  79. Peptide design and structural characterization of a GPCR loop mimetic. Pham TC, Kriwacki RW, Parrill AL. Biopolymers 86 298-310 (2007)
  80. Studies of the roles of ADP-ribosylation factors and phospholipase D in phorbol ester-induced membrane ruffling. Hiroyama M, Exton JH. J Cell Physiol 202 608-622 (2005)
  81. Discover hidden splicing variations by mapping personal transcriptomes to personal genomes. Stein S, Lu ZX, Bahrami-Samani E, Park JW, Xing Y. Nucleic Acids Res 43 10612-10622 (2015)
  82. Insertion of 16 amino acids in the BAR domain of the oligophrenin 1 protein causes mental retardation and cerebellar hypoplasia in an Italian family. Pirozzi F, Di Raimo FR, Zanni G, Bertini E, Billuart P, Tartaglione T, Tabolacci E, Brancaccio A, Neri G, Chiurazzi P. Hum Mutat 32 E2294-307 (2011)
  83. PICK1 links AMPA receptor stimulation to Cdc42. Rocca DL, Hanley JG. Neurosci Lett 585 155-159 (2015)
  84. The Bin/amphiphysin/Rvs (BAR) domain protein endophilin B2 interacts with plectin and controls perinuclear cytoskeletal architecture. Vannier C, Pesty A, San-Roman MJ, Schmidt AA. J Biol Chem 288 27619-27637 (2013)
  85. A single PXXP motif in the C-terminal region of srGAP3 mediates binding to multiple SH3 domains. Wuertenberger S, Groemping Y. FEBS Lett 589 1156-1163 (2015)
  86. Fluctuating Finite Element Analysis (FFEA): A continuum mechanics software tool for mesoscale simulation of biomolecules. Solernou A, Hanson BS, Richardson RA, Welch R, Read DJ, Harlen OG, Harris SA. PLoS Comput Biol 14 e1005897 (2018)
  87. The glycine brace: a component of Rab, Rho, and Ran GTPases associated with hinge regions of guanine- and phosphate-binding loops. Neuwald AF. BMC Struct Biol 9 11 (2009)
  88. Mechanisms of membrane curvature generation in membrane traffic. Shin HW, Takatsu H, Nakayama K. Membranes (Basel) 2 118-133 (2012)
  89. Letter Backbone 1H, 13C, and 15N resonance assignments for the 21 kDa GTPase Rac1 complexed to GDP and Mg2+. Thapar R, Moore CD, Campbell SL. J Biomol NMR 27 87-88 (2003)
  90. Proteome-wide prediction of targets for aspirin: new insight into the molecular mechanism of aspirin. Dai SX, Li WX, Li GH, Huang JF. PeerJ 4 e1791 (2016)
  91. Structural Basis of CYRI-B Direct Competition with Scar/WAVE Complex for Rac1. Yelland T, Le AH, Nikolaou S, Insall R, Machesky L, Ismail S. Structure 29 226-237.e4 (2021)
  92. Arf GTPase activates the WAVE regulatory complex through a distinct binding site. Yang S, Tang Y, Liu Y, Brown AJ, Schaks M, Ding B, Kramer DA, Mietkowska M, Ding L, Alekhina O, Billadeau DD, Chowdhury S, Wang J, Rottner K, Chen B. Sci Adv 8 eadd1412 (2022)
  93. Exploring the binding dynamics of BAR proteins. Kabaso D, Gongadze E, Jorgačevski J, Kreft M, Van Rienen U, Zorec R, Iglič A. Cell Mol Biol Lett 16 398-411 (2011)
  94. LdFlabarin, a new BAR domain membrane protein of Leishmania flagellum. Lefebvre M, Tetaud E, Thonnus M, Salin B, Boissier F, Blancard C, Sauvanet C, Metzler C, Espiau B, Sahin A, Merlin G. PLoS One 8 e76380 (2013)
  95. Arfaptin-1 negatively regulates Arl1-mediated retrograde transport. Huang LH, Lee WC, You ST, Cheng CC, Yu CJ. PLoS One 10 e0118743 (2015)
  96. The guanine exchange factor Gartenzwerg and the small GTPase Arl1 function in the same pathway with Arfaptin during synapse growth. Chang L, Kreko-Pierce T, Eaton BA. Biol Open 4 947-953 (2015)
  97. The novel Dbl homology/BAR domain protein, MsgA, of Talaromyces marneffei regulates yeast morphogenesis during growth inside host cells. Weerasinghe H, Bugeja HE, Andrianopoulos A. Sci Rep 11 2334 (2021)
  98. Spontaneous local membrane curvature induced by transmembrane proteins. Kluge C, Pöhnl M, Böckmann RA. Biophys J 121 671-683 (2022)
  99. A lysine-rich cluster in the N-BAR domain of ARF GTPase-activating protein ASAP1 is necessary for binding and bundling actin filaments. Gasilina A, Yoon HY, Jian X, Luo R, Randazzo PA. J Biol Chem 298 101700 (2022)
  100. Inhibition of formyl peptide-stimulated phospholipase D activation by Fal-002-2 via blockade of the Arf6, RhoA and protein kinase C signaling pathways in rat neutrophils. Tsai YR, Huang LJ, Lin HY, Hung YJ, Lee MR, Kuo SC, Hsu MF, Wang JP. Naunyn Schmiedebergs Arch Pharmacol 386 507-519 (2013)
  101. Pitstop-2 and its novel derivative RVD-127 disrupt global cell dynamics and nuclear pores integrity by direct interaction with small GTPases. Liashkovich I, Stefanello ST, Vidyadharan R, Haufe G, Erofeev A, Gorelkin PV, Kolmogorov V, Mizdal CR, Dulebo A, Bulk E, Kouzel IU, Shahin V. Bioeng Transl Med 8 e10425 (2023)
  102. Purification, crystallization and preliminary X-ray analysis of the inverse F-BAR domain of the human srGAP2 protein. Wang H, Zhang Y, Zhang Z, Jin WL, Wu G. Acta Crystallogr F Struct Biol Commun 70 123-126 (2014)
  103. 1,25(OH)2D3 Promotes Macrophage Efferocytosis Partly by Upregulating ASAP2 Transcription via the VDR-Bound Enhancer Region and ASAP2 May Affect Antiviral Immunity. Shi H, Duan J, Wang J, Li H, Wu Z, Wang S, Wu X, Lu M. Nutrients 14 4935 (2022)
  104. In silico expressed sequence tag analysis in identification of probable diabetic genes as virtual therapeutic targets. Behera PM, Behera DK, Panda A, Dixit A, Padhi P. Biomed Res Int 2013 704818 (2013)
  105. PSTPIP1-LYP phosphatase interaction: structural basis and implications for autoinflammatory disorders. Manso JA, Marcos T, Ruiz-Martín V, Casas J, Alcón P, Sánchez Crespo M, Bayón Y, de Pereda JM, Alonso A. Cell Mol Life Sci 79 131 (2022)
  106. The Kelch13 compartment contains highly divergent vesicle trafficking proteins in malaria parasites. Schmidt S, Wichers-Misterek JS, Behrens HM, Birnbaum J, Henshall IG, Dröge J, Jonscher E, Flemming S, Castro-Peña C, Mesén-Ramírez P, Spielmann T. PLoS Pathog 19 e1011814 (2023)
  107. The Rac-GEF Tiam1 controls integrin-dependent neutrophil responses. Hornigold K, Baker MJ, Machin PA, Chetwynd SA, Johnsson AK, Pantarelli C, Islam P, Stammers M, Crossland L, Oxley D, Okkenhaug H, Walker S, Walker R, Segonds-Pichon A, Fukui Y, Malliri A, Welch HCE. Front Immunol 14 1223653 (2023)