1hsq Citations

Solution structure of the SH3 domain of phospholipase C-gamma.

Abstract

SH3 (Src homology 3) domains are found in many signaling proteins and appear to function as binding modules for cytoplasmic target proteins. The solution structure of the SH3 domain of human phospholipase C-gamma (PLC-gamma) was determined by two-dimensional 1H NMR analysis. This SH3 domain is composed of eight antiparallel beta strands consisting of two successive "Greek key" motifs, which form a barrel-like structure. The conserved aliphatic and aromatic residues form a hydrophobic pocket on the molecular surface, and the conserved carboxylic residues are localized to the periphery. The hydrophobic pocket may serve as a binding site for target proteins. Analysis of the slowly exchanging amide protons by NMR measurements indicates that despite containing a high content of beta structure, the SH3 domain of PLC-gamma is flexible.

Articles - 1hsq mentioned but not cited (2)

  1. Human cancer protein-protein interaction network: a structural perspective. Kar G, Gursoy A, Keskin O. PLoS Comput. Biol. 5 e1000601 (2009)
  2. SRC Homology 2 Domain Binding Sites in Insulin, IGF-1 and FGF receptor mediated signaling networks reveal an extensive potential interactome. Liu BA, Engelmann BW, Jablonowski K, Higginbotham K, Stergachis AB, Nash PD. Cell Commun. Signal 10 27 (2012)


Reviews citing this publication (14)

  1. SH2 and SH3 domains as targets for anti-proliferative agents. Vidal M, Gigoux V, Garbay C. Crit. Rev. Oncol. Hematol. 40 175-186 (2001)
  2. Structure and function of phosphatidylinositol-3,4 kinase. Funaki M, Katagiri H, Inukai K, Kikuchi M, Asano T. Cell. Signal. 12 135-142 (2000)
  3. Mammalian phosphoinositide-specific phospholipase C. Williams RL. Biochim. Biophys. Acta 1441 255-267 (1999)
  4. Families of phosphoinositide-specific phospholipase C: structure and function. Katan M. Biochim. Biophys. Acta 1436 5-17 (1998)
  5. SH3 domains and drug design: ligands, structure, and biological function. Dalgarno DC, Botfield MC, Rickles RJ. Biopolymers 43 383-400 (1997)
  6. Structural views of phosphoinositide-specific phospholipase C: signalling the way ahead. Williams RL, Katan M. Structure 4 1387-1394 (1996)
  7. Significance of PIP2 hydrolysis and regulation of phospholipase C isozymes. Lee SB, Rhee SG. Curr. Opin. Cell Biol. 7 183-189 (1995)
  8. Protein-protein interactions: methods for detection and analysis. Phizicky EM, Fields S. Microbiol. Rev. 59 94-123 (1995)
  9. Signal transduction pathways involving Ras. Mini review. Wiesmüller L, Wittinghofer F. Cell. Signal. 6 247-267 (1994)
  10. Profilin: at the crossroads of signal transduction and the actin cytoskeleton. Sohn RH, Goldschmidt-Clermont PJ. Bioessays 16 465-472 (1994)
  11. SH3 domains. Molecular 'Velcro'. Morton CJ, Campbell ID. Curr. Biol. 4 615-617 (1994)
  12. Structure and function of the SH3 domain. Musacchio A, Wilmanns M, Saraste M. Prog. Biophys. Mol. Biol. 61 283-297 (1994)
  13. New insights into protein-tyrosine kinase receptor signaling complexes. Fry MJ, Panayotou G, Booker GW, Waterfield MD. Protein Sci. 2 1785-1797 (1993)
  14. Predicting the conformation of proteins. Man versus machine. Benner SA, Gerloff DL. FEBS Lett. 325 29-33 (1993)

Articles citing this publication (50)

  1. Combining evolutionary information and neural networks to predict protein secondary structure. Rost B, Sander C. Proteins 19 55-72 (1994)
  2. The GTPase dynamin binds to and is activated by a subset of SH3 domains. Gout I, Dhand R, Hiles ID, Fry MJ, Panayotou G, Das P, Truong O, Totty NF, Hsuan J, Booker GW. Cell 75 25-36 (1993)
  3. Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. Zhang O, Kay LE, Olivier JP, Forman-Kay JD. J. Biomol. NMR 4 845-858 (1994)
  4. High-resolution crystal structures of tyrosine kinase SH3 domains complexed with proline-rich peptides. Musacchio A, Saraste M, Wilmanns M. Nat. Struct. Biol. 1 546-551 (1994)
  5. Proline-rich sequences that bind to Src homology 3 domains with individual specificities. Alexandropoulos K, Cheng G, Baltimore D. Proc. Natl. Acad. Sci. U.S.A. 92 3110-3114 (1995)
  6. Regulation of Btk function by a major autophosphorylation site within the SH3 domain. Park H, Wahl MI, Afar DE, Turck CW, Rawlings DJ, Tam C, Scharenberg AM, Kinet JP, Witte ON. Immunity 4 515-525 (1996)
  7. Formin binding proteins bear WWP/WW domains that bind proline-rich peptides and functionally resemble SH3 domains. Chan DC, Bedford MT, Leder P. EMBO J. 15 1045-1054 (1996)
  8. Mutational analysis of the Src SH3 domain: the same residues of the ligand binding surface are important for intra- and intermolecular interactions. Erpel T, Superti-Furga G, Courtneidge SA. EMBO J. 14 963-975 (1995)
  9. Tandem SH2 binding sites mediate the RasGAP-RhoGAP interaction: a conformational mechanism for SH3 domain regulation. Hu KQ, Settleman J. EMBO J. 16 473-483 (1997)
  10. The SH3 domain of Eps8 exists as a novel intertwined dimer. Kishan KV, Scita G, Wong WT, Di Fiore PP, Newcomer ME. Nat. Struct. Biol. 4 739-743 (1997)
  11. Binding of the Grb2 SH2 domain to phosphotyrosine motifs does not change the affinity of its SH3 domains for Sos proline-rich motifs. Cussac D, Frech M, Chardin P. EMBO J. 13 4011-4021 (1994)
  12. NMR structure of the N-terminal SH3 domain of GRB2 and its complex with a proline-rich peptide from Sos. Goudreau N, Cornille F, Duchesne M, Parker F, Tocqué B, Garbay C, Roques BP. Nat. Struct. Biol. 1 898-907 (1994)
  13. Structure-based conformational preferences of amino acids. Koehl P, Levitt M. Proc. Natl. Acad. Sci. U.S.A. 96 12524-12529 (1999)
  14. Critical residues in an SH3 domain from Sem-5 suggest a mechanism for proline-rich peptide recognition. Lim WA, Richards FM. Nat. Struct. Biol. 1 221-225 (1994)
  15. De novo protein design. II. Plasticity in sequence space. Koehl P, Levitt M. J. Mol. Biol. 293 1183-1193 (1999)
  16. Solution structure and peptide binding of the SH3 domain from human Fyn. Morton CJ, Pugh DJ, Brown EL, Kahmann JD, Renzoni DA, Campbell ID. Structure 4 705-714 (1996)
  17. Mutagenesis of human profilin locates its poly(L-proline)-binding site to a hydrophobic patch of aromatic amino acids. Björkegren C, Rozycki M, Schutt CE, Lindberg U, Karlsson R. FEBS Lett. 333 123-126 (1993)
  18. Structure of the N-terminal SH3 domain of GRB2 complexed with a peptide from the guanine nucleotide releasing factor Sos. Terasawa H, Kohda D, Hatanaka H, Tsuchiya S, Ogura K, Nagata K, Ishii S, Mandiyan V, Ullrich A, Schlessinger J. Nat. Struct. Biol. 1 891-897 (1994)
  19. Muscarinic receptors transform NIH 3T3 cells through a Ras-dependent signalling pathway inhibited by the Ras-GTPase-activating protein SH3 domain. Mattingly RR, Sorisky A, Brann MR, Macara IG. Mol. Cell. Biol. 14 7943-7952 (1994)
  20. Deletion within the Src homology domain 3 of Bruton's tyrosine kinase resulting in X-linked agammaglobulinemia (XLA). Zhu Q, Zhang M, Rawlings DJ, Vihinen M, Hagemann T, Saffran DC, Kwan SP, Nilsson L, Smith CI, Witte ON, Chen SH, Ochs HD. J. Exp. Med. 180 461-470 (1994)
  21. Physical and functional interactions between SH2 and SH3 domains of the Src family protein tyrosine kinase p59fyn. Panchamoorthy G, Fukazawa T, Stolz L, Payne G, Reedquist K, Shoelson S, Songyang Z, Cantley L, Walsh C, Band H. Mol. Cell. Biol. 14 6372-6385 (1994)
  22. Solution structure of the Grb2 N-terminal SH3 domain complexed with a ten-residue peptide derived from SOS: direct refinement against NOEs, J-couplings and 1H and 13C chemical shifts. Wittekind M, Mapelli C, Lee V, Goldfarb V, Friedrichs MS, Meyers CA, Mueller L. J. Mol. Biol. 267 933-952 (1997)
  23. An SH3 domain is required for the mitogenic activity of microinjected phospholipase C-gamma 1. Huang PS, Davis L, Huber H, Goodhart PJ, Wegrzyn RE, Oliff A, Heimbrook DC. FEBS Lett. 358 287-292 (1995)
  24. Solution structure and ligand-binding site of the carboxy-terminal SH3 domain of GRB2. Kohda D, Terasawa H, Ichikawa S, Ogura K, Hatanaka H, Mandiyan V, Ullrich A, Schlessinger J, Inagaki F. Structure 2 1029-1040 (1994)
  25. Grb2 SH3 binding to peptides from Sos: evaluation of a general model for SH3-ligand interactions. Simon JA, Schreiber SL. Chem. Biol. 2 53-60 (1995)
  26. The crystal structure of human CskSH3: structural diversity near the RT-Src and n-Src loop. Borchert TV, Mathieu M, Zeelen JP, Courtneidge SA, Wierenga RK. FEBS Lett. 341 79-85 (1994)
  27. The design of a hyperstable mutant of the Abp1p SH3 domain by sequence alignment analysis. Rath A, Davidson AR. Protein Sci. 9 2457-2469 (2000)
  28. Stability and peptide binding affinity of an SH3 domain from the Caenorhabditis elegans signaling protein Sem-5. Lim WA, Fox RO, Richards FM. Protein Sci. 3 1261-1266 (1994)
  29. Solution structure of GAP SH3 domain by 1H NMR and spatial arrangement of essential Ras signaling-involved sequence. Yang YS, Garbay C, Duchesne M, Cornille F, Jullian N, Fromage N, Tocque B, Roques BP. EMBO J. 13 1270-1279 (1994)
  30. Thermal unfolding of small proteins with SH3 domain folding pattern. Knapp S, Mattson PT, Christova P, Berndt KD, Karshikoff A, Vihinen M, Smith CI, Ladenstein R. Proteins 31 309-319 (1998)
  31. Characterization of phospholipase C gamma enzymes with gain-of-function mutations. Everett KL, Bunney TD, Yoon Y, Rodrigues-Lima F, Harris R, Driscoll PC, Abe K, Fuchs H, de Angelis MH, Yu P, Cho W, Katan M. J. Biol. Chem. 284 23083-23093 (2009)
  32. Complete nucleotide sequence, expression, and chromosomal localisation of human mixed-lineage kinase 2. Dorow DS, Devereux L, Tu GF, Price G, Nicholl JK, Sutherland GR, Simpson RJ. Eur. J. Biochem. 234 492-500 (1995)
  33. Solution structure of the epidermal growth factor-like domain of heregulin-alpha, a ligand for p180erbB-4. Nagata K, Kohda D, Hatanaka H, Ichikawa S, Matsuda S, Yamamoto T, Suzuki A, Inagaki F. EMBO J. 13 3517-3523 (1994)
  34. Automated search of natively folded protein fragments for high-throughput structure determination in structural genomics. Kuroda Y, Tani K, Matsuo Y, Yokoyama S. Protein Sci. 9 2313-2321 (2000)
  35. SH3 in muscles: solution structure of the SH3 domain from nebulin. Politou AS, Millevoi S, Gautel M, Kolmerer B, Pastore A. J. Mol. Biol. 276 189-202 (1998)
  36. Solution structure of the human Hck SH3 domain and identification of its ligand binding site. Horita DA, Baldisseri DM, Zhang W, Altieri AS, Smithgall TE, Gmeiner WH, Byrd RA. J. Mol. Biol. 278 253-265 (1998)
  37. Stability and folding of the SH3 domain of Bruton's tyrosine kinase. Chen YJ, Lin SC, Tzeng SR, Patel HV, Lyu PC, Cheng JW. Proteins 26 465-471 (1996)
  38. Predicted structure of the extracellular region of ligand-gated ion-channel receptors shows SH2-like and SH3-like domains forming the ligand-binding site. Gready JE, Ranganathan S, Schofield PR, Matsuo Y, Nishikawa K. Protein Sci. 6 983-998 (1997)
  39. Two-dimensional electrophoretic analysis of mixed lineage kinase 2 N-terminal domain binding proteins. Rasmussen RK, Ji H, Eddes JS, Moritz RL, Reid GE, Simpson RJ, Dorow DS. Electrophoresis 19 809-817 (1998)
  40. Structural basis for recognition of the T cell adaptor protein SLP-76 by the SH3 domain of phospholipase Cgamma1. Deng L, Velikovsky CA, Swaminathan CP, Cho S, Mariuzza RA. J. Mol. Biol. 352 1-10 (2005)
  41. Sequences surrounding the Src-homology 3 domain of phospholipase Cgamma-1 increase the domain's association with Cbl. Graham LJ, Stoica BA, Shapiro M, DeBell KE, Rellahan B, Laborda J, Bonvini E. Biochem. Biophys. Res. Commun. 249 537-541 (1998)
  42. Homology modeling of the Abl-SH3 domain. Pisabarro MT, Ortiz AR, Serrano L, Wade RC. Proteins 20 203-215 (1994)
  43. Splicing in murine CABYR and its genomic structure. Sen B, Mandal A, Wolkowicz MJ, Kim YH, Reddi PP, Shetty J, Bush LA, Flickinger CJ, Herr JC. Gene 310 67-78 (2003)
  44. SH3 domain of Bruton's tyrosine kinase can bind to proline-rich peptides of TH domain of the kinase and p120cbl. Patel HV, Tzeng SR, Liao CY, Chen SH, Cheng JW. Proteins 29 545-552 (1997)
  45. Translation and assembly of CABYR coding region B in fibrous sheath and restriction of calcium binding to coding region A. Kim YH, Jha KN, Mandal A, Vanage G, Farris E, Snow PL, Klotz K, Naaby-Hansen S, Flickinger CJ, Herr JC. Dev. Biol. 286 46-56 (2005)
  46. Domain organization of murine mdr1b P-glycoprotein: the cytoplasmic linker region is a potential dimerization domain. Juvvadi SR, Glavy JS, Horwitz SB, Orr GA. Biochem. Biophys. Res. Commun. 230 442-447 (1997)
  47. News Signalling an interest. Yu H, Schreiber SL. Nat. Struct. Biol. 1 417-420 (1994)
  48. "Fuzzy oil drop" model applied to individual small proteins built of 70 amino acids. Prymula K, Sałapa K, Roterman I. J Mol Model 16 1269-1282 (2010)
  49. Comparative Study Helical encounter. Cowburn D. Nat. Struct. Biol. 1 489-491 (1994)
  50. [On the occasion of retirement from Graduate School of Pharmaceutical Sciences, Hokkaido University]. Inagaki F. Yakugaku Zasshi 130 1251-1262 (2010)


Related citations provided by authors (1)

  1. Solution Structure and Ligand-Binding Site of the C-Terminal SH3 Domain of Grb2. Kohda D, Terasawa H, Ichikawa S, Ogura K, Hatanaka H, Mandiyan V, Ullrich A, Schlessinger J, Inagaki F Structure 2 1029-1040 (1994)