1hr6 Citations

Crystal structures of mitochondrial processing peptidase reveal the mode for specific cleavage of import signal sequences.

Structure 9 615-25 (2001)
Related entries: 1hr7, 1hr8, 1hr9

Cited: 143 times
EuropePMC logo PMID: 11470436

Abstract

Background

Mitochondrial processing peptidase (MPP) is a metalloendopeptidase that cleaves the N-terminal signal sequences of nuclear-encoded proteins targeted for transport from the cytosol to the mitochondria. Mitochondrial signal sequences vary in length and sequence, but each is cleaved at a single specific site by MPP. The cleavage sites typically contain an arginine at position -2 (in the N-terminal portion) from the scissile peptide bond in addition to other distal basic residues, and an aromatic residue at position +1. Mitochondrial import machinery recognizes amphiphilic helical conformations in signal sequences. However, it is unclear how MPP specifically recognizes diverse presequence substrates.

Results

The crystal structures of recombinant yeast MPP and a cleavage-deficient mutant of MPP complexed with synthetic signal peptides have been determined. MPP is a heterodimer; its alpha and beta subunits are homologous to the core II and core I proteins, respectively, of the ubiquinol-cytochrome c oxidoreductase complex. Crystal structures of two different synthetic substrate peptides cocrystallized with the mutant MPP each show the peptide bound in an extended conformation at the active site. Recognition sites for the arginine at position -2 and the +1 aromatic residue are observed.

Conclusion

MPP bound two mitochondrial import presequence peptides in extended conformations in a large polar cavity. The presequence conformations differ from the amphiphilic helical conformation recognized by mitochondrial import components. Our findings suggest that the presequences adopt context-dependent conformations through mitochondrial import and processing, helical for recognition by mitochondrial import machinery and extended for cleavage by the main processing component.

Reviews - 1hr6 mentioned but not cited (1)

  1. Mitochondrial Processing Peptidases-Structure, Function and the Role in Human Diseases. Kunová N, Havalová H, Ondrovičová G, Stojkovičová B, Bauer JA, Bauerová-Hlinková V, Pevala V, Kutejová E. Int J Mol Sci 23 1297 (2022)

Articles - 1hr6 mentioned but not cited (12)

  1. Structural similarity enhances interaction propensity of proteins. Lukatsky DB, Shakhnovich BE, Mintseris J, Shakhnovich EI. J Mol Biol 365 1596-1606 (2007)
  2. The closed structure of presequence protease PreP forms a unique 10,000 Angstroms3 chamber for proteolysis. Johnson KA, Bhushan S, Ståhl A, Hallberg BM, Frohn A, Glaser E, Eneqvist T. EMBO J 25 1977-1986 (2006)
  3. Intracellular Cl- as a signaling ion that potently regulates Na+/HCO3- transporters. Shcheynikov N, Son A, Hong JH, Yamazaki O, Ohana E, Kurtz I, Shin DM, Muallem S. Proc Natl Acad Sci U S A 112 E329-37 (2015)
  4. Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites trichomonas vaginalis and giardia intestinalis. Smíd O, Matusková A, Harris SR, Kucera T, Novotný M, Horváthová L, Hrdý I, Kutejová E, Hirt RP, Embley TM, Janata J, Tachezy J. PLoS Pathog 4 e1000243 (2008)
  5. Atomic structures of respiratory complex III2, complex IV, and supercomplex III2-IV from vascular plants. Maldonado M, Guo F, Letts JA. Elife 10 e62047 (2021)
  6. FusC, a member of the M16 protease family acquired by bacteria for iron piracy against plants. Grinter R, Hay ID, Song J, Wang J, Teng D, Dhanesakaran V, Wilksch JJ, Davies MR, Littler D, Beckham SA, Henderson IR, Strugnell RA, Dougan G, Lithgow T. PLoS Biol 16 e2006026 (2018)
  7. OPUS-Dom: applying the folding-based method VECFOLD to determine protein domain boundaries. Wu Y, Dousis AD, Chen M, Li J, Ma J. J Mol Biol 385 1314-1329 (2009)
  8. Crystal Structure and Function of PqqF Protein in the Pyrroloquinoline Quinone Biosynthetic Pathway. Wei Q, Ran T, Ma C, He J, Xu D, Wang W. J Biol Chem 291 15575-15587 (2016)
  9. A computational study of the glycine-rich loop of mitochondrial processing peptidase. Kučera T, Otyepka M, Matušková A, Samad A, Kutejová E, Janata J. PLoS One 8 e74518 (2013)
  10. Unleashing the power of meta-threading for evolution/structure-based function inference of proteins. Brylinski M. Front Genet 4 118 (2013)
  11. A conserved rhizobial peptidase that interacts with host-derived symbiotic peptides. Benedict AB, Ghosh P, Scott SM, Griffitts JS. Sci Rep 11 11779 (2021)
  12. The Evolutionary History of Peptidases Involved in the Processing of Organelle-Targeting Peptides. Garrido C, Wollman FA, Lafontaine I. Genome Biol Evol 14 evac101 (2022)


Reviews citing this publication (36)

  1. Importing mitochondrial proteins: machineries and mechanisms. Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N. Cell 138 628-644 (2009)
  2. Mitochondrial protein import: from proteomics to functional mechanisms. Schmidt O, Pfanner N, Meisinger C. Nat Rev Mol Cell Biol 11 655-667 (2010)
  3. Targeting of nucleus-encoded proteins to chloroplasts in plants. Jarvis P. New Phytol 179 257-285 (2008)
  4. Mitochondrial import and the twin-pore translocase. Rehling P, Brandner K, Pfanner N. Nat Rev Mol Cell Biol 5 519-530 (2004)
  5. The protein import machinery of mitochondria. Wiedemann N, Frazier AE, Pfanner N. J Biol Chem 279 14473-14476 (2004)
  6. Structural aspects of the metzincin clan of metalloendopeptidases. Gomis-Rüth FX. Mol Biotechnol 24 157-202 (2003)
  7. Mechanisms of protein import into mitochondria. Truscott KN, Brandner K, Pfanner N. Curr Biol 13 R326-37 (2003)
  8. Mitochondrial protein import: common principles and physiological networks. Dudek J, Rehling P, van der Laan M. Biochim Biophys Acta 1833 274-285 (2013)
  9. Mitochondrial protein-import machinery: correlating structure with function. Baker MJ, Frazier AE, Gulbis JM, Ryan MT. Trends Cell Biol 17 456-464 (2007)
  10. Critical Role of Zinc as Either an Antioxidant or a Prooxidant in Cellular Systems. Lee SR. Oxid Med Cell Longev 2018 9156285 (2018)
  11. Amyloid beta-degrading cryptidases: insulin degrading enzyme, presequence peptidase, and neprilysin. Malito E, Hulse RE, Tang WJ. Cell Mol Life Sci 65 2574-2585 (2008)
  12. Processing peptidases in mitochondria and chloroplasts. Teixeira PF, Glaser E. Biochim Biophys Acta 1833 360-370 (2013)
  13. Evolution of protein structures and functions. Kinch LN, Grishin NV. Curr Opin Struct Biol 12 400-408 (2002)
  14. Insertion of hydrophobic membrane proteins into the inner mitochondrial membrane--a guided tour. Rehling P, Pfanner N, Meisinger C. J Mol Biol 326 639-657 (2003)
  15. Mitochondrion-related organelles in eukaryotic protists. Shiflett AM, Johnson PJ. Annu Rev Microbiol 64 409-429 (2010)
  16. Mitochondrial protein import: two membranes, three translocases. Pfanner N, Wiedemann N. Curr Opin Cell Biol 14 400-411 (2002)
  17. Mitochondrial protein import and the genesis of steroidogenic mitochondria. Midzak A, Rone M, Aghazadeh Y, Culty M, Papadopoulos V. Mol Cell Endocrinol 336 70-79 (2011)
  18. Protein import into mitochondria: origins and functions today (review). Lister R, Hulett JM, Lithgow T, Whelan J. Mol Membr Biol 22 87-100 (2005)
  19. Protein import into plant mitochondria: signals, machinery, processing, and regulation. Murcha MW, Kmiec B, Kubiszewski-Jakubiak S, Teixeira PF, Glaser E, Whelan J. J Exp Bot 65 6301-6335 (2014)
  20. The mitochondrial protein import machinery has multiple connections to the respiratory chain. Kulawiak B, Höpker J, Gebert M, Guiard B, Wiedemann N, Gebert N. Biochim Biophys Acta 1827 612-626 (2013)
  21. Mechanisms of protein sorting in mitochondria. Stojanovski D, Bohnert M, Pfanner N, van der Laan M. Cold Spring Harb Perspect Biol 4 a011320 (2012)
  22. Role of membrane contact sites in protein import into mitochondria. Horvath SE, Rampelt H, Oeljeklaus S, Warscheid B, van der Laan M, Pfanner N. Protein Sci 24 277-297 (2015)
  23. The versatility of the mitochondrial presequence processing machinery: cleavage, quality control and turnover. Poveda-Huertes D, Mulica P, Vögtle FN. Cell Tissue Res 367 73-81 (2017)
  24. Unanswered questions about the structure of cytochrome bc1 complexes. Berry EA, De Bari H, Huang LS. Biochim Biophys Acta 1827 1258-1277 (2013)
  25. Dynamic organization of the mitochondrial protein import machinery. Straub SP, Stiller SB, Wiedemann N, Pfanner N. Biol Chem 397 1097-1114 (2016)
  26. Diverse mechanisms and machineries for import of mitochondrial proteins. Milenkovic D, Müller J, Stojanovski D, Pfanner N, Chacinska A. Biol Chem 388 891-897 (2007)
  27. Regulation of mitochondrial structure and function by protein import: A current review. Prasai K. Pathophysiology 24 107-122 (2017)
  28. Role of PITRM1 in Mitochondrial Dysfunction and Neurodegeneration. Brunetti D, Catania A, Viscomi C, Deleidi M, Bindoff LA, Ghezzi D, Zeviani M. Biomedicines 9 833 (2021)
  29. Role of the Mitochondrial Protein Import Machinery and Protein Processing in Heart Disease. Zhao F, Zou MH. Front Cardiovasc Med 8 749756 (2021)
  30. Mitochondrial protein dysfunction in pathogenesis of neurological diseases. Wang L, Yang Z, He X, Pu S, Yang C, Wu Q, Zhou Z, Cen X, Zhao H. Front Mol Neurosci 15 974480 (2022)
  31. Proteolytic Control of Lipid Metabolism. Sam PN, Avery E, Claypool SM. ACS Chem Biol 14 2406-2423 (2019)
  32. Protein Processing in Plant Mitochondria Compared to Yeast and Mammals. Heidorn-Czarna M, Maziak A, Janska H. Front Plant Sci 13 824080 (2022)
  33. Protein import in mitochondria biogenesis: guided by targeting signals and sustained by dedicated chaperones. Dimogkioka AR, Lees J, Lacko E, Tokatlidis K. RSC Adv 11 32476-32493 (2021)
  34. Utilization of positional isotope exchange experiments to evaluate reversibility of ATP hydrolysis catalyzed by Escherichia coli Lon protease. Thomas J, Fishovitz J, Lee I. Biochem Cell Biol 88 119-128 (2010)
  35. Dissecting the molecular mechanisms of mitochondrial import and maturation of peroxiredoxins from yeast and mammalian cells. Gomes F, Turano H, Ramos A, de Barros MH, Haddad LA, Netto LES. Biophys Rev 13 983-994 (2021)
  36. Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Reed AL, Mitchell W, Alexandrescu AT, Alder NN. Front Physiol 14 1263420 (2023)

Articles citing this publication (94)

  1. Locating proteins in the cell using TargetP, SignalP and related tools. Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Nat Protoc 2 953-971 (2007)
  2. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. Ishihara N, Fujita Y, Oka T, Mihara K. EMBO J 25 2966-2977 (2006)
  3. Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Vögtle FN, Wortelkamp S, Zahedi RP, Becker D, Leidhold C, Gevaert K, Kellermann J, Voos W, Sickmann A, Pfanner N, Meisinger C. Cell 139 428-439 (2009)
  4. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P, Imai K. Mol Cell Proteomics 14 1113-1126 (2015)
  5. Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space. Otera H, Ohsakaya S, Nagaura Z, Ishihara N, Mihara K. EMBO J 24 1375-1386 (2005)
  6. Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism. Shen Y, Joachimiak A, Rosner MR, Tang WJ. Nature 443 870-874 (2006)
  7. Mitochondrial protein synthesis, import, and assembly. Fox TD. Genetics 192 1203-1234 (2012)
  8. Amyloid-β peptide induces mitochondrial dysfunction by inhibition of preprotein maturation. Mossmann D, Vögtle FN, Taskin AA, Teixeira PF, Ring J, Burkhart JM, Burger N, Pinho CM, Tadic J, Loreth D, Graff C, Metzger F, Sickmann A, Kretz O, Wiedemann N, Zahedi RP, Madeo F, Glaser E, Meisinger C. Cell Metab 20 662-669 (2014)
  9. Structure of substrate-free human insulin-degrading enzyme (IDE) and biophysical analysis of ATP-induced conformational switch of IDE. Im H, Manolopoulou M, Malito E, Shen Y, Zhao J, Neant-Fery M, Sun CY, Meredith SC, Sisodia SS, Leissring MA, Tang WJ. J Biol Chem 282 25453-25463 (2007)
  10. In vivo maturation of human frataxin. Condò I, Ventura N, Malisan F, Rufini A, Tomassini B, Testi R. Hum Mol Genet 16 1534-1540 (2007)
  11. The DegraBase: a database of proteolysis in healthy and apoptotic human cells. Crawford ED, Seaman JE, Agard N, Hsu GW, Julien O, Mahrus S, Nguyen H, Shimbo K, Yoshihara HA, Zhuang M, Chalkley RJ, Wells JA. Mol Cell Proteomics 12 813-824 (2013)
  12. Cleavage site selection within a folded substrate by the ATP-dependent lon protease. Ondrovicová G, Liu T, Singh K, Tian B, Li H, Gakh O, Perecko D, Janata J, Granot Z, Orly J, Kutejová E, Suzuki CK. J Biol Chem 280 25103-25110 (2005)
  13. Convergent evolution of enzyme active sites is not a rare phenomenon. Gherardini PF, Wass MN, Helmer-Citterich M, Sternberg MJ. J Mol Biol 372 817-845 (2007)
  14. Functional complexity of the twin-arginine translocase TatC component revealed by site-directed mutagenesis. Buchanan G, de Leeuw E, Stanley NR, Wexler M, Berks BC, Sargent F, Palmer T. Mol Microbiol 43 1457-1470 (2002)
  15. Mitochondrial localization of telomeric protein TIN2 links telomere regulation to metabolic control. Chen LY, Zhang Y, Zhang Q, Li H, Luo Z, Fang H, Kim SH, Qin L, Yotnda P, Xu J, Tu BP, Bai Y, Songyang Z. Mol Cell 47 839-850 (2012)
  16. Evolution of peptidase diversity. Page MJ, Di Cera E. J Biol Chem 283 30010-30014 (2008)
  17. Exploring the mitochondrial proteome of the ciliate protozoon Tetrahymena thermophila: direct analysis by tandem mass spectrometry. Smith DG, Gawryluk RM, Spencer DF, Pearlman RE, Siu KW, Gray MW. J Mol Biol 374 837-863 (2007)
  18. Proteome and phosphoproteome characterization reveals new response and defense mechanisms of Brachypodium distachyon leaves under salt stress. Lv DW, Subburaj S, Cao M, Yan X, Li X, Appels R, Sun DF, Ma W, Yan YM. Mol Cell Proteomics 13 632-652 (2014)
  19. The MEROPS batch BLAST: a tool to detect peptidases and their non-peptidase homologues in a genome. Rawlings ND, Morton FR. Biochimie 90 243-259 (2008)
  20. Molecular basis for the recognition and cleavages of IGF-II, TGF-alpha, and amylin by human insulin-degrading enzyme. Guo Q, Manolopoulou M, Bian Y, Schilling AB, Tang WJ. J Mol Biol 395 430-443 (2010)
  21. Two novel targeting peptide degrading proteases, PrePs, in mitochondria and chloroplasts, so similar and still different. Ståhl A, Nilsson S, Lundberg P, Bhushan S, Biverståhl H, Moberg P, Morisset M, Vener A, Mäler L, Langel U, Glaser E. J Mol Biol 349 847-860 (2005)
  22. Cryptosporidium parvum Cpn60 targets a relict organelle. Riordan CE, Ault JG, Langreth SG, Keithly JS. Curr Genet 44 138-147 (2003)
  23. The Tim21 binding domain connects the preprotein translocases of both mitochondrial membranes. Albrecht R, Rehling P, Chacinska A, Brix J, Cadamuro SA, Volkmer R, Guiard B, Pfanner N, Zeth K. EMBO Rep 7 1233-1238 (2006)
  24. A role for falcilysin in transit peptide degradation in the Plasmodium falciparum apicoplast. Ponpuak M, Klemba M, Park M, Gluzman IY, Lamppa GK, Goldberg DE. Mol Microbiol 63 314-334 (2007)
  25. PMPCA mutations cause abnormal mitochondrial protein processing in patients with non-progressive cerebellar ataxia. Jobling RK, Assoum M, Gakh O, Blaser S, Raiman JA, Mignot C, Roze E, Dürr A, Brice A, Lévy N, Prasad C, Paton T, Paterson AD, Roslin NM, Marshall CR, Desvignes JP, Roëckel-Trevisiol N, Scherer SW, Rouleau GA, Mégarbané A, Isaya G, Delague V, Yoon G. Brain 138 1505-1517 (2015)
  26. Mutations in PMPCB Encoding the Catalytic Subunit of the Mitochondrial Presequence Protease Cause Neurodegeneration in Early Childhood. Vögtle FN, Brändl B, Larson A, Pendziwiat M, Friederich MW, White SM, Basinger A, Kücükköse C, Muhle H, Jähn JA, Keminer O, Helbig KL, Delto CF, Myketin L, Mossmann D, Burger N, Miyake N, Burnett A, van Baalen A, Lovell MA, Matsumoto N, Walsh M, Yu HC, Shinde DN, Stephani U, Van Hove JLK, Müller FJ, Helbig I. Am J Hum Genet 102 557-573 (2018)
  27. Crystallographic investigation of peptide binding sites in the N-domain of the ClpA chaperone. Xia D, Esser L, Singh SK, Guo F, Maurizi MR. J Struct Biol 146 166-179 (2004)
  28. Determinants for removal and degradation of transit peptides of chloroplast precursor proteins. Richter S, Lamppa GK. J Biol Chem 277 43888-43894 (2002)
  29. Plasmodium falciparum falcilysin: a metalloprotease with dual specificity. Murata CE, Goldberg DE. J Biol Chem 278 38022-38028 (2003)
  30. Conformational states and recognition of amyloidogenic peptides of human insulin-degrading enzyme. McCord LA, Liang WG, Dowdell E, Kalas V, Hoey RJ, Koide A, Koide S, Tang WJ. Proc Natl Acad Sci U S A 110 13827-13832 (2013)
  31. The C-terminal domain of human insulin degrading enzyme is required for dimerization and substrate recognition. Li P, Kuo WL, Yousef M, Rosner MR, Tang WJ. Biochem Biophys Res Commun 343 1032-1037 (2006)
  32. NMR solution structure of the mitochondrial F1beta presequence from Nicotiana plumbaginifolia. Moberg P, Nilsson S, Ståhl A, Eriksson AC, Glaser E, Mäler L. J Mol Biol 336 1129-1140 (2004)
  33. Mitochondrial inner membrane protease promotes assembly of presequence translocase by removing a carboxy-terminal targeting sequence. Ieva R, Heißwolf AK, Gebert M, Vögtle FN, Wollweber F, Mehnert CS, Oeljeklaus S, Warscheid B, Meisinger C, van der Laan M, Pfanner N. Nat Commun 4 2853 (2013)
  34. Combinatorial targeting and discovery of ligand-receptors in organelles of mammalian cells. Rangel R, Guzman-Rojas L, le Roux LG, Staquicini FI, Hosoya H, Barbu EM, Ozawa MG, Nie J, Dunner K, Langley RR, Sage EH, Koivunen E, Gelovani JG, Lobb RR, Sidman RL, Pasqualini R, Arap W. Nat Commun 3 788 (2012)
  35. Structural properties of the chloroplast stromal processing peptidase required for its function in transit peptide removal. Richter S, Lamppa GK. J Biol Chem 278 39497-39502 (2003)
  36. Assembly of the iron-binding protein frataxin in Saccharomyces cerevisiae responds to dynamic changes in mitochondrial iron influx and stress level. Gakh O, Smith DY, Isaya G. J Biol Chem 283 31500-31510 (2008)
  37. Characterization of murine SIRT3 transcript variants and corresponding protein products. Yang Y, Hubbard BP, Sinclair DA, Tong Q. J Cell Biochem 111 1051-1058 (2010)
  38. Research Support, Non-U.S. Gov't How mitochondria import hydrophilic and hydrophobic proteins. Chacinska A, Pfanner N, Meisinger C. Trends Cell Biol 12 299-303 (2002)
  39. Carboxy-Terminal Modulator Protein (CTMP) is a mitochondrial protein that sensitizes cells to apoptosis. Parcellier A, Tintignac LA, Zhuravleva E, Cron P, Schenk S, Bozulic L, Hemmings BA. Cell Signal 21 639-650 (2009)
  40. Mutations in the substrate binding glycine-rich loop of the mitochondrial processing peptidase-α protein (PMPCA) cause a severe mitochondrial disease. Joshi M, Anselm I, Shi J, Bale TA, Towne M, Schmitz-Abe K, Crowley L, Giani FC, Kazerounian S, Markianos K, Lidov HG, Folkerth R, Sankaran VG, Agrawal PB. Cold Spring Harb Mol Case Stud 2 a000786 (2016)
  41. INTERMEDIATE CLEAVAGE PEPTIDASE55 Modifies Enzyme Amino Termini and Alters Protein Stability in Arabidopsis Mitochondria. Huang S, Nelson CJ, Li L, Taylor NL, Ströher E, Peteriet J, Millar AH. Plant Physiol 168 415-427 (2015)
  42. Processing of the dual targeted precursor protein of glutathione reductase in mitochondria and chloroplasts. Rudhe C, Clifton R, Chew O, Zemam K, Richter S, Lamppa G, Whelan J, Glaser E. J Mol Biol 343 639-647 (2004)
  43. Interferon-stimulated gene ISG12b2 is localized to the inner mitochondrial membrane and mediates virus-induced cell death. Lu MY, Liao F. Cell Death Differ 18 925-936 (2011)
  44. Ydj1 governs fungal morphogenesis and stress response, and facilitates mitochondrial protein import via Mas1 and Mas2. Xie JL, Bohovych I, Wong EOY, Lambert JP, Gingras AC, Khalimonchuk O, Cowen LE, Leach MD. Microb Cell 4 342-361 (2017)
  45. Molecular basis of substrate recognition and degradation by human presequence protease. King JV, Liang WG, Scherpelz KP, Schilling AB, Meredith SC, Tang WJ. Structure 22 996-1007 (2014)
  46. The ammonium-inactivated cyanobacterial glutamine synthetase I is reactivated in vivo by a mechanism involving proteolytic removal of its inactivating factors. Galmozzi CV, Fernández-Avila MJ, Reyes JC, Florencio FJ, Muro-Pastor MI. Mol Microbiol 65 166-179 (2007)
  47. Crystal and solution structures of a prokaryotic M16B peptidase: an open and shut case. Aleshin AE, Gramatikova S, Hura GL, Bobkov A, Strongin AY, Stec B, Tainer JA, Liddington RC, Smith JW. Structure 17 1465-1475 (2009)
  48. A protein from a parasitic microorganism, Rickettsia prowazekii, can cleave the signal sequences of proteins targeting mitochondria. Kitada S, Uchiyama T, Funatsu T, Kitada Y, Ogishima T, Ito A. J Bacteriol 189 844-850 (2007)
  49. Saccharomyces cerevisiae porin pore forms complexes with mitochondrial outer membrane proteins Om14p and Om45p. Lauffer S, Mäbert K, Czupalla C, Pursche T, Hoflack B, Rödel G, Krause-Buchholz U. J Biol Chem 287 17447-17458 (2012)
  50. A functionally divergent hydrogenosomal peptidase with protomitochondrial ancestry. Brown MT, Goldstone HM, Bastida-Corcuera F, Delgadillo-Correa MG, McArthur AG, Johnson PJ. Mol Microbiol 64 1154-1163 (2007)
  51. Incorporation of branched-chain fatty acid into cellular lipids and caspase-independent apoptosis in human breast cancer cell line, SKBR-3. Wongtangtintharn S, Oku H, Iwasaki H, Inafuku M, Toda T, Yanagita T. Lipids Health Dis 4 29 (2005)
  52. Effect of denervation on the regulation of mitochondrial transcription factor A expression in skeletal muscle. Tryon LD, Crilly MJ, Hood DA. Am J Physiol Cell Physiol 309 C228-38 (2015)
  53. Extensive post-translational processing of potato tuber storage proteins and vacuolar targeting. Jørgensen M, Stensballe A, Welinder KG. FEBS J 278 4070-4087 (2011)
  54. Residues in conserved loops of intramembrane metalloprotease SpoIVFB interact with residues near the cleavage site in pro-σK. Zhang Y, Luethy PM, Zhou R, Kroos L. J Bacteriol 195 4936-4946 (2013)
  55. Cryo-EM structure of the respiratory I + III2 supercomplex from Arabidopsis thaliana at 2 Å resolution. Klusch N, Dreimann M, Senkler J, Rugen N, Kühlbrandt W, Braun HP. Nat Plants 9 142-156 (2023)
  56. Glycine-rich loop of mitochondrial processing peptidase alpha-subunit is responsible for substrate recognition by a mechanism analogous to mitochondrial receptor Tom20. Dvoráková-Holá K, Matusková A, Kubala M, Otyepka M, Kucera T, Vecer J, Herman P, Parkhomenko N, Kutejova E, Janata J. J Mol Biol 396 1197-1210 (2010)
  57. Proteolytic cleavage by the inner membrane peptidase (IMP) complex or Oct1 peptidase controls the localization of the yeast peroxiredoxin Prx1 to distinct mitochondrial compartments. Gomes F, Palma FR, Barros MH, Tsuchida ET, Turano HG, Alegria TGP, Demasi M, Netto LES. J Biol Chem 292 17011-17024 (2017)
  58. Role of the membrane potential in mitochondrial protein unfolding and import. Sato TK, Kawano S, Endo T. Sci Rep 9 7637 (2019)
  59. Structural Studies of Glutamate Dehydrogenase (Isoform 1) From Arabidopsis thaliana, an Important Enzyme at the Branch-Point Between Carbon and Nitrogen Metabolism. Grzechowiak M, Sliwiak J, Jaskolski M, Ruszkowski M. Front Plant Sci 11 754 (2020)
  60. The Carboxy-Terminal Modulator Protein (CTMP) regulates mitochondrial dynamics. Parcellier A, Tintignac LA, Zhuravleva E, Dummler B, Brazil DP, Hynx D, Cron P, Schenk S, Olivieri V, Hemmings BA. PLoS One 4 e5471 (2009)
  61. Location of the actual signal in the negatively charged leader sequence involved in the import into the mitochondrial matrix space. Mukhopadhyay A, Heard TS, Wen X, Hammen PK, Weiner H. J Biol Chem 278 13712-13718 (2003)
  62. Heterosubunit composition and crystal structures of a novel bacterial M16B metallopeptidase. Maruyama Y, Chuma A, Mikami B, Hashimoto W, Murata K. J Mol Biol 407 180-192 (2011)
  63. Identification of Nostoc punctiforme akinete-expressed genes using differential display. Argueta C, Yuksek K, Patel R, Summers ML. Mol Microbiol 61 748-757 (2006)
  64. A single glutamine synthetase gene produces tissue-specific subcellular localization by alternative splicing. Matthews GD, Gould RM, Vardimon L. FEBS Lett 579 5527-5534 (2005)
  65. An Advanced System of the Mitochondrial Processing Peptidase and Core Protein Family in Trypanosoma brucei and Multiple Origins of the Core I Subunit in Eukaryotes. Mach J, Poliak P, Matusková A, Zárský V, Janata J, Lukes J, Tachezy J. Genome Biol Evol 5 860-875 (2013)
  66. Crystal structure of TTHA1264, a putative M16-family zinc peptidase from Thermus thermophilus HB8 that is homologous to the beta subunit of mitochondrial processing peptidase. Ohtsuka J, Ichihara Y, Ebihara A, Nagata K, Tanokura M. Proteins 75 774-780 (2009)
  67. Differential protein expression in the susceptible and resistant Myzus persicae (Sulzer) to imidacloprid. Meng J, Zhang C, Chen X, Cao Y, Shang S. Pestic Biochem Physiol 115 1-8 (2014)
  68. The novel mitochondrial matrix protease Ste23 is required for efficient presequence degradation and processing. Taskin AA, Kücükköse C, Burger N, Mossmann D, Meisinger C, Vögtle FN. Mol Biol Cell 28 997-1002 (2017)
  69. A common genetic system for functional studies of pitrilysin and related M16A proteases. Alper BJ, Nienow TE, Schmidt WK. Biochem J 398 145-152 (2006)
  70. B cell and antibody responses in mice induced by a putative cell surface peptidase of Pneumocystis murina protect against experimental infection. Ruan S, Cai Y, Ramsay AJ, Welsh DA, Norris K, Shellito JE. Vaccine 35 672-679 (2017)
  71. Identification and reverse genetic analysis of mitochondrial processing peptidase and the core protein of the cytochrome bc1 complex of Caenorhabditis elegans, a model parasitic nematode. Nomura H, Athauda SB, Wada H, Maruyama Y, Takahashi K, Inoue H. J Biochem 139 967-979 (2006)
  72. Substrate evokes translocation of both domains in the mitochondrial processing peptidase alpha-subunit during which the C-terminus acts as a stabilizing element. Janata J, Holá K, Kubala M, Gakh O, Parkhomenko N, Matusková A, Kutejová E, Amler E. Biochem Biophys Res Commun 316 211-217 (2004)
  73. Evidence of evolutionary constraints that influences the sequence composition and diversity of mitochondrial matrix targeting signals. Doyle SR, Kasinadhuni NR, Chan CK, Grant WN. PLoS One 8 e67938 (2013)
  74. More than just a ticket canceller: the mitochondrial processing peptidase tailors complex precursor proteins at internal cleavage sites. Friedl J, Knopp MR, Groh C, Paz E, Gould SB, Herrmann JM, Boos F. Mol Biol Cell 31 2657-2668 (2020)
  75. Proteome-scale identification and characterization of mitochondria targeting proteins of Mycobacterium avium subspecies paratuberculosis: Potential virulence factors modulating host mitochondrial function. Rana A, Kumar D, Rub A, Akhter Y. Mitochondrion 23 42-54 (2015)
  76. Recognition and processing of a nuclear-encoded polyprotein precursor by mitochondrial processing peptidase. Oshima T, Yamasaki E, Ogishima T, Kadowaki K, Ito A, Kitada S. Biochem J 385 755-761 (2005)
  77. Comment TOM20 and the heartbreakers: evidence for the role of mitochondrial transport proteins in cardioprotection. Bowers M, Ardehali H. J Mol Cell Cardiol 41 406-409 (2006)
  78. Timing and structural consideration for the processing of mitochondrial matrix space proteins by the mitochondrial processing peptidase (MPP). Mukhopadhyay A, Hammen P, Waltner-Law M, Weiner H. Protein Sci 11 1026-1035 (2002)
  79. Functional requirement for human pitrilysin metallopeptidase 1 arginine 183, mutated in amyloidogenic neuropathy. Smith-Carpenter JE, Alper BJ. Protein Sci 27 861-873 (2018)
  80. Inactivity of Peptidase ClpP Causes Primary Accumulation of Mitochondrial Disaggregase ClpX with Its Interacting Nucleoid Proteins, and of mtDNA. Key J, Torres-Odio S, Bach NC, Gispert S, Koepf G, Reichlmeir M, West AP, Prokisch H, Freisinger P, Newman WG, Shalev S, Sieber SA, Wittig I, Auburger G. Cells 10 3354 (2021)
  81. Cloning, expression and characterization of insulin-degrading enzyme from tomato (Solanum lycopersicum). Huet Y, Strassner J, Schaller A. Biol Chem 389 91-98 (2008)
  82. Functional dissection of the dictyostelium discoideum dynamin B mitochondrial targeting sequence. Rai A, Tzvetkov N, Manstein DJ. PLoS One 8 e56975 (2013)
  83. Glu(191) and Asp(195) in rat mitochondrial processing peptidase beta subunit are involved in effective cleavage of precursor protein through interaction with the proximal arginine. Kitada S, Kojima K, Ito A. Biochem Biophys Res Commun 287 594-599 (2001)
  84. Mutational analysis of the potential catalytic residues of the VV G1L metalloproteinase. Honeychurch KM, Byrd CM, Hruby DE. Virol J 3 7 (2006)
  85. Comparative Study of Two Insulinlike Proteases in Cryptosporidium parvum. He W, Lai C, Yang F, Li Y, Li N, Guo Y, Zhang Z, Xiao L, Feng Y. Microorganisms 9 861 (2021)
  86. Preliminary Characterization of Two Small Insulinase-Like Proteases in Cryptosporidium parvum. Xu R, Lai C, Yang F, Zhang Q, Li N, Guo Y, Xiao L, Feng Y. Front Microbiol 12 651512 (2021)
  87. A Combined N-terminomics and Shotgun Proteomics Approach to Investigate the Responses of Human Cells to Rapamycin and Zinc at the Mitochondrial Level. Bons J, Macron C, Aude-Garcia C, Vaca-Jacome SA, Rompais M, Cianférani S, Carapito C, Rabilloud T. Mol Cell Proteomics 18 1085-1095 (2019)
  88. Crystal structures and biochemical analyses of intermediate cleavage peptidase: role of dynamics in enzymatic function. Singh R, Goyal VD, Kumar A, Sabharwal NS, Makde RD. FEBS Lett 593 443-454 (2019)
  89. Gene Sequences of Potential Targets of Insecticidal PF2 Lectin Identified from the Larval De Novo Transcriptome of the Mexican Bean Weevil (Zabrotes Subfasciatus; Boheman 1833). Lagarda-Diaz I, Hernández-Oñate MÁ, Huerta-Ocampo JÁ, Guzmán-Partida AM, Winzerling J, Geiser D, Vázquez-Moreno L. Insects 11 E736 (2020)
  90. Insight into structural and biochemical determinants of substrate specificity of PFI1625c: correlation analysis of protein-peptide molecular models. Lhouvum K, Ramakrishnan V, Trivedi V. J Mol Graph Model 43 21-30 (2013)
  91. The Effect of the Ala16Val Mutation on the Secondary Structure of the Manganese Superoxide Dismutase Mitochondrial Targeting Sequence. Broz M, Furlan V, Lešnik S, Jukič M, Bren U. Antioxidants (Basel) 11 2348 (2022)
  92. An in vitro-transcribed circular RNA targets the mitochondrial inner membrane cardiolipin to ablate EIF4G2+/PTBP1+ pan-adenocarcinoma. Feng Z, Zhang X, Zhou J, Li Q, Chu L, Di G, Xu Z, Chen Q, Wang M, Jiang X, Xia H, Chen X. Nat Cancer 5 30-46 (2024)
  93. Impact of Hydrogen on the Transcriptome of Sinorhizobium meliloti 1021 Using RNA-sequencing Technology. Liu R, Li L, Li Z, Wang W. Pol J Microbiol 69 1-10 (2020)
  94. The Alpha Subunit of Mitochondrial Processing Peptidase Participated in Fertility Restoration in Honglian-CMS Rice. Zhao W, Geng H, Dan Z, Zeng Y, Wang M, Xu W, Hu Z, Huang W. Int J Mol Sci 24 5442 (2023)