1hrh Citations

Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase.

Science 252 88-95 (1991)
Cited: 284 times
EuropePMC logo PMID: 1707186

Abstract

The crystal structure of the ribonuclease (RNase) H domain of HIV-1 reverse transcriptase (RT) has been determined at a resolution of 2.4 A and refined to a crystallographic R factor of 0.20. The protein folds into a five-stranded mixed beta sheet flanked by an asymmetric distribution of four alpha helices. Two divalent metal cations bind in the active site surrounded by a cluster of four conserved acidic amino acid residues. The overall structure is similar in most respects to the RNase H from Escherichia coli. Structural features characteristic of the retroviral protein suggest how it may interface with the DNA polymerase domain of p66 in the mature RT heterodimer. These features also offer insights into why the isolated RNase H domain is catalytically inactive but when combined in vitro with the isolated p51 domain of RT RNase H activity can be reconstituted. Surprisingly, the peptide bond cleaved by HIV-1 protease near the polymerase-RNase H junction of p66 is completely inaccessible to solvent in the structure reported here. This suggests that the homodimeric p66-p66 precursor of mature RT is asymmetric with one of the two RNase H domains at least partially unfolded.

Reviews - 1hrh mentioned but not cited (4)

  1. Murine leukemia virus reverse transcriptase: structural comparison with HIV-1 reverse transcriptase. Coté ML, Roth MJ. Virus Res 134 186-202 (2008)
  2. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)
  3. Structural Maturation of HIV-1 Reverse Transcriptase-A Metamorphic Solution to Genomic Instability. London RE. Viruses 8 E260 (2016)
  4. New targets for HIV drug discovery. Puhl AC, Garzino Demo A, Makarov VA, Ekins S. Drug Discov Today 24 1139-1147 (2019)

Articles - 1hrh mentioned but not cited (11)

  1. Structure of HIV-1 reverse transcriptase with the inhibitor beta-Thujaplicinol bound at the RNase H active site. Himmel DM, Maegley KA, Pauly TA, Bauman JD, Das K, Dharia C, Clark AD, Ryan K, Hickey MJ, Love RA, Hughes SH, Bergqvist S, Arnold E. Structure 17 1625-1635 (2009)
  2. Structural basis for the inhibition of RNase H activity of HIV-1 reverse transcriptase by RNase H active site-directed inhibitors. Su HP, Yan Y, Prasad GS, Smith RF, Daniels CL, Abeywickrema PD, Reid JC, Loughran HM, Kornienko M, Sharma S, Grobler JA, Xu B, Sardana V, Allison TJ, Williams PD, Darke PL, Hazuda DJ, Munshi S. J Virol 84 7625-7633 (2010)
  3. Structural and binding analysis of pyrimidinol carboxylic acid and N-hydroxy quinazolinedione HIV-1 RNase H inhibitors. Lansdon EB, Liu Q, Leavitt SA, Balakrishnan M, Perry JK, Lancaster-Moyer C, Kutty N, Liu X, Squires NH, Watkins WJ, Kirschberg TA. Antimicrob Agents Chemother 55 2905-2915 (2011)
  4. X-ray crystallographic structure of an artificial beta-sheet dimer. Khakshoor O, Lin AJ, Korman TP, Sawaya MR, Tsai SC, Eisenberg D, Nowick JS. J Am Chem Soc 132 11622-11628 (2010)
  5. Inhibition of foamy virus reverse transcriptase by human immunodeficiency virus type 1 RNase H inhibitors. Corona A, Schneider A, Schweimer K, Rösch P, Wöhrl BM, Tramontano E. Antimicrob Agents Chemother 58 4086-4093 (2014)
  6. The solution structure of the prototype foamy virus RNase H domain indicates an important role of the basic loop in substrate binding. Leo B, Schweimer K, Rösch P, Hartl MJ, Wöhrl BM. Retrovirology 9 73 (2012)
  7. Fold and flexibility: what can proteins' mechanical properties tell us about their folding nucleus? Sacquin-Mora S. J R Soc Interface 12 20150876 (2015)
  8. Ultradeep pyrosequencing and molecular modeling identify key structural features of hepatitis B virus RNase H, a putative target for antiviral intervention. Hayer J, Rodriguez C, Germanidis G, Deléage G, Zoulim F, Pawlotsky JM, Combet C. J Virol 88 574-582 (2014)
  9. Evidence from molecular dynamics simulations of conformational preorganization in the ribonuclease H active site. Stafford KA, Palmer Iii AG. F1000Res 3 67 (2014)
  10. 3-Hydroxypyrimidine-2, 4-dione Derivatives as HIV Reverse Transcriptase-Associated RNase H Inhibitors: QSAR Analysis and Molecular Docking Studies. Mostoufi A, Chamkouri N, Kordrostami S, Alghasibabaahmadi E, Mojaddami A. Iran J Pharm Res 19 84-97 (2020)
  11. Prediction of four kinds of simple supersecondary structures in protein by using chemical shifts. Yonge F. ScientificWorldJournal 2014 978503 (2014)


Reviews citing this publication (49)

  1. Processing of recombination intermediates by the RuvABC proteins. West SC. Annu Rev Genet 31 213-244 (1997)
  2. Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. Sarafianos SG, Marchand B, Das K, Himmel DM, Parniak MA, Hughes SH, Arnold E. J Mol Biol 385 693-713 (2009)
  3. The critical role of RNA processing and degradation in the control of gene expression. Arraiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M, Matos RG, Moreira RN, Pobre V, Reis FP, Saramago M, Silva IJ, Viegas SC. FEMS Microbiol Rev 34 883-923 (2010)
  4. Structural biology of HIV. Turner BG, Summers MF. J Mol Biol 285 1-32 (1999)
  5. Recombining the structures of HIV integrase, RuvC and RNase H. Yang W, Steitz TA. Structure 3 131-134 (1995)
  6. Ribonuclease H: molecular diversities, substrate binding domains, and catalytic mechanism of the prokaryotic enzymes. Tadokoro T, Kanaya S. FEBS J 276 1482-1493 (2009)
  7. Roles of electrostatic interaction in proteins. Nakamura H. Q Rev Biophys 29 1-90 (1996)
  8. Retroviral integrases and their cousins. Rice P, Craigie R, Davies DR. Curr Opin Struct Biol 6 76-83 (1996)
  9. Cystatins in health and disease. Henskens YM, Veerman EC, Nieuw Amerongen AV. Biol Chem Hoppe Seyler 377 71-86 (1996)
  10. Transposition and site-specific recombination: adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements. Hallet B, Sherratt DJ. FEMS Microbiol Rev 21 157-178 (1997)
  11. Polymerase structures and function: variations on a theme? Joyce CM, Steitz TA. J Bacteriol 177 6321-6329 (1995)
  12. Telomerase and human tumorigenesis. Stewart SA, Weinberg RA. Semin Cancer Biol 10 399-406 (2000)
  13. Molecular mechanisms in retrovirus DNA integration. Asante-Appiah E, Skalka AM. Antiviral Res 36 139-156 (1997)
  14. The HIV-1 reverse transcription (RT) process as target for RT inhibitors. Jonckheere H, Anné J, De Clercq E. Med Res Rev 20 129-154 (2000)
  15. Novel approaches to inhibiting HIV-1 replication. Adamson CS, Freed EO. Antiviral Res 85 119-141 (2010)
  16. Processing the holliday junction in homologous recombination. Shinagawa H, Iwasaki H. Trends Biochem Sci 21 107-111 (1996)
  17. RNase H activity: structure, specificity, and function in reverse transcription. Schultz SJ, Champoux JJ. Virus Res 134 86-103 (2008)
  18. Metal-binding sites in proteins. Tainer JA, Roberts VA, Getzoff ED. Curr Opin Biotechnol 2 582-591 (1991)
  19. Recognition and manipulation of branched DNA structure by junction-resolving enzymes. White MF, Giraud-Panis MJ, Pöhler JR, Lilley DM. J Mol Biol 269 647-664 (1997)
  20. Retroviral reverse transcriptases. Herschhorn A, Hizi A. Cell Mol Life Sci 67 2717-2747 (2010)
  21. HIV-1 reverse transcription: a brief overview focused on structure-function relationships among molecules involved in initiation of the reaction. Götte M, Li X, Wainberg MA. Arch Biochem Biophys 365 199-210 (1999)
  22. Ribonuclease H: properties, substrate specificity and roles in retroviral reverse transcription. Champoux JJ, Schultz SJ. FEBS J 276 1506-1516 (2009)
  23. DNA transposition: from a black box to a color monitor. Grindley ND, Leschziner AE. Cell 83 1063-1066 (1995)
  24. Insights into HIV chemotherapy. Schinazi RF, Mead JR, Feorino PM. AIDS Res Hum Retroviruses 8 963-990 (1992)
  25. Protein-nucleic acid interactions and DNA conformation in a complex of human immunodeficiency virus type 1 reverse transcriptase with a double-stranded DNA template-primer. Ding J, Hughes SH, Arnold E. Biopolymers 44 125-138 (1997)
  26. Structures of DNA and RNA polymerases and their interactions with nucleic acid substrates. Arnold E, Ding J, Hughes SH, Hostomsky Z. Curr Opin Struct Biol 5 27-38 (1995)
  27. Intracellular ribonucleases involved in transcript processing and decay: precision tools for RNA. Arraiano CM, Mauxion F, Viegas SC, Matos RG, Séraphin B. Biochim Biophys Acta 1829 491-513 (2013)
  28. Protein metal-binding sites. Tainer JA, Roberts VA, Getzoff ED. Curr Opin Biotechnol 3 378-387 (1992)
  29. One is enough: insights into the two-metal ion nuclease mechanism from global analysis and computational studies. Dupureur CM. Metallomics 2 609-620 (2010)
  30. HBV replication inhibitors. Pierra Rouviere C, Dousson CB, Tavis JE. Antiviral Res 179 104815 (2020)
  31. In search of authentic inhibitors of HIV-1 integration. Debyser Z, Cherepanov P, Van Maele B, De Clercq E, Witvrouw M. Antivir Chem Chemother 13 1-15 (2002)
  32. HIV-1 Reverse Transcriptase: A Metamorphic Protein with Three Stable States. London RE. Structure 27 420-426 (2019)
  33. Avoiding Drug Resistance in HIV Reverse Transcriptase. Cilento ME, Kirby KA, Sarafianos SG. Chem Rev 121 3271-3296 (2021)
  34. Cutting into the Substrate Dominance: Pharmacophore and Structure-Based Approaches toward Inhibiting Human Immunodeficiency Virus Reverse Transcriptase-Associated Ribonuclease H. Wang L, Sarafianos SG, Wang Z. Acc Chem Res 53 218-230 (2020)
  35. HIV integrase: a target for AIDS therapeutics. Thomas M, Brady L. Trends Biotechnol 15 167-172 (1997)
  36. Antiretroviral therapy: strategies beyond single-agent reverse transcriptase inhibition. Connolly KJ, Hammer SM. Antimicrob Agents Chemother 36 509-520 (1992)
  37. Anti-AIDS drug development: challenges and strategies. Mohan P. Pharm Res 9 703-714 (1992)
  38. Protein targets for structure-based drug design. Walkinshaw MD. Med Res Rev 12 317-372 (1992)
  39. HIV-1 integrase and RNase H activities as therapeutic targets. Andréola ML, De Soultrait VR, Fournier M, Parissi V, Desjobert C, Litvak S. Expert Opin Ther Targets 6 433-446 (2002)
  40. HIV-1 Reverse Transcriptase/Integrase Dual Inhibitors: A Review of Recent Advances and Structure-activity Relationship Studies. Mahboubi-Rabbani M, Abbasi M, Hajimahdi Z, Zarghi A. Iran J Pharm Res 20 333-369 (2021)
  41. Structural and Functional Aspects of Foamy Virus Protease-Reverse Transcriptase. Wöhrl BM. Viruses 11 E598 (2019)
  42. Mechanistic Studies of Homo- and Heterodinuclear Zinc Phosphoesterase Mimics: What Has Been Learned? Erxleben A. Front Chem 7 82 (2019)
  43. Correlations between the in vitro and in vivo activity of anti-HIV agents: implications for future drug development. Yarchoan R, Broder S. J Enzyme Inhib 6 99-111 (1992)
  44. Insights into HIV-1 Reverse Transcriptase (RT) Inhibition and Drug Resistance from Thirty Years of Structural Studies. Singh AK, Das K. Viruses 14 1027 (2022)
  45. Retroviral RNase H: Structure, mechanism, and inhibition. Ilina TV, Brosenitsch T, Sluis-Cremer N, Ishima R. Enzymes 50 227-247 (2021)
  46. Reverse transcriptase--a general discussion. DeVico AL, Sarngadharan MG. J Enzyme Inhib 6 9-34 (1992)
  47. Structural and functional insights into foamy viral integrase. Hossain MA, Ali MK, Shin CG. Viruses 5 1850-1866 (2013)
  48. Large Multidomain Protein NMR: HIV-1 Reverse Transcriptase Precursor in Solution. Ilina TV, Xi Z, Brosenitsch T, Sluis-Cremer N, Ishima R. Int J Mol Sci 21 E9545 (2020)
  49. Successes and challenges with retroviral enzymes. Skalka AM, Andrake MD, Katz RA. Postepy Biochem 62 280-285 (2016)

Articles citing this publication (220)

  1. Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. Jacobo-Molina A, Ding J, Nanni RG, Clark AD, Lu X, Tantillo C, Williams RL, Kamer G, Ferris AL, Clark P. Proc Natl Acad Sci U S A 90 6320-6324 (1993)
  2. A general two-metal-ion mechanism for catalytic RNA. Steitz TA, Steitz JA. Proc Natl Acad Sci U S A 90 6498-6502 (1993)
  3. Purified Argonaute2 and an siRNA form recombinant human RISC. Rivas FV, Tolia NH, Song JJ, Aragon JP, Liu J, Hannon GJ, Joshua-Tor L. Nat Struct Mol Biol 12 340-349 (2005)
  4. Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Kulkosky J, Jones KS, Katz RA, Mack JP, Skalka AM. Mol Cell Biol 12 2331-2338 (1992)
  5. Molecular basis of double-stranded RNA-protein interactions: structure of a dsRNA-binding domain complexed with dsRNA. Ryter JM, Schultz SC. EMBO J 17 7505-7513 (1998)
  6. High resolution structures of HIV-1 RT from four RT-inhibitor complexes. Ren J, Esnouf R, Garman E, Somers D, Ross C, Kirby I, Keeling J, Darby G, Jones Y, Stuart D. Nat Struct Biol 2 293-302 (1995)
  7. Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA. Sarafianos SG, Das K, Tantillo C, Clark AD, Ding J, Whitcomb JM, Boyer PL, Hughes SH, Arnold E. EMBO J 20 1449-1461 (2001)
  8. RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Tuerk C, MacDougal S, Gold L. Proc Natl Acad Sci U S A 89 6988-6992 (1992)
  9. Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. Grobler JA, Stillmock K, Hu B, Witmer M, Felock P, Espeseth AS, Wolfe A, Egbertson M, Bourgeois M, Melamed J, Wai JS, Young S, Vacca J, Hazuda DJ. Proc Natl Acad Sci U S A 99 6661-6666 (2002)
  10. Genetic diversity of human immunodeficiency virus type 2: evidence for distinct sequence subtypes with differences in virus biology. Gao F, Yue L, Robertson DL, Hill SC, Hui H, Biggar RJ, Neequaye AE, Whelan TM, Ho DD, Shaw GM. J Virol 68 7433-7447 (1994)
  11. Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium. Goldgur Y, Dyda F, Hickman AB, Jenkins TM, Craigie R, Davies DR. Proc Natl Acad Sci U S A 95 9150-9154 (1998)
  12. Crystal structure of Thermus aquaticus DNA polymerase. Kim Y, Eom SH, Wang J, Lee DS, Suh SW, Steitz TA. Nature 376 612-616 (1995)
  13. Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG. Sauer-Eriksson AE, Kleywegt GJ, Uhlén M, Jones TA. Structure 3 265-278 (1995)
  14. Nucleocapsid zinc fingers detected in retroviruses: EXAFS studies of intact viruses and the solution-state structure of the nucleocapsid protein from HIV-1. Summers MF, Henderson LE, Chance MR, Bess JW, South TL, Blake PR, Sagi I, Perez-Alvarado G, Sowder RC, Hare DR. Protein Sci 1 563-574 (1992)
  15. Safety and immunogenicity of a replication-incompetent adenovirus type 5 HIV-1 clade B gag/pol/nef vaccine in healthy adults. Priddy FH, Brown D, Kublin J, Monahan K, Wright DP, Lalezari J, Santiago S, Marmor M, Lally M, Novak RM, Brown SJ, Kulkarni P, Dubey SA, Kierstead LS, Casimiro DR, Mogg R, DiNubile MJ, Shiver JW, Leavitt RY, Robertson MN, Mehrotra DV, Quirk E, Merck V520-016 Study Group. Clin Infect Dis 46 1769-1781 (2008)
  16. Human immunodeficiency virus type 1 integrase protein promotes reverse transcription through specific interactions with the nucleoprotein reverse transcription complex. Wu X, Liu H, Xiao H, Conway JA, Hehl E, Kalpana GV, Prasad V, Kappes JC. J Virol 73 2126-2135 (1999)
  17. Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration. Rice P, Mizuuchi K. Cell 82 209-220 (1995)
  18. Structural details of ribonuclease H from Escherichia coli as refined to an atomic resolution. Katayanagi K, Miyagawa M, Matsushima M, Ishikawa M, Kanaya S, Nakamura H, Ikehara M, Matsuzaki T, Morikawa K. J Mol Biol 223 1029-1052 (1992)
  19. Effect of plasmid DNA vaccine design and in vivo electroporation on the resulting vaccine-specific immune responses in rhesus macaques. Luckay A, Sidhu MK, Kjeken R, Megati S, Chong SY, Roopchand V, Garcia-Hand D, Abdullah R, Braun R, Montefiori DC, Rosati M, Felber BK, Pavlakis GN, Mathiesen I, Israel ZR, Eldridge JH, Egan MA. J Virol 81 5257-5269 (2007)
  20. The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits. Li ML, Rao P, Krug RM. EMBO J 20 2078-2086 (2001)
  21. Structure of HIV-1 reverse transcriptase in a complex with the non-nucleoside inhibitor alpha-APA R 95845 at 2.8 A resolution. Ding J, Das K, Tantillo C, Zhang W, Clark AD, Jessen S, Lu X, Hsiou Y, Jacobo-Molina A, Andries K. Structure 3 365-379 (1995)
  22. BARE-1, a copia-like retroelement in barley (Hordeum vulgare L.). Manninen I, Schulman AH. Plant Mol Biol 22 829-846 (1993)
  23. Structural basis of asymmetry in the human immunodeficiency virus type 1 reverse transcriptase heterodimer. Wang J, Smerdon SJ, Jäger J, Kohlstaedt LA, Rice PA, Friedman JM, Steitz TA. Proc Natl Acad Sci U S A 91 7242-7246 (1994)
  24. Structural principles for the inhibition of the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates. Brautigam CA, Steitz TA. J Mol Biol 277 363-377 (1998)
  25. Dicaffeoylquinic and dicaffeoyltartaric acids are selective inhibitors of human immunodeficiency virus type 1 integrase. McDougall B, King PJ, Wu BW, Hostomsky Z, Reinecke MG, Robinson WE. Antimicrob Agents Chemother 42 140-146 (1998)
  26. Cassette mutagenesis of the reverse transcriptase of human immunodeficiency virus type 1. Boyer PL, Ferris AL, Hughes SH. J Virol 66 1031-1039 (1992)
  27. Selective inhibition of HIV-1 reverse transcriptase-associated ribonuclease H activity by hydroxylated tropolones. Budihas SR, Gorshkova I, Gaidamakov S, Wamiru A, Bona MK, Parniak MA, Crouch RJ, McMahon JB, Beutler JA, Le Grice SF. Nucleic Acids Res 33 1249-1256 (2005)
  28. 2.3 A crystal structure of the catalytic domain of DNA polymerase beta. Davies JF, Almassy RJ, Hostomska Z, Ferre RA, Hostomsky Z. Cell 76 1123-1133 (1994)
  29. The structure of HIV-1 reverse transcriptase complexed with 9-chloro-TIBO: lessons for inhibitor design. Ren J, Esnouf R, Hopkins A, Ross C, Jones Y, Stammers D, Stuart D. Structure 3 915-926 (1995)
  30. Alpha plus beta folds revisited: some favoured motifs. Orengo CA, Thornton JM. Structure 1 105-120 (1993)
  31. How does RNase H recognize a DNA.RNA hybrid? Nakamura H, Oda Y, Iwai S, Inoue H, Ohtsuka E, Kanaya S, Kimura S, Katsuda C, Katayanagi K, Morikawa K. Proc Natl Acad Sci U S A 88 11535-11539 (1991)
  32. Replication of phenotypically mixed human immunodeficiency virus type 1 virions containing catalytically active and catalytically inactive reverse transcriptase. Julias JG, Ferris AL, Boyer PL, Hughes SH. J Virol 75 6537-6546 (2001)
  33. The catalytic domain of avian sarcoma virus integrase: conformation of the active-site residues in the presence of divalent cations. Bujacz G, Jaskólski M, Alexandratos J, Wlodawer A, Merkel G, Katz RA, Skalka AM. Structure 4 89-96 (1996)
  34. Structure of HIV-1 reverse transcriptase/DNA complex at 7 A resolution showing active site locations. Arnold E, Jacobo-Molina A, Nanni RG, Williams RL, Lu X, Ding J, Clark AD, Zhang A, Ferris AL, Clark P. Nature 357 85-89 (1992)
  35. The RNase H-like superfamily: new members, comparative structural analysis and evolutionary classification. Majorek KA, Dunin-Horkawicz S, Steczkiewicz K, Muszewska A, Nowotny M, Ginalski K, Bujnicki JM. Nucleic Acids Res 42 4160-4179 (2014)
  36. Two-metal ion mechanism of RNA cleavage by HIV RNase H and mechanism-based design of selective HIV RNase H inhibitors. Klumpp K, Hang JQ, Rajendran S, Yang Y, Derosier A, Wong Kai In P, Overton H, Parkes KE, Cammack N, Martin JA. Nucleic Acids Res 31 6852-6859 (2003)
  37. Interaction between human immunodeficiency virus type 1 reverse transcriptase and integrase proteins. Hehl EA, Joshi P, Kalpana GV, Prasad VR. J Virol 78 5056-5067 (2004)
  38. DNA aptamers derived from HIV-1 RNase H inhibitors are strong anti-integrase agents. de Soultrait VR, Lozach PY, Altmeyer R, Tarrago-Litvak L, Litvak S, Andréola ML. J Mol Biol 324 195-203 (2002)
  39. Discovering protein secondary structures: classification and description of isolated alpha-turns. Pavone V, Gaeta G, Lombardi A, Nastri F, Maglio O, Isernia C, Saviano M. Biopolymers 38 705-721 (1996)
  40. Crystal structure of Escherichia coli RNase HI in complex with Mg2+ at 2.8 A resolution: proof for a single Mg(2+)-binding site. Katayanagi K, Okumura M, Morikawa K. Proteins 17 337-346 (1993)
  41. Molecular diversities of RNases H. Ohtani N, Haruki M, Morikawa M, Kanaya S. J Biosci Bioeng 88 12-19 (1999)
  42. Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Neumann P, Koblízková A, Navrátilová A, Macas J. Genetics 173 1047-1056 (2006)
  43. Identification of four acidic amino acids that constitute the catalytic center of the RuvC Holliday junction resolvase. Saito A, Iwasaki H, Ariyoshi M, Morikawa K, Shinagawa H. Proc Natl Acad Sci U S A 92 7470-7474 (1995)
  44. Highly abundant pea LTR retrotransposon Ogre is constitutively transcribed and partially spliced. Neumann P, Pozárková D, Macas J. Plant Mol Biol 53 399-410 (2003)
  45. Antiretroviral drug resistance mutations in human immunodeficiency virus type 1 reverse transcriptase increase template-switching frequency. Nikolenko GN, Svarovskaia ES, Delviks KA, Pathak VK. J Virol 78 8761-8770 (2004)
  46. Structure of yeast Dom34: a protein related to translation termination factor Erf1 and involved in No-Go decay. Graille M, Chaillet M, van Tilbeurgh H. J Biol Chem 283 7145-7154 (2008)
  47. Co-crystal of Escherichia coli RNase HI with Mn2+ ions reveals two divalent metals bound in the active site. Goedken ER, Marqusee S. J Biol Chem 276 7266-7271 (2001)
  48. Mapping HIV-1 vaccine induced T-cell responses: bias towards less-conserved regions and potential impact on vaccine efficacy in the Step study. Li F, Finnefrock AC, Dubey SA, Korber BT, Szinger J, Cole S, McElrath MJ, Shiver JW, Casimiro DR, Corey L, Self SG. PLoS One 6 e20479 (2011)
  49. Equilibrium unfolding of Escherichia coli ribonuclease H: characterization of a partially folded state. Dabora JM, Marqusee S. Protein Sci 3 1401-1408 (1994)
  50. Inhibition of human immunodeficiency virus type 1 reverse transcriptase, RNase H, and integrase activities by hydroxytropolones. Didierjean J, Isel C, Querré F, Mouscadet JF, Aubertin AM, Valnot JY, Piettre SR, Marquet R. Antimicrob Agents Chemother 49 4884-4894 (2005)
  51. Initiation of (-) strand DNA synthesis from tRNA(3Lys) on lentiviral RNAs: implications of specific HIV-1 RNA-tRNA(3Lys) interactions inhibiting primer utilization by retroviral reverse transcriptases. Arts EJ, Stetor SR, Li X, Rausch JW, Howard KJ, Ehresmann B, North TW, Wöhrl BM, Goody RS, Wainberg MA, Grice SF. Proc Natl Acad Sci U S A 93 10063-10068 (1996)
  52. Reverse transcriptase of human immunodeficiency virus type 1: functionality of subunits of the heterodimer in DNA synthesis. Hostomsky Z, Hostomska Z, Fu TB, Taylor J. J Virol 66 3179-3182 (1992)
  53. The role of template-primer in protection of reverse transcriptase from thermal inactivation. Gerard GF, Potter RJ, Smith MD, Rosenthal K, Dhariwal G, Lee J, Chatterjee DK. Nucleic Acids Res 30 3118-3129 (2002)
  54. Synergistic anti-human immunodeficiency virus type 1 effect of hydroxamate compounds with 2',3'-dideoxyinosine in infected resting human lymphocytes. Malley SD, Grange JM, Hamedi-Sangsari F, Vila JR. Proc Natl Acad Sci U S A 91 11017-11021 (1994)
  55. HIV-1 Ribonuclease H: Structure, Catalytic Mechanism and Inhibitors. Beilhartz GL, Götte M. Viruses 2 900-926 (2010)
  56. An unusual mechanism of self-primed reverse transcription requires the RNase H domain of reverse transcriptase to cleave an RNA duplex. Levin HL. Mol Cell Biol 16 5645-5654 (1996)
  57. HIV-1 reverse transcriptase can simultaneously engage its DNA/RNA substrate at both DNA polymerase and RNase H active sites: implications for RNase H inhibition. Beilhartz GL, Wendeler M, Baichoo N, Rausch J, Le Grice S, Götte M. J Mol Biol 388 462-474 (2009)
  58. Catalytic center of an archaeal type 2 ribonuclease H as revealed by X-ray crystallographic and mutational analyses. Muroya A, Tsuchiya D, Ishikawa M, Haruki M, Morikawa M, Kanaya S, Morikawa K. Protein Sci 10 707-714 (2001)
  59. Cloning of the cDNA encoding the large subunit of human RNase HI, a homologue of the prokaryotic RNase HII. Frank P, Braunshofer-Reiter C, Wintersberger U, Grimm R, Büsen W. Proc Natl Acad Sci U S A 95 12872-12877 (1998)
  60. Crystal structure of the moloney murine leukemia virus RNase H domain. Lim D, Gregorio GG, Bingman C, Martinez-Hackert E, Hendrickson WA, Goff SP. J Virol 80 8379-8389 (2006)
  61. Identification of catalytically relevant amino acids of the extracellular Serratia marcescens endonuclease by alignment-guided mutagenesis. Friedhoff P, Gimadutdinow O, Pingoud A. Nucleic Acids Res 22 3280-3287 (1994)
  62. Virion instability of human immunodeficiency virus type 1 reverse transcriptase (RT) mutated in the protease cleavage site between RT p51 and the RT RNase H domain. Abram ME, Parniak MA. J Virol 79 11952-11961 (2005)
  63. Structures of HIV-1 RT-RNA/DNA ternary complexes with dATP and nevirapine reveal conformational flexibility of RNA/DNA: insights into requirements for RNase H cleavage. Das K, Martinez SE, Bandwar RP, Arnold E. Nucleic Acids Res 42 8125-8137 (2014)
  64. Crystal structure of archaeal RNase HII: a homologue of human major RNase H. Lai L, Yokota H, Hung LW, Kim R, Kim SH. Structure 8 897-904 (2000)
  65. In vitro evolution of functional nucleic acids: high-affinity RNA ligands of HIV-1 proteins. Tuerk C, MacDougal-Waugh S. Gene 137 33-39 (1993)
  66. When retroviral reverse transcriptases reach the end of their RNA templates. Fu TB, Taylor J. J Virol 66 4271-4278 (1992)
  67. Comparison of three different crystal forms shows HIV-1 reverse transcriptase displays an internal swivel motion. Jäger J, Smerdon SJ, Wang J, Boisvert DC, Steitz TA. Structure 2 869-876 (1994)
  68. Defects in Moloney murine leukemia virus replication caused by a reverse transcriptase mutation modeled on the structure of Escherichia coli RNase H. Telesnitsky A, Blain SW, Goff SP. J Virol 66 615-622 (1992)
  69. NMR assignments and solution conformation of the DNA.RNA hybrid duplex d(GTGAACTT).r(AAGUUCAC). Lane AN, Ebel S, Brown T. Eur J Biochem 215 297-306 (1993)
  70. Conserved quantitative stability/flexibility relationships (QSFR) in an orthologous RNase H pair. Livesay DR, Jacobs DJ. Proteins 62 130-143 (2006)
  71. Cloning, expression, and mapping of ribonucleases H of human and mouse related to bacterial RNase HI. Cerritelli SM, Crouch RJ. Genomics 53 300-307 (1998)
  72. Eukaryotic RNases H1 act processively by interactions through the duplex RNA-binding domain. Gaidamakov SA, Gorshkova II, Schuck P, Steinbach PJ, Yamada H, Crouch RJ, Cerritelli SM. Nucleic Acids Res 33 2166-2175 (2005)
  73. Identification of a hexapeptide inhibitor of the human immunodeficiency virus integrase protein by using a combinatorial chemical library. Puras Lutzke RA, Eppens NA, Weber PA, Houghten RA, Plasterk RH. Proc Natl Acad Sci U S A 92 11456-11460 (1995)
  74. Inhibitors of HIV-1 Reverse Transcriptase-Associated Ribonuclease H Activity. Ilina T, Labarge K, Sarafianos SG, Ishima R, Parniak MA. Biology (Basel) 1 521-541 (2012)
  75. Purification and characterization of an active human immunodeficiency virus type 1 RNase H domain. Smith JS, Roth MJ. J Virol 67 4037-4049 (1993)
  76. Reconstitution of a functional duck hepatitis B virus replication initiation complex from separate reverse transcriptase domains expressed in Escherichia coli. Beck J, Nassal M. J Virol 75 7410-7419 (2001)
  77. Substitution of a highly basic helix/loop sequence into the RNase H domain of human immunodeficiency virus reverse transcriptase restores its Mn(2+)-dependent RNase H activity. Keck JL, Marqusee S. Proc Natl Acad Sci U S A 92 2740-2744 (1995)
  78. The involvement of human ribonucleases H1 and H2 in the variation of response of cells to antisense phosphorothioate oligonucleotides. ten Asbroek AL, van Groenigen M, Nooij M, Baas F. Eur J Biochem 269 583-592 (2002)
  79. Crystals of a ternary complex of human immunodeficiency virus type 1 reverse transcriptase with a monoclonal antibody Fab fragment and double-stranded DNA diffract x-rays to 3.5-A resolution. Jacobo-Molina A, Clark AD, Williams RL, Nanni RG, Clark P, Ferris AL, Hughes SH, Arnold E. Proc Natl Acad Sci U S A 88 10895-10899 (1991)
  80. Selected mutations of the duck hepatitis B virus P gene RNase H domain affect both RNA packaging and priming of minus-strand DNA synthesis. Chen Y, Robinson WS, Marion PL. J Virol 68 5232-5238 (1994)
  81. A common 40 amino acid motif in eukaryotic RNases H1 and caulimovirus ORF VI proteins binds to duplex RNAs. Cerritelli SM, Fedoroff OY, Reid BR, Crouch RJ. Nucleic Acids Res 26 1834-1840 (1998)
  82. Assembly of phage Mu transpososomes: cooperative transitions assisted by protein and DNA scaffolds. Mizuuchi M, Baker TA, Mizuuchi K. Cell 83 375-385 (1995)
  83. Combinatorial selection, inhibition, and antiviral activity of DNA thioaptamers targeting the RNase H domain of HIV-1 reverse transcriptase. Somasunderam A, Ferguson MR, Rojo DR, Thiviyanathan V, Li X, O'Brien WA, Gorenstein DG. Biochemistry 44 10388-10395 (2005)
  84. Conservation patterns of HIV-1 RT connection and RNase H domains: identification of new mutations in NRTI-treated patients. Santos AF, Lengruber RB, Soares EA, Jere A, Sprinz E, Martinez AM, Silveira J, Sion FS, Pathak VK, Soares MA. PLoS One 3 e1781 (2008)
  85. Mg2+ dependency of HIV-1 reverse transcription, inhibition by nucleoside analogues and resistance. Goldschmidt V, Didierjean J, Ehresmann B, Ehresmann C, Isel C, Marquet R. Nucleic Acids Res 34 42-52 (2006)
  86. RIRE1, a retrotransposon from wild rice Oryza australiensis. Noma K, Nakajima R, Ohtsubo H, Ohtsubo E. Genes Genet Syst 72 131-140 (1997)
  87. Activation of the phosphosignaling protein CheY. I. Analysis of the phosphorylated conformation by 19F NMR and protein engineering. Drake SK, Bourret RB, Luck LA, Simon MI, Falke JJ. J Biol Chem 268 13081-13088 (1993)
  88. Comparative analysis of immune responses induced by vaccination with SIV antigens by recombinant Ad5 vector or plasmid DNA in rhesus macaques. Hirao LA, Wu L, Satishchandran A, Khan AS, Draghia-Akli R, Finnefrock AC, Bett AJ, Betts MR, Casimiro DR, Sardesai NY, Kim JJ, Shiver JW, Weiner DB. Mol Ther 18 1568-1576 (2010)
  89. Crystal structure and structure-based mutational analyses of RNase HIII from Bacillus stearothermophilus: a new type 2 RNase H with TBP-like substrate-binding domain at the N terminus. Chon H, Matsumura H, Koga Y, Takano K, Kanaya S. J Mol Biol 356 165-178 (2006)
  90. Model of full-length HIV-1 integrase complexed with viral DNA as template for anti-HIV drug design. Karki RG, Tang Y, Burke TR, Nicklaus MC. J Comput Aided Mol Des 18 739-760 (2004)
  91. Molecular dynamics of HIV-1 protease. Harte WE, Swaminathan S, Beveridge DL. Proteins 13 175-194 (1992)
  92. Amino acids essential for RNase H activity of hepadnaviruses are also required for efficient elongation of minus-strand viral DNA. Chen Y, Marion PL. J Virol 70 6151-6156 (1996)
  93. Vaccine-induced immune responses in rodents and nonhuman primates by use of a humanized human immunodeficiency virus type 1 pol gene. Casimiro DR, Tang A, Perry HC, Long RS, Chen M, Heidecker GJ, Davies ME, Freed DC, Persaud NV, Dubey S, Smith JG, Havlir D, Richman D, Chastain MA, Simon AJ, Fu TM, Emini EA, Shiver JW. J Virol 76 185-194 (2002)
  94. Characterization of the dimerization process of HIV-1 reverse transcriptase heterodimer using intrinsic protein fluorescence. Divita G, Restle T, Goody RS. FEBS Lett 324 153-158 (1993)
  95. Effects on DNA synthesis and translocation caused by mutations in the RNase H domain of Moloney murine leukemia virus reverse transcriptase. Blain SW, Goff SP. J Virol 69 4440-4452 (1995)
  96. The classification and nomenclature of endogenous viruses of the family Caulimoviridae. Geering AD, Scharaschkin T, Teycheney PY. Arch Virol 155 123-131 (2010)
  97. Identification of the first archaeal Type 1 RNase H gene from Halobacterium sp. NRC-1: archaeal RNase HI can cleave an RNA-DNA junction. Ohtani N, Yanagawa H, Tomita M, Itaya M. Biochem J 381 795-802 (2004)
  98. Contributions of DNA polymerase subdomains to the RNase H activity of human immunodeficiency virus type 1 reverse transcriptase. Smith JS, Gritsman K, Roth MJ. J Virol 68 5721-5729 (1994)
  99. Activity of the isolated HIV RNase H domain and specific inhibition by N-hydroxyimides. Hang JQ, Rajendran S, Yang Y, Li Y, In PW, Overton H, Parkes KE, Cammack N, Martin JA, Klumpp K. Biochem Biophys Res Commun 317 321-329 (2004)
  100. Interaction of HIV-1 reverse transcriptase ribonuclease H with an acylhydrazone inhibitor. Gong Q, Menon L, Ilina T, Miller LG, Ahn J, Parniak MA, Ishima R. Chem Biol Drug Des 77 39-47 (2011)
  101. Structural basis of the allosteric inhibitor interaction on the HIV-1 reverse transcriptase RNase H domain. Christen MT, Menon L, Myshakina NS, Ahn J, Parniak MA, Ishima R. Chem Biol Drug Des 80 706-716 (2012)
  102. Deoxy- and dideoxynucleotide discrimination and identification of critical 5' nuclease domain residues of the DNA polymerase I from Mycobacterium tuberculosis. Mizrahi V, Huberts P. Nucleic Acids Res 24 4845-4852 (1996)
  103. Sequence-specific cleavage of small-subunit (SSU) rRNA with oligonucleotides and RNase H: a rapid and simple approach to SSU rRNA-based quantitative detection of microorganisms. Uyeno Y, Sekiguchi Y, Sunaga A, Yoshida H, Kamagata Y. Appl Environ Microbiol 70 3650-3663 (2004)
  104. Synthesis, characterization and antibacterial activity of cobalt(III) complexes with pyridine-amide ligands. Mishra A, Kaushik NK, Verma AK, Gupta R. Eur J Med Chem 43 2189-2196 (2008)
  105. Rational design of a plasmid DNA vaccine capable of eliciting cell-mediated immune responses to multiple HIV antigens in mice. Egan MA, Megati S, Roopchand V, Garcia-Hand D, Luckay A, Chong SY, Rosati M, Sackitey S, Weiner DB, Felber BK, Pavlakis GN, Israel ZR, Eldridge JH, Sidhu MK. Vaccine 24 4510-4523 (2006)
  106. Effect of the disease-causing mutations identified in human ribonuclease (RNase) H2 on the activities and stabilities of yeast RNase H2 and archaeal RNase HII. Rohman MS, Koga Y, Takano K, Chon H, Crouch RJ, Kanaya S. FEBS J 275 4836-4849 (2008)
  107. Human immunodeficiency virus type-1 reverse transcriptase and ribonuclease H as substrates of the viral protease. Tomasselli AG, Sarcich JL, Barrett LJ, Reardon IM, Howe WJ, Evans DB, Sharma SK, Heinrikson RL. Protein Sci 2 2167-2176 (1993)
  108. Identification of single Mn(2+) binding sites required for activation of the mutant proteins of E.coli RNase HI at Glu48 and/or Asp134 by X-ray crystallography. Tsunaka Y, Takano K, Matsumura H, Yamagata Y, Kanaya S. J Mol Biol 345 1171-1183 (2005)
  109. Inhibitory effects of Korean plants on HIV-1 activities. Min BS, Kim YH, Tomiyama M, Nakamura N, Miyashiro H, Otake T, Hattori M. Phytother Res 15 481-486 (2001)
  110. Mutations of the RNase H C helix of the Moloney murine leukemia virus reverse transcriptase reveal defects in polypurine tract recognition. Lim D, Orlova M, Goff SP. J Virol 76 8360-8373 (2002)
  111. NMR structure of the chimeric hybrid duplex r(gcaguggc).r(gcca)d(CTGC) comprising the tRNA-DNA junction formed during initiation of HIV-1 reverse transcription. Szyperski T, Götte M, Billeter M, Perola E, Cellai L, Heumann H, Wüthrich K. J Biomol NMR 13 343-355 (1999)
  112. The 'helix clamp' in HIV-1 reverse transcriptase: a new nucleic acid binding motif common in nucleic acid polymerases. Hermann T, Meier T, Götte M, Heumann H. Nucleic Acids Res 22 4625-4633 (1994)
  113. The p66 immature precursor of HIV-1 reverse transcriptase. Sharaf NG, Poliner E, Slack RL, Christen MT, Byeon IJ, Parniak MA, Gronenborn AM, Ishima R. Proteins 82 2343-2352 (2014)
  114. Truncating alpha-helix E' of p66 human immunodeficiency virus reverse transcriptase modulates RNase H function and impairs DNA strand transfer. Ghosh M, Howard KJ, Cameron CE, Benkovic SJ, Hughes SH, Le Grice SF. J Biol Chem 270 7068-7076 (1995)
  115. Variations in reverse transcriptase and RNase H domain mutations in human immunodeficiency virus type 1 clinical isolates are associated with divergent phenotypic resistance to zidovudine. Ntemgwa M, Wainberg MA, Oliveira M, Moisi D, Lalonde R, Micheli V, Brenner BG. Antimicrob Agents Chemother 51 3861-3869 (2007)
  116. Comparison of T cell immune responses induced by vectored HIV vaccines in non-human primates and humans. Bett AJ, Dubey SA, Mehrotra DV, Guan L, Long R, Anderson K, Collins K, Gaunt C, Fernandez R, Cole S, Meschino S, Tang A, Sun X, Gurunathan S, Tartaglia J, Robertson MN, Shiver JW, Casimiro DR. Vaccine 28 7881-7889 (2010)
  117. Investigating the role of conserved residue Asp134 in Escherichia coli ribonuclease HI by site-directed random mutagenesis. Haruki M, Noguchi E, Nakai C, Liu YY, Oobatake M, Itaya M, Kanaya S. Eur J Biochem 220 623-631 (1994)
  118. Catalysis and inhibition of Mycobacterium tuberculosis methionine aminopeptidase. Lu JP, Chai SC, Ye QZ. J Med Chem 53 1329-1337 (2010)
  119. Solution structural dynamics of HIV-1 reverse transcriptase heterodimer. Seckler JM, Howard KJ, Barkley MD, Wintrode PL. Biochemistry 48 7646-7655 (2009)
  120. Structure, stability, and folding of ribonuclease H1 from the moderately thermophilic Chlorobium tepidum: comparison with thermophilic and mesophilic homologues. Ratcliff K, Corn J, Marqusee S. Biochemistry 48 5890-5898 (2009)
  121. Chimeric HIV-1 and feline immunodeficiency virus reverse transcriptases: critical role of the p51 subunit in the structural integrity of heterodimeric lentiviral DNA polymerases. Amacker M, Hübscher U. J Mol Biol 278 757-765 (1998)
  122. Dynamic evidence for metal ion catalysis in the reaction mediated by a flap endonuclease. Tock MR, Frary E, Sayers JR, Grasby JA. EMBO J 22 995-1004 (2003)
  123. Metallobiochemistry of the magnesium ion. Characterization of the essential metal-binding site in Escherichia coli ribonuclease H. Huang HW, Cowan JA. Eur J Biochem 219 253-260 (1994)
  124. Multiple roles for divalent metal ions in DNA transposition: distinct stages of Tn10 transposition have different Mg2+ requirements. Junop MS, Haniford DB. EMBO J 15 2547-2555 (1996)
  125. Revealing domain structure through linker-scanning analysis of the murine leukemia virus (MuLV) RNase H and MuLV and human immunodeficiency virus type 1 integrase proteins. Puglia J, Wang T, Smith-Snyder C, Cote M, Scher M, Pelletier JN, John S, Jonsson CB, Roth MJ. J Virol 80 9497-9510 (2006)
  126. Selective unfolding of one Ribonuclease H domain of HIV reverse transcriptase is linked to homodimer formation. Zheng X, Pedersen LC, Gabel SA, Mueller GA, Cuneo MJ, DeRose EF, Krahn JM, London RE. Nucleic Acids Res 42 5361-5377 (2014)
  127. Solution conformation and dynamics of the HIV-1 integrase core domain. Fitzkee NC, Masse JE, Shen Y, Davies DR, Bax A. J Biol Chem 285 18072-18084 (2010)
  128. Studies of the interactions between Escherichia coli ribonuclease HI and its substrate. Uchiyama Y, Miura Y, Inoue H, Ohtsuka E, Ueno Y, Ikehara M, Iwai S. J Mol Biol 243 782-791 (1994)
  129. NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a fold with a strong resemblance to the N-terminal domain of ribosomal protein L9. Evans SP, Bycroft M. J Mol Biol 291 661-669 (1999)
  130. RNase H domain of Moloney murine leukemia virus reverse transcriptase retains activity but requires the polymerase domain for specificity. Schultz SJ, Champoux JJ. J Virol 70 8630-8638 (1996)
  131. Structural and functional characterization of an RNase HI domain from the bifunctional protein Rv2228c from Mycobacterium tuberculosis. Watkins HA, Baker EN. J Bacteriol 192 2878-2886 (2010)
  132. Structure of a dihydroxycoumarin active-site inhibitor in complex with the RNase H domain of HIV-1 reverse transcriptase and structure-activity analysis of inhibitor analogs. Himmel DM, Myshakina NS, Ilina T, Van Ry A, Ho WC, Parniak MA, Arnold E. J Mol Biol 426 2617-2631 (2014)
  133. Aptamer beacons for visualization of endogenous protein HIV-1 reverse transcriptase in living cells. Liang Y, Zhang Z, Wei H, Hu Q, Deng J, Guo D, Cui Z, Zhang XE. Biosens Bioelectron 28 270-276 (2011)
  134. Binding of nucleic acids to E. coli RNase HI observed by NMR and CD spectroscopy. Oda Y, Iwai S, Ohtsuka E, Ishikawa M, Ikehara M, Nakamura H. Nucleic Acids Res 21 4690-4695 (1993)
  135. Requirement for a conserved serine in both processing and joining activities of retroviral integrase. Katz RA, Mack JP, Merkel G, Kulkosky J, Ge Z, Leis J, Skalka AM. Proc Natl Acad Sci U S A 89 6741-6745 (1992)
  136. Solution conformation of an RNA--DNA hybrid duplex containing a pyrimidine RNA strand and a purine DNA strand. Hantz E, Larue V, Ladam P, Le Moyec L, Gouyette C, Huynh Dinh T. Int J Biol Macromol 28 273-284 (2001)
  137. Targeting HIV-1 integrase with aptamers selected against the purified RNase H domain of HIV-1 RT. Métifiot M, Leon O, Tarrago-Litvak L, Litvak S, Andréola ML. Biochimie 87 911-919 (2005)
  138. Characterization of a folding intermediate from HIV-1 ribonuclease H. Kern G, Handel T, Marqusee S. Protein Sci 7 2164-2174 (1998)
  139. Expression and characterization of a recombinant novel reverse transcriptase of a porcine endogenous retrovirus. Avidan O, Loya S, Tönjes RR, Sevilya Z, Hizi A. Virology 307 341-357 (2003)
  140. Inhibition of the ribonuclease H activity of HIV-1 reverse transcriptase by GSK5750 correlates with slow enzyme-inhibitor dissociation. Beilhartz GL, Ngure M, Johns BA, DeAnda F, Gerondelis P, Götte M. J Biol Chem 289 16270-16277 (2014)
  141. Relationship between mutations in HIV-1 RNase H domain and nucleoside reverse transcriptase inhibitors resistance mutations in naïve and pre-treated HIV infected patients. Roquebert B, Wirden M, Simon A, Deval J, Katlama C, Calvez V, Marcelin AG. J Med Virol 79 207-211 (2007)
  142. Three-dimensional structural resemblance between the ribonuclease H and connection domains of HIV reverse transcriptase and the ATPase fold revealed using graph theoretical techniques. Artymiuk PJ, Grindley HM, Kumar K, Rice DW, Willett P. FEBS Lett 324 15-21 (1993)
  143. Thermal adaptation of conformational dynamics in ribonuclease H. Stafford KA, Robustelli P, Palmer AG. PLoS Comput Biol 9 e1003218 (2013)
  144. A randomized study comparing a three- and four-drug HAART regimen in first-line therapy (QUAD study). Orkin C, Stebbing J, Nelson M, Bower M, Johnson M, Mandalia S, Jones R, Moyle G, Fisher M, Gazzard B. J Antimicrob Chemother 55 246-251 (2005)
  145. Constructing HIV-1 integrase tetramer and exploring influences of metal ions on forming integrase-DNA complex. Wang LD, Liu CL, Chen WZ, Wang CX. Biochem Biophys Res Commun 337 313-319 (2005)
  146. Human immunodeficiency virus type 1 (HIV-1) recombinant reverse transcriptase. Asymmetry in p66 subunits of the p66/p66 homodimer. Sharma SK, Fan N, Evans DB. FEBS Lett 343 125-130 (1994)
  147. Role of metal ions in catalysis by HIV integrase analyzed using a quantitative PCR disintegration assay. Diamond TL, Bushman FD. Nucleic Acids Res 34 6116-6125 (2006)
  148. Zinc binding by retroviral integrase. McEuen AR, Edwards B, Koepke KA, Ball AE, Jennings BA, Wolstenholme AJ, Danson MJ, Hough DW. Biochem Biophys Res Commun 189 813-818 (1992)
  149. Effects of cation substitutions on reverse transcriptase and on human immunodeficiency virus production. Filler AG, Lever AM. AIDS Res Hum Retroviruses 13 291-299 (1997)
  150. Genetic characterization by composite sequence analysis of a new pathogenic field strain of equine infectious anemia virus from the 2006 outbreak in Ireland. Quinlivan M, Cook F, Kenna R, Callinan JJ, Cullinane A. J Gen Virol 94 612-622 (2013)
  151. Molecular characterization of human immunodeficiency virus type 1 isolates from Venezuela. Quiñones-Mateu ME, Dopazo J, Esté JA, Rota TR, Domingo E. AIDS Res Hum Retroviruses 11 605-616 (1995)
  152. Secondary structure of the ribonuclease H domain of the human immunodeficiency virus reverse transcriptase in solution using three-dimensional double and triple resonance heteronuclear magnetic resonance spectroscopy. Powers R, Clore GM, Bax A, Garrett DS, Stahl SJ, Wingfield PT, Gronenborn AM. J Mol Biol 221 1081-1090 (1991)
  153. Mutational analysis on structure-function relationship of a holliday junction specific endonuclease RuvC. Ichiyanagi K, Iwasaki H, Hishida T, Shinagawa H. Genes Cells 3 575-586 (1998)
  154. ORF157 from the archaeal virus Acidianus filamentous virus 1 defines a new class of nuclease. Goulet A, Pina M, Redder P, Prangishvili D, Vera L, Lichière J, Leulliot N, van Tilbeurgh H, Ortiz-Lombardia M, Campanacci V, Cambillau C. J Virol 84 5025-5031 (2010)
  155. Ulysses transposable element of Drosophila shows high structural similarities to functional domains of retroviruses. Evgen'ev MB, Corces VG, Lankenau DH. J Mol Biol 225 917-924 (1992)
  156. Virtual screening models for prediction of HIV-1 RT associated RNase H inhibition. Poongavanam V, Kongsted J. PLoS One 8 e73478 (2013)
  157. N-Substituted Quinolinonyl Diketo Acid Derivatives as HIV Integrase Strand Transfer Inhibitors and Their Activity against RNase H Function of Reverse Transcriptase. Pescatori L, Métifiot M, Chung S, Masoaka T, Cuzzucoli Crucitti G, Messore A, Pupo G, Madia VN, Saccoliti F, Scipione L, Tortorella S, Di Leva FS, Cosconati S, Marinelli L, Novellino E, Le Grice SF, Pommier Y, Marchand C, Costi R, Di Santo R. J Med Chem 58 4610-4623 (2015)
  158. The pH-dependence of the Escherichia coli RNase HII-catalysed reaction suggests that an active site carboxylate group participates directly in catalysis. Bastock JA, Webb M, Grasby JA. J Mol Biol 368 421-433 (2007)
  159. Molecular evolutionary analyses of mariners and other transposable elements in fire ants (Hymenoptera: Formicidae). Krieger MJ, Ross KG. Insect Mol Biol 12 155-165 (2003)
  160. Free Energy-Based Virtual Screening and Optimization of RNase H Inhibitors of HIV-1 Reverse Transcriptase. Zhang B, D'Erasmo MP, Murelli RP, Gallicchio E. ACS Omega 1 435-447 (2016)
  161. Specificity of LTR DNA recognition by a peptide mimicking the HIV-1 integrase {alpha}4 helix. Hobaika Z, Zargarian L, Boulard Y, Maroun RG, Mauffret O, Fermandjian S. Nucleic Acids Res 37 7691-7700 (2009)
  162. Stereochemical course of Escherichia coli RNase H. Krakowiak A, Owczarek A, Koziołkiewicz M, Stec WJ. Chembiochem 3 1242-1250 (2002)
  163. The catalytic properties of the reverse transcriptase of the lentivirus equine infectious anemia virus. Rubinek T, Loya S, Shaharabany M, Hughes SH, Clark PK, Hizi A. Eur J Biochem 219 977-983 (1994)
  164. Unfolding the HIV-1 reverse transcriptase RNase H domain--how to lose a molecular tug-of-war. Zheng X, Pedersen LC, Gabel SA, Mueller GA, DeRose EF, London RE. Nucleic Acids Res 44 1776-1788 (2016)
  165. Crystal structure of a novel non-Pfam protein PF2046 solved using low resolution B-factor sharpening and multi-crystal averaging methods. Su J, Li Y, Shaw N, Zhou W, Zhang M, Xu H, Wang BC, Liu ZJ. Protein Cell 1 453-458 (2010)
  166. Folding the ribonuclease H domain of Moloney murine leukemia virus reverse transcriptase requires metal binding or a short N-terminal extension. Goedken ER, Marqusee S. Proteins 33 135-143 (1998)
  167. Fusion with an RNA binding domain to confer target RNA specificity to an RNase: design and engineering of Tat-RNase H that specifically recognizes and cleaves HIV-1 RNA in vitro. Melekhovets YF, Joshi S. Nucleic Acids Res 24 1908-1912 (1996)
  168. Insertion of a peptide from MuLV RT into the connection subdomain of HIV-1 RT results in a functionally active chimeric enzyme in monomeric conformation. Pandey PK, Kaushik N, Talele TT, Yadav PN, Pandey VN. Mol Cell Biochem 225 135-144 (2001)
  169. Metal and ligand binding to the HIV-RNase H active site are remotely monitored by Ile556. Zheng X, Mueller GA, DeRose EF, London RE. Nucleic Acids Res 40 10543-10553 (2012)
  170. Structural, kinetic, and theoretical studies on models of the zinc-containing phosphodiesterase active center: medium-dependent reaction mechanisms. Selmeczi K, Michel C, Milet A, Gautier-Luneau I, Philouze C, Pierre JL, Schnieders D, Rompel A, Belle C. Chemistry 13 9093-9106 (2007)
  171. Structure-guided approach identifies a novel class of HIV-1 ribonuclease H inhibitors: binding mode insights through magnesium complexation and site-directed mutagenesis studies. Poongavanam V, Corona A, Steinmann C, Scipione L, Grandi N, Pandolfi F, Di Santo R, Costi R, Esposito F, Tramontano E, Kongsted J. Medchemcomm 9 562-575 (2018)
  172. The SCO2299 gene from Streptomyces coelicolor A3(2) encodes a bifunctional enzyme consisting of an RNase H domain and an acid phosphatase domain. Ohtani N, Saito N, Tomita M, Itaya M, Itoh A. FEBS J 272 2828-2837 (2005)
  173. Letter Different enzymes with similar structures involved in Mg(2+)-mediated polynucleotidyl transfer. Venclovas C, Siksnys V. Nat Struct Biol 2 838-841 (1995)
  174. Insights into the structure and activity of prototype foamy virus RNase H. Leo B, Hartl MJ, Schweimer K, Mayr F, Wöhrl BM. Retrovirology 9 14 (2012)
  175. Metal binding and activation of the ribonuclease H domain from moloney murine leukemia virus. Goedken ER, Marqusee S. Protein Eng 12 975-980 (1999)
  176. Charge-to-alanine mutagenesis of the adeno-associated virus type 2 Rep78/68 proteins yields temperature-sensitive and magnesium-dependent variants. Gavin DK, Young SM, Xiao W, Temple B, Abernathy CR, Pereira DJ, Muzyczka N, Samulski RJ. J Virol 73 9433-9445 (1999)
  177. Contribution of the p51 subunit of HIV-1 reverse transcriptase to enzyme processivity. Huang SC, Smith JR, Moen LK. Biochem Biophys Res Commun 184 986-992 (1992)
  178. Dihydroxythiophenes are novel potent inhibitors of human immunodeficiency virus integrase with a diketo acid-like pharmacophore. Kehlenbeck S, Betz U, Birkmann A, Fast B, Göller AH, Henninger K, Lowinger T, Marrero D, Paessens A, Paulsen D, Pevzner V, Schohe-Loop R, Tsujishita H, Welker R, Kreuter J, Rübsamen-Waigmann H, Dittmer F. J Virol 80 6883-6894 (2006)
  179. Effect of tRNA on the Maturation of HIV-1 Reverse Transcriptase. Ilina TV, Slack RL, Elder JH, Sarafianos SG, Parniak MA, Ishima R. J Mol Biol 430 1891-1900 (2018)
  180. Generation of HIV-1/HIV-2 cross-reactive peptide antisera by small sequence changes in HIV-1 reverse transcriptase and integrase immunizing peptides. Klutch M, Woerner AM, Marcus-Sekura CJ, Levin JG. J Biomed Sci 5 192-202 (1998)
  181. The active form of the influenza cap-snatching endonuclease inhibitor baloxavir marboxil is a tight binding inhibitor. Todd B, Tchesnokov EP, Götte M. J Biol Chem 296 100486 (2021)
  182. Conformational Changes in HIV-1 Reverse Transcriptase that Facilitate Its Maturation. Slack RL, Ilina TV, Xi Z, Giacobbi NS, Kawai G, Parniak MA, Sarafianos SG, Sluis Cremer N, Ishima R. Structure 27 1581-1593.e3 (2019)
  183. Domain structure of the human immunodeficiency virus reverse transcriptase. Lederer H, Schatz O, May R, Crespi H, Darlix JL, Le Grice SF, Heumann H. EMBO J 11 1131-1139 (1992)
  184. HIV-1 integrase and virus and cell DNAs: complex formation and perturbation by inhibitors of integration. Hobaika Z, Zargarian L, Maroun RG, Mauffret O, Burke TR, Fermandjian S. Neurochem Res 35 888-893 (2010)
  185. Modulation of RNase H activity by modified DNA probes: major groove vs minor groove effects. Daniher AT, Xie J, Mathur S, Bashkin JK. Bioorg Med Chem 5 1037-1042 (1997)
  186. New Subtype B Containing HIV-1 Circulating Recombinant of sub-Saharan Africa Origin in Nigerian Men Who Have Sex With Men. Billings E, Kijak GH, Sanders-Buell E, Ndembi N, OʼSullivan AM, Adebajo S, Kokogho A, Milazzo M, Lombardi K, Baral S, Nowak R, Ramadhani H, Gramzinski R, Robb ML, Michael NL, Charurat ME, Ake J, Crowell TA, Tovanabutra S, MHRP Viral Sequencing Core and the TRUST/RV368 Study Group. J Acquir Immune Defic Syndr 81 578-584 (2019)
  187. RNase D, a reported new activity associated with HIV-1 reverse transcriptase, displays the same cleavage specificity as Escherichia coli RNase III. Hostomsky Z, Hudson GO, Rahmati S, Hostomska Z. Nucleic Acids Res 20 5819-5824 (1992)
  188. Structural integrity of the ribonuclease H domain in HIV-1 reverse transcriptase. Slack RL, Spiriti J, Ahn J, Parniak MA, Zuckerman DM, Ishima R. Proteins 83 1526-1538 (2015)
  189. Targeting HIV-1 RNase H: N'-(2-Hydroxy-benzylidene)-3,4,5-Trihydroxybenzoylhydrazone as Selective Inhibitor Active against NNRTIs-Resistant Variants. Corona A, Ballana E, Distinto S, Rogolino D, Del Vecchio C, Carcelli M, Badia R, Riveira-Muñoz E, Esposito F, Parolin C, Esté JA, Grandi N, Tramontano E. Viruses 12 E729 (2020)
  190. Effects of trace metal compounds on HIV-1 reverse transcriptase: an in vitro study. Sabbioni E, Blanch N, Baricevic K, Serra MA. Biol Trace Elem Res 68 107-119 (1999)
  191. Evidence for a dual functional role of a conserved histidine in RNA·DNA heteroduplex cleavage by human RNase H1. Alla NR, Nicholson AW. FEBS J 279 4492-4500 (2012)
  192. Potential multiple endonuclease functions and a ribonuclease H encoded in retroposon genomes. McClure MA, Donaldson E, Corro S. Virology 296 147-158 (2002)
  193. Purification, characterization and crystallization of recombinant HIV-1 reverse transcriptase. Bhikhabhai R, Joelson T, Unge T, Strandberg B, Carlsson T, Lövgren S. J Chromatogr 604 157-170 (1992)
  194. Synthesis of mono- and di-[12]aneN3 ligands and study on the catalytic cleavage of RNA model 2-hydroxypropyl-p-nitrophenyl phosphate with their metal complexes. Guo ZF, Yan H, Li ZF, Lu ZL. Org Biomol Chem 9 6788-6796 (2011)
  195. 2-(Arylamino)-6-(trifluoromethyl)nicotinic Acid Derivatives: New HIV-1 RT Dual Inhibitors Active on Viral Replication. Corona A, Onnis V, Del Vecchio C, Esposito F, Cheng YC, Tramontano E. Molecules 25 E1338 (2020)
  196. Binding thermodynamics of metal ions to HIV-1 ribonuclease H domain. Oda M, Xi Z, Inaba S, Slack RL, Ishima R. J Therm Anal Calorim 135 2647-2653 (2019)
  197. Comparative analysis of LTR and structural genes in an equine infectious anemia virus strain isolated from a feral horse in Japan. Dong J, Cook FR, Haga T, Horii Y, Norimine J, Misawa N, Goto Y, Zhu W. Arch Virol 159 3413-3420 (2014)
  198. Entire-Dataset Analysis of NMR Fast-Exchange Titration Spectra: A Mg2+ Titration Analysis for HIV-1 Ribonuclease H Domain. Karki I, Christen MT, Spiriti J, Slack RL, Oda M, Kanaori K, Zuckerman DM, Ishima R. J Phys Chem B 120 12420-12431 (2016)
  199. Identification of the ternary complex of ribonuclease HI:RNA/DNA hybrid:metal ions by ESI mass spectrometry. Ando T, Jongruja N, Okumura N, Morikawa K, Kanaya S, Takao T. J Biol Chem 296 100462 (2021)
  200. Recognition of 2'-hydroxyl groups by Escherichia coli ribonuclease HI. Iwai S, Kataoka S, Wakasa M, Ohtsuka E, Nakamura H. FEBS Lett 368 315-320 (1995)
  201. Reversion of a Moloney murine leukemia virus RNase H mutant at a second site restores enzyme function and infectivity. Blain SW, Hendrickson WA, Goff SP. J Virol 69 5113-5116 (1995)
  202. Structural Insights to Human Immunodeficiency Virus (HIV-1) Targets and Their Inhibition. Vanangamudi M, Nair PC, Engels SEM, Palaniappan S, Namasivayam V. Adv Exp Med Biol 1322 63-95 (2021)
  203. The HIV-1 integrase α4-helix involved in LTR-DNA recognition is also a highly antigenic peptide element. Azzi S, Parissi V, Maroun RG, Eid P, Mauffret O, Fermandjian S. PLoS One 5 e16001 (2010)
  204. Adaptive amino acid replacements accompanied by domain fusion in reverse transcriptase. Shirai T, Go M. J Mol Evol 44 Suppl 1 S155-62 (1997)
  205. Expression of an Mg2+-dependent HIV-1 RNase H construct for drug screening. Farias RV, Vargas DA, Castillo AE, Valenzuela B, Coté ML, Roth MJ, Leon O. Antimicrob Agents Chemother 55 4735-4741 (2011)
  206. NMR structure of the HIV-1 reverse transcriptase thumb subdomain. Sharaf NG, Brereton AE, Byeon IL, Karplus PA, Gronenborn AM. J Biomol NMR 66 273-280 (2016)
  207. Pyridazines 82. Synthesis of pyridazino [3,4-b][1,5]benzodiazepin-5-ones and their biological evaluation as non-nucleoside HIV reverse transcriptase inhibitors. Heinisch G, Huber E, Matuszczak B, Maurer A, Prillinger U. Arch Pharm (Weinheim) 330 29-34 (1997)
  208. Two highly antigenic sites in the human immunodeficiency virus type 1 reverse transcriptase. Björling E, Boucher CA, Samuelsson A, Wolfs TF, Utter G, Norrby E, Chiodi F. J Clin Microbiol 31 588-592 (1993)
  209. Characterization of HIV-1 reverse transcriptase with antibodies indicates conformational differences between the RNAse H domains of p 66 and p 15. Szilvay AM, Nornes S, Kannapiran A, Haukanes BI, Endresen C, Helland DE. Arch Virol 131 393-403 (1993)
  210. Cloning, expression, purification and preliminary crystallographic analysis of the RNase HI domain of the Mycobacterium tuberculosis protein Rv2228c as a maltose-binding protein fusion. Watkins HA, Baker EN. Acta Crystallogr Sect F Struct Biol Cryst Commun 64 746-749 (2008)
  211. Divalent metal ion-induced folding mechanism of RNase H1 from extreme halophilic archaeon Halobacterium sp. NRC-1. Tannous E, Kanaya S. PLoS One 9 e109016 (2014)
  212. Influence of the RNase H domain of retroviral reverse transcriptases on the metal specificity and substrate selection of their polymerase domains. Talele TT, Upadhyay A, Pandey VN. Virol J 6 159 (2009)
  213. Expression of Moloney murine leukemia virus RNase H rescues the growth defect of an Escherichia coli mutant. Campbell AG. J Virol 75 6212-6217 (2001)
  214. The destiny of reverse transcriptase anatomy. Hughes SH. Curr Biol 1 323-325 (1991)
  215. Crystallization and preliminary crystallographic analysis of ribonuclease H from Thermus thermophilus HB8. Okumura M, Ishikawa K, Kanaya S, Itaya M, Morikawa K. Proteins 15 108-111 (1993)
  216. Deposition of macromolecular coordinates resulting from crystallographic and NMR studies. Wlodawer A. Nat Struct Biol 4 173-174 (1997)
  217. Enzymatic Activities of RNase H Domains of HIV-1 Reverse Transcriptase with Substrate Binding Domains of Bacterial RNases H1 and H2. Permanasari ED, Yasukawa K, Kanaya S. Mol Biotechnol 57 526-538 (2015)
  218. Influence of Mg2+ on the binding modes of HIV-1 integrase with thiazolothiazepine inhibitor studied by molecular simulation. Wang L. Comput Biol Med 39 355-360 (2009)
  219. Inhibitors interacting with the magnesium binding site of reverse transcriptase: synthesis and biological activity studies of 3'-(omega-amino-acyl) amino-3'-deoxy-thymidine. Goud TV, Aubertin AM, Biellmann JF. Nucleosides Nucleotides Nucleic Acids 27 495-505 (2008)
  220. Structural properties of the histidine-containing loop in HIV-1 RNase H. Kern G, Pelton J, Marqusee S, Kern D. Biophys Chem 96 285-291 (2002)


Related citations provided by authors (1)

  1. Proteolytic Release and Crystallization of the Rnase H Domain of Human Immunodeficiency Virus Type I Reverse Transcriptase. Hostomska Z, Matthews DA, Davies /II JF, Nodes BR, Hostomsky Z J. Biol. Chem. 266 14697- (1991)