1hfe Citations

Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center.

Abstract

Background

Many microorganisms have the ability to either oxidize molecular hydrogen to generate reducing power or to produce hydrogen in order to remove low-potential electrons. These reactions are catalyzed by two unrelated enzymes: the Ni-Fe hydrogenases and the Fe-only hydrogenases.

Results

We report here the structure of the heterodimeric Fe-only hydrogenase from Desulfovibrio desulfuricans - the first for this class of enzymes. With the exception of a ferredoxin-like domain, the structure represents a novel protein fold. The so-called H cluster of the enzyme is composed of a typical [4Fe-4S] cubane bridged to a binuclear active site Fe center containing putative CO and CN ligands and one bridging 1, 3-propanedithiol molecule. The conformation of the subunits can be explained by the evolutionary changes that have transformed monomeric cytoplasmic enzymes into dimeric periplasmic enzymes. Plausible electron- and proton-transfer pathways and a putative channel for the access of hydrogen to the active site have been identified.

Conclusion

The unrelated active sites of Ni-Fe and Fe-only hydrogenases have several common features: coordination of diatomic ligands to an Fe ion; a vacant coordination site on one of the metal ions representing a possible substrate-binding site; a thiolate-bridged binuclear center; and plausible proton- and electron-transfer pathways and substrate channels. The diatomic coordination to Fe ions makes them low spin and favors low redox states, which may be required for catalysis. Complex electron paramagnetic resonance signals typical of Fe-only hydrogenases arise from magnetic interactions between the [4Fe-4S] cluster and the active site binuclear center. The paucity of protein ligands to this center suggests that it was imported from the inorganic world as an already functional unit.

Reviews - 1hfe mentioned but not cited (5)

  1. Metabolically engineered bacteria for producing hydrogen via fermentation. Vardar-Schara G, Maeda T, Wood TK. Microb Biotechnol 1 107-125 (2008)
  2. Direct enzymatic bioelectrocatalysis: differentiating between myth and reality. Milton RD, Minteer SD. J R Soc Interface 14 20170253 (2017)
  3. Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Stripp ST, Duffus BR, Fourmond V, Léger C, Leimkühler S, Hirota S, Hu Y, Jasniewski A, Ogata H, Ribbe MW. Chem Rev 122 11900-11973 (2022)
  4. Artificial photosynthesis: understanding water splitting in nature. Cox N, Pantazis DA, Neese F, Lubitz W. Interface Focus 5 20150009 (2015)
  5. Radical SAM Enzymes and Metallocofactor Assembly: A Structural Point of View. Nicolet Y, Cherrier MV, Amara P. ACS Bio Med Chem Au 2 36-52 (2022)

Articles - 1hfe mentioned but not cited (17)

  1. Interaction preferences across protein-protein interfaces of obligatory and non-obligatory components are different. De S, Krishnadev O, Srinivasan N, Rekha N. BMC Struct Biol 5 15 (2005)
  2. Mechanistic and functional versatility of radical SAM enzymes. Booker SJ, Grove TL. F1000 Biol Rep 2 52 (2010)
  3. Reaction Coordinate Leading to H2 Production in [FeFe]-Hydrogenase Identified by Nuclear Resonance Vibrational Spectroscopy and Density Functional Theory. Pelmenschikov V, Birrell JA, Pham CC, Mishra N, Wang H, Sommer C, Reijerse E, Richers CP, Tamasaku K, Yoda Y, Rauchfuss TB, Lubitz W, Cramer SP. J Am Chem Soc 139 16894-16902 (2017)
  4. Pentlandite rocks as sustainable and stable efficient electrocatalysts for hydrogen generation. Konkena B, Junge Puring K, Sinev I, Piontek S, Khavryuchenko O, Dürholt JP, Schmid R, Tüysüz H, Muhler M, Schuhmann W, Apfel UP. Nat Commun 7 12269 (2016)
  5. In crystallo optical spectroscopy (icOS) as a complementary tool on the macromolecular crystallography beamlines of the ESRF. von Stetten D, Giraud T, Carpentier P, Sever F, Terrien M, Dobias F, Juers DH, Flot D, Mueller-Dieckmann C, Leonard GA, de Sanctis D, Royant A. Acta Crystallogr D Biol Crystallogr 71 15-26 (2015)
  6. Mercury methylation by metabolically versatile and cosmopolitan marine bacteria. Lin H, Ascher DB, Myung Y, Lamborg CH, Hallam SJ, Gionfriddo CM, Holt KE, Moreau JW. ISME J 15 1810-1825 (2021)
  7. A safety cap protects hydrogenase from oxygen attack. Winkler M, Duan J, Rutz A, Felbek C, Scholtysek L, Lampret O, Jaenecke J, Apfel UP, Gilardi G, Valetti F, Fourmond V, Hofmann E, Léger C, Happe T. Nat Commun 12 756 (2021)
  8. Caught in the Hinact : Crystal Structure and Spectroscopy Reveal a Sulfur Bound to the Active Site of an O2 -stable State of [FeFe] Hydrogenase. Rodríguez-Maciá P, Galle LM, Bjornsson R, Lorent C, Zebger I, Yoda Y, Cramer SP, DeBeer S, Span I, Birrell JA. Angew Chem Int Ed Engl 59 16786-16794 (2020)
  9. Structure determination of the HgcAB complex using metagenome sequence data: insights into microbial mercury methylation. Cooper CJ, Zheng K, Rush KW, Johs A, Sanders BC, Pavlopoulos GA, Kyrpides NC, Podar M, Ovchinnikov S, Ragsdale SW, Parks JM. Commun Biol 3 320 (2020)
  10. Inactivation of [Fe-Fe]-Hydrogenase by O(2). Thermodynamics and Frontier Molecular Orbitals Analyses. Dogaru D, Motiu S, Gogonea V. Int J Quantum Chem 109 876-889 (2009)
  11. Aerobic damage to [FeFe]-hydrogenases: activation barriers for the chemical attachment of O2. Kubas A, De Sancho D, Best RB, Blumberger J. Angew Chem Int Ed Engl 53 4081-4084 (2014)
  12. Quantitative Assessment of Chirality of Protein Secondary Structures and Phenylalanine Peptide Nanotubes. Sidorova A, Bystrov V, Lutsenko A, Shpigun D, Belova E, Likhachev I. Nanomaterials (Basel) 11 3299 (2021)
  13. Predicting Protein-Protein Interactions Using BiGGER: Case Studies. Almeida RM, Dell'Acqua S, Krippahl L, Moura JJ, Pauleta SR. Molecules 21 E1037 (2016)
  14. Residue Mutations in [Fe-Fe]-hydrogenase Impedes O(2) Binding: A QM/MM Investigation. Dogaru D, Motiu S, Gogonea V. Int J Quantum Chem 110 1784-1792 (2009)
  15. Viologen-modified electrodes for protection of hydrogenases from high potential inactivation while performing H2 oxidation at low overpotential. Oughli AA, Vélez M, Birrell JA, Schuhmann W, Lubitz W, Plumeré N, Rüdiger O. Dalton Trans 47 10685-10691 (2018)
  16. Classification of heterodimer interfaces using docking models and construction of scoring functions for the complex structure prediction. Tsuchiya Y, Kanamori E, Nakamura H, Kinoshita K. Adv Appl Bioinform Chem 2 79-100 (2009)
  17. [Fe-Fe]-hydrogenase Reactivated by Residue Mutations as Bridging Carbonyl Rearranges: A QM/MM Study. Motiu S, Gogonea V. Int J Quantum Chem 110 2705-2718 (2010)


Reviews citing this publication (50)

  1. Classification and phylogeny of hydrogenases. Vignais PM, Billoud B, Meyer J. FEMS Microbiol Rev 25 455-501 (2001)
  2. The Tat protein export pathway. Berks BC, Sargent F, Palmer T. Mol Microbiol 35 260-274 (2000)
  3. Radical S-adenosylmethionine enzymes. Broderick JB, Duffus BR, Duschene KS, Shepard EM. Chem Rev 114 4229-4317 (2014)
  4. Protein design: toward functional metalloenzymes. Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Chem Rev 114 3495-3578 (2014)
  5. Enzymology and bioenergetics of respiratory nitrite ammonification. Simon J. FEMS Microbiol Rev 26 285-309 (2002)
  6. Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Ghirardi ML, Posewitz MC, Maness PC, Dubini A, Yu J, Seibert M. Annu Rev Plant Biol 58 71-91 (2007)
  7. Proton-coupled electron transfer: the mechanistic underpinning for radical transport and catalysis in biology. Reece SY, Hodgkiss JM, Stubbe J, Nocera DG. Philos Trans R Soc Lond B Biol Sci 361 1351-1364 (2006)
  8. Maturation of [NiFe]-hydrogenases in Escherichia coli. Forzi L, Sawers RG. Biometals 20 565-578 (2007)
  9. The surprising diversity of clostridial hydrogenases: a comparative genomic perspective. Calusinska M, Happe T, Joris B, Wilmotte A. Microbiology (Reading) 156 1575-1588 (2010)
  10. Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Mulder DW, Shepard EM, Meuser JE, Joshi N, King PW, Posewitz MC, Broderick JB, Peters JW. Structure 19 1038-1052 (2011)
  11. Photobiological hydrogen-producing systems. Ghirardi ML, Dubini A, Yu J, Maness PC. Chem Soc Rev 38 52-61 (2009)
  12. Broader, greener, and more efficient: recent advances in asymmetric transfer hydrogenation. Wang C, Wu X, Xiao J. Chem Asian J 3 1750-1770 (2008)
  13. Great metalloclusters in enzymology. Rees DC. Annu Rev Biochem 71 221-246 (2002)
  14. Fe-only hydrogenases: structure, function and evolution. Nicolet Y, Cavazza C, Fontecilla-Camps JC. J Inorg Biochem 91 1-8 (2002)
  15. Iron hydrogenases--ancient enzymes in modern eukaryotes. Horner DS, Heil B, Happe T, Embley TM. Trends Biochem Sci 27 148-153 (2002)
  16. Structure and mechanism of iron-only hydrogenases. Peters JW. Curr Opin Struct Biol 9 670-676 (1999)
  17. Enzyme Mimics: Advances and Applications. Kuah E, Toh S, Yee J, Ma Q, Gao Z. Chemistry 22 8404-8430 (2016)
  18. Transient complexes of redox proteins: structural and dynamic details from NMR studies. Prudêncio M, Ubbink M. J Mol Recognit 17 524-539 (2004)
  19. Multiple facets of anoxic metabolism and hydrogen production in the unicellular green alga Chlamydomonas reinhardtii. Grossman AR, Catalanotti C, Yang W, Dubini A, Magneschi L, Subramanian V, Posewitz MC, Seibert M. New Phytol 190 279-288 (2011)
  20. Approaches to efficient molecular catalyst systems for photochemical H2 production using [FeFe]-hydrogenase active site mimics. Wang M, Chen L, Li X, Sun L. Dalton Trans 40 12793-12800 (2011)
  21. Learning from hydrogenases: location of a proton pump and of a second FMN in bovine NADH--ubiquinone oxidoreductase (Complex I). Albracht SP, Hedderich R. FEBS Lett 485 1-6 (2000)
  22. Towards artificial leaves for solar hydrogen and fuels from carbon dioxide. Bensaid S, Centi G, Garrone E, Perathoner S, Saracco G. ChemSusChem 5 500-521 (2012)
  23. Structure and electron transfer mechanism of pyruvate:ferredoxin oxidoreductase. Charon MH, Volbeda A, Chabriere E, Pieulle L, Fontecilla-Camps JC. Curr Opin Struct Biol 9 663-669 (1999)
  24. Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals. Hawkins AS, McTernan PM, Lian H, Kelly RM, Adams MW, Adams MW. Curr Opin Biotechnol 24 376-384 (2013)
  25. How algae produce hydrogen--news from the photosynthetic hydrogenase. Stripp ST, Happe T. Dalton Trans 9960-9969 (2009)
  26. A radical solution for the biosynthesis of the H-cluster of hydrogenase. Peters JW, Szilagyi RK, Naumov A, Douglas T. FEBS Lett 580 363-367 (2006)
  27. Complex Multimeric [FeFe] Hydrogenases: Biochemistry, Physiology and New Opportunities for the Hydrogen Economy. Schuchmann K, Chowdhury NP, Müller V. Front Microbiol 9 2911 (2018)
  28. Structure-function relationships in [FeFe]-hydrogenase active site maturation. Nicolet Y, Fontecilla-Camps JC. J Biol Chem 287 13532-13540 (2012)
  29. Synthesis of Diiron(I) Dithiolato Carbonyl Complexes. Li Y, Rauchfuss TB. Chem Rev 116 7043-7077 (2016)
  30. Activation of Dinitrogen by Polynuclear Metal Complexes. Singh D, Buratto WR, Torres JF, Murray LJ. Chem Rev 120 5517-5581 (2020)
  31. Molecular Hydrogen Metabolism: a Widespread Trait of Pathogenic Bacteria and Protists. Benoit SL, Maier RJ, Sawers RG, Greening C. Microbiol Mol Biol Rev 84 e00092-19 (2020)
  32. A modular, energy-based approach to the development of nickel containing molecular electrocatalysts for hydrogen production and oxidation. Shaw WJ, Helm ML, DuBois DL. Biochim Biophys Acta 1827 1123-1139 (2013)
  33. From protein engineering to artificial enzymes - biological and biomimetic approaches towards sustainable hydrogen production. Esmieu C, Raleiras P, Berggren G. Sustain Energy Fuels 2 724-750 (2018)
  34. H-cluster assembly during maturation of the [FeFe]-hydrogenase. Broderick JB, Byer AS, Duschene KS, Duffus BR, Betz JN, Shepard EM, Peters JW. J Biol Inorg Chem 19 747-757 (2014)
  35. Proton reduction to hydrogen in biological and chemical systems. Tran PD, Barber J. Phys Chem Chem Phys 14 13772-13784 (2012)
  36. Recombinant and in vitro expression systems for hydrogenases: new frontiers in basic and applied studies for biological and synthetic H2 production. English CM, Eckert C, Brown K, Seibert M, King PW. Dalton Trans 9970-9978 (2009)
  37. Studies on hydrogenase. Yagi T, Higuchi Y. Proc Jpn Acad Ser B Phys Biol Sci 89 16-33 (2013)
  38. A universal system for the transport of redox proteins: early roots and latest developments. Voordouw G. Biophys Chem 86 131-140 (2000)
  39. Advanced paramagnetic resonance spectroscopies of iron-sulfur proteins: Electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM). Cutsail GE, Telser J, Hoffman BM. Biochim Biophys Acta 1853 1370-1394 (2015)
  40. Light-driven catalysis with engineered enzymes and biomimetic systems. Edwards EH, Bren KL. Biotechnol Appl Biochem 67 463-483 (2020)
  41. [Fe]-hydrogenase and models that contain iron-acyl ligation. Schultz KM, Chen D, Hu X. Chem Asian J 8 1068-1075 (2013)
  42. Artificial hydrogenase: biomimetic approaches controlling active molecular catalysts. Onoda A, Hayashi T. Curr Opin Chem Biol 25 133-140 (2015)
  43. Double-Cubane [8Fe9S] Clusters: A Novel Nitrogenase-Related Cofactor in Biology. Jeoung JH, Martins BM, Dobbek H. Chembiochem 21 1710-1716 (2020)
  44. Artificial Metalloproteins: At the Interface between Biology and Chemistry. Kerns SA, Biswas A, Minnetian NM, Borovik AS. JACS Au 2 1252-1265 (2022)
  45. De novo design of functional proteins: Toward artificial hydrogenases. Faiella M, Roy A, Sommer D, Ghirlanda G. Biopolymers 100 558-571 (2013)
  46. Modelling low-potential [Fe4S4] clusters in proteins. Koay MS, Antonkine ML, Gärtner W, Lubitz W. Chem Biodivers 5 1571-1587 (2008)
  47. Fantastic [FeFe]-Hydrogenases and Where to Find Them. Morra S. Front Microbiol 13 853626 (2022)
  48. Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation. DiPrimio DJ, Holland PL. J Inorg Biochem 219 111430 (2021)
  49. A personal account on 25 years of scientific literature on [FeFe]-hydrogenase. Sidabras JW, Stripp ST. J Biol Inorg Chem 28 355-378 (2023)
  50. Biocatalytic conversion of sunlight and carbon dioxide to solar fuels and chemicals. Yau MCM, Hayes M, Kalathil S. RSC Adv 12 16396-16411 (2022)

Articles citing this publication (290)

  1. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, Cook GM, Morales SE. ISME J 10 761-777 (2016)
  2. Biomimetic assembly and activation of [FeFe]-hydrogenases. Berggren G, Adamska A, Lambertz C, Simmons TR, Esselborn J, Atta M, Gambarelli S, Mouesca JM, Reijerse E, Lubitz W, Happe T, Artero V, Fontecave M. Nature 499 66-69 (2013)
  3. Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. Posewitz MC, King PW, Smolinski SL, Zhang L, Seibert M, Ghirardi ML. J Biol Chem 279 25711-25720 (2004)
  4. The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Shima S, Pilak O, Vogt S, Schick M, Stagni MS, Meyer-Klaucke W, Warkentin E, Thauer RK, Ermler U. Science 321 572-575 (2008)
  5. Synthesis of the H-cluster framework of iron-only hydrogenase. Tard C, Liu X, Ibrahim SK, Bruschi M, De Gioia L, Davies SC, Yang X, Yang X, Yang X, Wang LS, Sawers G, Pickett CJ. Nature 433 610-613 (2005)
  6. Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic. Esselborn J, Lambertz C, Adamska-Venkates A, Simmons T, Berggren G, Noth J, Siebel J, Hemschemeier A, Artero V, Reijerse E, Fontecave M, Lubitz W, Happe T. Nat Chem Biol 9 607-609 (2013)
  7. (14)N HYSCORE investigation of the H-cluster of [FeFe] hydrogenase: evidence for a nitrogen in the dithiol bridge. Silakov A, Wenk B, Reijerse E, Lubitz W. Phys Chem Chem Phys 11 6592-6599 (2009)
  8. How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Stripp ST, Goldet G, Brandmayr C, Sanganas O, Vincent KA, Haumann M, Armstrong FA, Happe T. Proc Natl Acad Sci U S A 106 17331-17336 (2009)
  9. Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydA(DeltaEFG). Mulder DW, Boyd ES, Sarma R, Lange RK, Endrizzi JA, Broderick JB, Peters JW. Nature 465 248-251 (2010)
  10. Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system. King PW, Posewitz MC, Ghirardi ML, Seibert M. J Bacteriol 188 2163-2172 (2006)
  11. Artificial photosynthesis: from molecular catalysts for light-driven water splitting to photoelectrochemical cells. Andreiadis ES, Chavarot-Kerlidou M, Fontecave M, Artero V. Photochem Photobiol 87 946-964 (2011)
  12. Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Happe T, Kaminski A. Eur J Biochem 269 1022-1032 (2002)
  13. Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. Forestier M, King P, Zhang L, Posewitz M, Schwarzer S, Happe T, Ghirardi ML, Seibert M. Eur J Biochem 270 2750-2758 (2003)
  14. Biochemical characterization of the HydE and HydG iron-only hydrogenase maturation enzymes from Thermatoga maritima. Rubach JK, Brazzolotto X, Gaillard J, Fontecave M. FEBS Lett 579 5055-5060 (2005)
  15. Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough. Voordouw G. J Bacteriol 184 5903-5911 (2002)
  16. Purification and characterization of a membrane-bound hydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. Sapra R, Verhagen MF, Adams MW, Adams MW. J Bacteriol 182 3423-3428 (2000)
  17. The organometallic active site of [Fe]hydrogenase: models and entatic states. Darensbourg MY, Lyon EJ, Zhao X, Georgakaki IP. Proc Natl Acad Sci U S A 100 3683-3688 (2003)
  18. The role of the maturase HydG in [FeFe]-hydrogenase active site synthesis and assembly. Pilet E, Nicolet Y, Mathevon C, Douki T, Fontecilla-Camps JC, Fontecave M. FEBS Lett 583 506-511 (2009)
  19. Gene sequence and the 1.8 A crystal structure of the tungsten-containing formate dehydrogenase from Desulfovibrio gigas. Raaijmakers H, Macieira S, Dias JM, Teixeira S, Bursakov S, Huber R, Moura JJ, Moura I, Romão MJ. Structure 10 1261-1272 (2002)
  20. Synthesis of the 2Fe subcluster of the [FeFe]-hydrogenase H cluster on the HydF scaffold. Shepard EM, McGlynn SE, Bueling AL, Grady-Smith CS, George SJ, Winslow MA, Cramer SP, Peters JW, Broderick JB. Proc Natl Acad Sci U S A 107 10448-10453 (2010)
  21. High-yield expression of heterologous [FeFe] hydrogenases in Escherichia coli. Kuchenreuther JM, Grady-Smith CS, Bingham AS, George SJ, Cramer SP, Swartz JR. PLoS One 5 e15491 (2010)
  22. From natural to artificial photosynthesis. Barber J, Tran PD. J R Soc Interface 10 20120984 (2013)
  23. [NiFe] hydrogenases: structural and spectroscopic studies of the reaction mechanism. Ogata H, Lubitz W, Higuchi Y. Dalton Trans 7577-7587 (2009)
  24. Finding gas diffusion pathways in proteins: application to O2 and H2 transport in CpI [FeFe]-hydrogenase and the role of packing defects. Cohen J, Kim K, King P, Seibert M, Schulten K. Structure 13 1321-1329 (2005)
  25. Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii. Posewitz MC, Smolinski SL, Kanakagiri S, Melis A, Seibert M, Ghirardi ML. Plant Cell 16 2151-2163 (2004)
  26. Hydrogenases in green algae: do they save the algae's life and solve our energy problems? Happe T, Hemschemeier A, Winkler M, Kaminski A. Trends Plant Sci 7 246-250 (2002)
  27. Light-driven hydrogen production catalysed by transition metal complexes in homogeneous systems. Wang M, Na Y, Gorlov M, Sun L. Dalton Trans 6458-6467 (2009)
  28. Importance of the protein framework for catalytic activity of [FeFe]-hydrogenases. Knörzer P, Silakov A, Foster CE, Armstrong FA, Lubitz W, Happe T. J Biol Chem 287 1489-1499 (2012)
  29. X-ray crystallographic and EPR spectroscopic analysis of HydG, a maturase in [FeFe]-hydrogenase H-cluster assembly. Dinis P, Suess DL, Fox SJ, Harmer JE, Driesener RC, De La Paz L, Swartz JR, Essex JW, Britt RD, Roach PL. Proc Natl Acad Sci U S A 112 1362-1367 (2015)
  30. Homologous and heterologous overexpression in Clostridium acetobutylicum and characterization of purified clostridial and algal Fe-only hydrogenases with high specific activities. Girbal L, von Abendroth G, Winkler M, Benton PM, Meynial-Salles I, Croux C, Peters JW, Happe T, Soucaille P. Appl Environ Microbiol 71 2777-2781 (2005)
  31. Diiron Azadithiolates as Models for the Iron-Only Hydrogenase Active Site: Synthesis, Structure, and Stereoelectronics This research was supported by the NIH and the Centre Universitaire et Régional de Ressources Informatiques of ULP and CNRS. Lawrence JD, Li H, Rauchfuss TB, Bénard M, Rohmer MM. Angew Chem Int Ed Engl 40 1768-1771 (2001)
  32. On the accuracy of density functional theory for iron-sulfur clusters. Szilagyi RK, Winslow MA. J Comput Chem 27 1385-1397 (2006)
  33. Production of hydrogen by electrocatalysis: making the H-H bond by combining protons and hydrides. Bullock RM, Appel AM, Helm ML. Chem Commun (Camb) 50 3125-3143 (2014)
  34. Iron hydrogenases and the evolution of anaerobic eukaryotes. Horner DS, Foster PG, Embley TM. Mol Biol Evol 17 1695-1709 (2000)
  35. A structural view of synthetic cofactor integration into [FeFe]-hydrogenases. Esselborn J, Muraki N, Klein K, Engelbrecht V, Metzler-Nolte N, Apfel UP, Hofmann E, Kurisu G, Happe T. Chem Sci 7 959-968 (2016)
  36. The hyperthermophilic bacterium, Thermotoga maritima, contains an unusually complex iron-hydrogenase: amino acid sequence analyses versus biochemical characterization. Verhagen MF, O'Rourke T, Adams MW, Adams MW. Biochim Biophys Acta 1412 212-229 (1999)
  37. Characterization of the key step for light-driven hydrogen evolution in green algae. Winkler M, Kuhlgert S, Hippler M, Happe T. J Biol Chem 284 36620-36627 (2009)
  38. Light-driven water splitting for (bio-)hydrogen production: photosystem 2 as the central part of a bioelectrochemical device. Badura A, Esper B, Ataka K, Grunwald C, Wöll C, Kuhlmann J, Heberle J, Rögner M. Photochem Photobiol 82 1385-1390 (2006)
  39. Effects of deletion of genes encoding Fe-only hydrogenase of Desulfovibrio vulgaris Hildenborough on hydrogen and lactate metabolism. Pohorelic BK, Voordouw JK, Lojou E, Dolla A, Harder J, Voordouw G. J Bacteriol 184 679-686 (2002)
  40. Mechanism of proton transfer in [FeFe]-hydrogenase from Clostridium pasteurianum. Cornish AJ, Gärtner K, Yang H, Peters JW, Hegg EL. J Biol Chem 286 38341-38347 (2011)
  41. A hydrogenase model system based on the sequence of cytochrome c: photochemical hydrogen evolution in aqueous media. Sano Y, Onoda A, Hayashi T. Chem Commun (Camb) 47 8229-8231 (2011)
  42. New insights into [FeFe] hydrogenase activation and maturase function. Kuchenreuther JM, Britt RD, Swartz JR. PLoS One 7 e45850 (2012)
  43. Accumulating the hydride state in the catalytic cycle of [FeFe]-hydrogenases. Winkler M, Senger M, Duan J, Esselborn J, Wittkamp F, Hofmann E, Apfel UP, Stripp ST, Happe T. Nat Commun 8 16115 (2017)
  44. Tyrosine, cysteine, and S-adenosyl methionine stimulate in vitro [FeFe] hydrogenase activation. Kuchenreuther JM, Stapleton JA, Swartz JR. PLoS One 4 e7565 (2009)
  45. Ligand versus metal protonation of an iron hydrogenase active site mimic. Eilers G, Schwartz L, Stein M, Zampella G, de Gioia L, Ott S, Lomoth R. Chemistry 13 7075-7084 (2007)
  46. The crystal structure of the apoenzyme of the iron-sulphur cluster-free hydrogenase. Pilak O, Mamat B, Vogt S, Hagemeier CH, Thauer RK, Shima S, Vonrhein C, Warkentin E, Ermler U. J Mol Biol 358 798-809 (2006)
  47. Unsaturated, mixed-valence diiron dithiolate model for the H(ox) state of the [FeFe] hydrogenase. Justice AK, Rauchfuss TB, Wilson SR. Angew Chem Int Ed Engl 46 6152-6154 (2007)
  48. Moving protons with pendant amines: proton mobility in a nickel catalyst for oxidation of hydrogen. O'Hagan M, Shaw WJ, Raugei S, Chen S, Yang JY, Kilgore UJ, DuBois DL, Bullock RM. J Am Chem Soc 133 14301-14312 (2011)
  49. [FeFe]-hydrogenase maturation: insights into the role HydE plays in dithiomethylamine biosynthesis. Betz JN, Boswell NW, Fugate CJ, Holliday GL, Akiva E, Scott AG, Babbitt PC, Peters JW, Shepard EM, Broderick JB. Biochemistry 54 1807-1818 (2015)
  50. Crystal structure and anion binding in the prokaryotic hydrogenase maturation factor HypF acylphosphatase-like domain. Rosano C, Zuccotti S, Bucciantini M, Stefani M, Ramponi G, Bolognesi M. J Mol Biol 321 785-796 (2002)
  51. Photo-induced hydrogen production in a helical peptide incorporating a [FeFe] hydrogenase active site mimic. Roy A, Madden C, Ghirlanda G. Chem Commun (Camb) 48 9816-9818 (2012)
  52. Protonation/reduction dynamics at the [4Fe-4S] cluster of the hydrogen-forming cofactor in [FeFe]-hydrogenases. Senger M, Mebs S, Duan J, Shulenina O, Laun K, Kertess L, Wittkamp F, Apfel UP, Happe T, Winkler M, Haumann M, Stripp ST. Phys Chem Chem Phys 20 3128-3140 (2018)
  53. Catalytic hydrogen evolution from mononuclear iron(II) carbonyl complexes as minimal functional models of the [FeFe] hydrogenase active site. Kaur-Ghumaan S, Schwartz L, Lomoth R, Stein M, Ott S. Angew Chem Int Ed Engl 49 8033-8036 (2010)
  54. O2 reactions at the six-iron active site (H-cluster) in [FeFe]-hydrogenase. Lambertz C, Leidel N, Havelius KG, Noth J, Chernev P, Winkler M, Happe T, Haumann M. J Biol Chem 286 40614-40623 (2011)
  55. Reactions of [FeFe]-hydrogenase models involving the formation of hydrides related to proton reduction and hydrogen oxidation. Wang N, Wang M, Chen L, Sun L. Dalton Trans 42 12059-12071 (2013)
  56. Cysteine as a ligand platform in the biosynthesis of the FeFe hydrogenase H cluster. Suess DL, Bürstel I, De La Paz L, Kuchenreuther JM, Pham CC, Cramer SP, Swartz JR, Britt RD. Proc Natl Acad Sci U S A 112 11455-11460 (2015)
  57. Escherichia coli hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities. Maeda T, Sanchez-Torres V, Wood TK. Appl Microbiol Biotechnol 76 1035-1042 (2007)
  58. Molecular basis of [FeFe]-hydrogenase function: an insight into the complex interplay between protein and catalytic cofactor. Winkler M, Esselborn J, Happe T. Biochim Biophys Acta 1827 974-985 (2013)
  59. Relativistic DFT calculation of the reaction cycle intermediates of [NiFe] hydrogenase: a contribution to understanding the enzymatic mechanism. Stein M, Lubitz W. J Inorg Biochem 98 862-877 (2004)
  60. A glycyl free radical as the precursor in the synthesis of carbon monoxide and cyanide by the [FeFe]-hydrogenase maturase HydG. Nicolet Y, Martin L, Tron C, Fontecilla-Camps JC. FEBS Lett 584 4197-4202 (2010)
  61. A new function of the Desulfovibrio vulgaris Hildenborough [Fe] hydrogenase in the protection against oxidative stress. Fournier M, Dermoun Z, Durand MC, Dolla A. J Biol Chem 279 1787-1793 (2004)
  62. A model of the [FeFe] hydrogenase active site with a biologically relevant azadithiolate bridge: a spectroscopic and theoretical investigation. Erdem OF, Schwartz L, Stein M, Silakov A, Kaur-Ghumaan S, Huang P, Ott S, Reijerse EJ, Lubitz W. Angew Chem Int Ed Engl 50 1439-1443 (2011)
  63. Hydrogen production by termite gut protists: characterization of iron hydrogenases of Parabasalian symbionts of the termite Coptotermes formosanus. Inoue J, Saita K, Kudo T, Ui S, Ohkuma M. Eukaryot Cell 6 1925-1932 (2007)
  64. The [FeFe]-hydrogenase maturation protein HydF contains a H-cluster like [4Fe4S]-2Fe site. Czech I, Stripp S, Sanganas O, Leidel N, Happe T, Haumann M. FEBS Lett 585 225-230 (2011)
  65. Iron hydrogenase active site mimic holding a proton and a hydride. Schwartz L, Eilers G, Eriksson L, Gogoll A, Lomoth R, Ott S. Chem Commun (Camb) 520-522 (2006)
  66. Unusual FTIR and EPR properties of the H2-activating site of the cytoplasmic NAD-reducing hydrogenase from Ralstonia eutropha. Happe RP, Roseboom W, Egert G, Friedrich CG, Massanz C, Friedrich B, Albracht SP. FEBS Lett 466 259-263 (2000)
  67. [FeFe] hydrogenase genetic diversity provides insight into molecular adaptation in a saline microbial mat community. Boyd ES, Spear JR, Peters JW. Appl Environ Microbiol 75 4620-4623 (2009)
  68. Directing protonation in [FeFe] hydrogenase active site models by modifications in their second coordination sphere. Ezzaher S, Gogoll A, Bruhn C, Ott S. Chem Commun (Camb) 46 5775-5777 (2010)
  69. Hydrogenase cluster biosynthesis: organometallic chemistry nature's way. McGlynn SE, Mulder DW, Shepard EM, Broderick JB, Peters JW. Dalton Trans 4274-4285 (2009)
  70. IOP1, a novel hydrogenase-like protein that modulates hypoxia-inducible factor-1alpha activity. Huang J, Song D, Flores A, Zhao Q, Mooney SM, Shaw LM, Lee FS. Biochem J 401 341-352 (2007)
  71. Theoretical spectroscopy of the Ni(II) intermediate states in the catalytic cycle and the activation of [NiFe] hydrogenases. Krämer T, Kampa M, Lubitz W, van Gastel M, Neese F. Chembiochem 14 1898-1905 (2013)
  72. Crystallographic and spectroscopic assignment of the proton transfer pathway in [FeFe]-hydrogenases. Duan J, Senger M, Esselborn J, Engelbrecht V, Wittkamp F, Apfel UP, Hofmann E, Stripp ST, Happe T, Winkler M. Nat Commun 9 4726 (2018)
  73. Introducing a dark reaction to photochemistry: photocatalytic hydrogen from [FeFe] hydrogenase active site model complexes. Lomoth R, Ott S. Dalton Trans 9952-9959 (2009)
  74. Photocatalytic hydrogen evolution under highly basic conditions by using Ru nanoparticles and 2-phenyl-4-(1-naphthyl)quinolinium ion. Yamada Y, Miyahigashi T, Kotani H, Ohkubo K, Fukuzumi S. J Am Chem Soc 133 16136-16145 (2011)
  75. Stepwise isotope editing of [FeFe]-hydrogenases exposes cofactor dynamics. Senger M, Mebs S, Duan J, Wittkamp F, Apfel UP, Heberle J, Haumann M, Stripp ST. Proc Natl Acad Sci U S A 113 8454-8459 (2016)
  76. A [4Fe-4S]-Fe(CO)(CN)-L-cysteine intermediate is the first organometallic precursor in [FeFe] hydrogenase H-cluster bioassembly. Rao G, Tao L, Suess DLM, Britt RD. Nat Chem 10 555-560 (2018)
  77. Photo- and electrocatalytic H2 production by new first-row transition-metal complexes based on an aminopyridine pentadentate ligand. Call A, Codolà Z, Acuña-Parés F, Lloret-Fillol J. Chemistry 20 6171-6183 (2014)
  78. The evolution of acetyl-CoA synthase. Lindahl PA, Chang B. Orig Life Evol Biosph 31 403-434 (2001)
  79. The quest for a functional substrate access tunnel in FeFe hydrogenase. Lautier T, Ezanno P, Baffert C, Fourmond V, Cournac L, Fontecilla-Camps JC, Soucaille P, Bertrand P, Meynial-Salles I, Léger C. Faraday Discuss 148 385-407; discussion 421-41 (2011)
  80. CO and CN- syntheses by [FeFe]-hydrogenase maturase HydG are catalytically differentiated events. Pagnier A, Martin L, Zeppieri L, Nicolet Y, Fontecilla-Camps JC. Proc Natl Acad Sci U S A 113 104-109 (2016)
  81. Structural insights into the light-driven auto-assembly process of the water-oxidizing Mn4CaO5-cluster in photosystem II. Zhang M, Bommer M, Chatterjee R, Hussein R, Yano J, Dau H, Kern J, Dobbek H, Zouni A. Elife 6 e26933 (2017)
  82. A biomimetic model for the active site of iron-only hydrogenases covalently bonded to a porphyrin photosensitizer. Song LC, Tang MY, Su FH, Hu QM. Angew Chem Int Ed Engl 45 1130-1133 (2006)
  83. Carbene-pyridine chelating 2Fe2S hydrogenase model complexes as highly active catalysts for the electrochemical reduction of protons from weak acid (HOAc). Duan L, Wang M, Li P, Na Y, Wang N, Sun L. Dalton Trans 1277-1283 (2007)
  84. Electrons from hydrogen. Ogo S. Chem Commun (Camb) 3317-3325 (2009)
  85. Site saturation mutagenesis demonstrates a central role for cysteine 298 as proton donor to the catalytic site in CaHydA [FeFe]-hydrogenase. Morra S, Giraudo A, Di Nardo G, King PW, Gilardi G, Valetti F. PLoS One 7 e48400 (2012)
  86. Spectroscopic and Computational Evidence that [FeFe] Hydrogenases Operate Exclusively with CO-Bridged Intermediates. Birrell JA, Pelmenschikov V, Mishra N, Wang H, Yoda Y, Tamasaku K, Rauchfuss TB, Cramer SP, Lubitz W, DeBeer S. J Am Chem Soc 142 222-232 (2020)
  87. [FeFe]-Hydrogenases: recent developments and future perspectives. Wittkamp F, Senger M, Stripp ST, Apfel UP. Chem Commun (Camb) 54 5934-5942 (2018)
  88. Connecting [NiFe]- and [FeFe]-hydrogenases: mixed-valence nickel-iron dithiolates with rotated structures. Schilter D, Rauchfuss TB, Stein M. Inorg Chem 51 8931-8941 (2012)
  89. Electrochemical insights into the mechanisms of proton reduction by [Fe2(CO)6{micro-SCH2N(R)CH2S}] complexes related to the [2Fe](H) subsite of [FeFe]hydrogenase. Capon JF, Ezzaher S, Gloaguen F, Pétillon FY, Schollhammer P, Talarmin J. Chemistry 14 1954-1964 (2008)
  90. Functional analysis by site-directed mutagenesis of the NAD(+)-reducing hydrogenase from Ralstonia eutropha. Burgdorf T, De Lacey AL, Friedrich B. J Bacteriol 184 6280-6288 (2002)
  91. Influence of the [2Fe]H subcluster environment on the properties of key intermediates in the catalytic cycle of [FeFe] hydrogenases: hints for the rational design of synthetic catalysts. Bruschi M, Greco C, Kaukonen M, Fantucci P, Ryde U, De Gioia L. Angew Chem Int Ed Engl 48 3503-3506 (2009)
  92. Mechanistic aspects of the protonation of [FeFe]-hydrogenase subsite analogues. Jablonskyte A, Wright JA, Pickett CJ. Dalton Trans 39 3026-3034 (2010)
  93. Size- and shape-dependent activity of metal nanoparticles as hydrogen-evolution catalysts: mechanistic insights into photocatalytic hydrogen evolution. Kotani H, Hanazaki R, Ohkubo K, Yamada Y, Fukuzumi S. Chemistry 17 2777-2785 (2011)
  94. Structural and functional characterization of the hydrogenase-maturation HydF protein. Caserta G, Pecqueur L, Adamska-Venkatesh A, Papini C, Roy S, Artero V, Atta M, Reijerse E, Lubitz W, Fontecave M. Nat Chem Biol 13 779-784 (2017)
  95. Tuning Catalytic Bias of Hydrogen Gas Producing Hydrogenases. Artz JH, Zadvornyy OA, Mulder DW, Keable SM, Cohen AE, Ratzloff MW, Williams SG, Ginovska B, Kumar N, Song J, McPhillips SE, Davidson CM, Lyubimov AY, Pence N, Schut GJ, Jones AK, Soltis SM, Adams MWW, Adams MWW, Raugei S, King PW, Peters JW. J Am Chem Soc 142 1227-1235 (2020)
  96. Vibrational spectroscopy reveals the initial steps of biological hydrogen evolution. Katz S, Noth J, Horch M, Shafaat HS, Happe T, Hildebrandt P, Zebger I. Chem Sci 7 6746-6752 (2016)
  97. Artificially maturated [FeFe] hydrogenase from Chlamydomonas reinhardtii: a HYSCORE and ENDOR study of a non-natural H-cluster. Adamska-Venkatesh A, Simmons TR, Siebel JF, Artero V, Fontecave M, Reijerse E, Lubitz W. Phys Chem Chem Phys 17 5421-5430 (2015)
  98. Simple, unambiguous theoretical approach to oxidation state determination via first-principles calculations. Sit PH, Car R, Cohen MH, Selloni A. Inorg Chem 50 10259-10267 (2011)
  99. A QM/MM study of proton transport pathways in a [NiFe] hydrogenase. Fdez Galván I, Volbeda A, Fontecilla-Camps JC, Field MJ. Proteins 73 195-203 (2008)
  100. Electron transfer and hydrogen generation from a molecular dyad: platinum(II) alkynyl complex anchored to [FeFe] hydrogenase subsite mimic. Wang WG, Wang F, Wang HY, Tung CH, Wu LZ. Dalton Trans 41 2420-2426 (2012)
  101. Fe-S complexes containing five-membered heterocycles: novel models for the active site of hydrogenases with unusual low reduction potential. Jiang S, Liu J, Shi Y, Wang Z, Akermark B, Sun L. Dalton Trans 896-902 (2007)
  102. Mechanism of electrocatalytic hydrogen production by a di-iron model of iron-iron hydrogenase: a density functional theory study of proton dissociation constants and electrode reduction potentials. Surawatanawong P, Tye JW, Darensbourg MY, Hall MB. Dalton Trans 39 3093-3104 (2010)
  103. On understanding proton transfer to the biocatalytic [Fe-Fe](H) sub-cluster in [Fe-Fe]H(2)ases: QM/MM MD simulations. Hong G, Cornish AJ, Hegg EL, Pachter R. Biochim Biophys Acta 1807 510-517 (2011)
  104. Synthesis, structures and electrochemical properties of nitro- and amino-functionalized diiron azadithiolates as active site models of Fe-only hydrogenases. Liu T, Wang M, Shi Z, Cui H, Dong W, Chen J, Akermark B, Sun L. Chemistry 10 4474-4479 (2004)
  105. Bio-inspired, side-on attachment of a ruthenium photosensitizer to an iron hydrogenase active site model. Ekström J, Abrahamsson M, Olson C, Bergquist J, Kaynak FB, Eriksson L, Sun L, Becker HC, Akermark B, Hammarström L, Ott S. Dalton Trans 4599-4606 (2006)
  106. Crystal structure of HydF scaffold protein provides insights into [FeFe]-hydrogenase maturation. Cendron L, Berto P, D'Adamo S, Vallese F, Govoni C, Posewitz MC, Giacometti GM, Costantini P, Zanotti G. J Biol Chem 286 43944-43950 (2011)
  107. Nitrosyl derivatives of diiron(I) dithiolates mimic the structure and Lewis acidity of the [FeFe]-hydrogenase active site. Olsen MT, Bruschi M, De Gioia L, Rauchfuss TB, Wilson SR. J Am Chem Soc 130 12021-12030 (2008)
  108. Proton-Coupled Reduction of the Catalytic [4Fe-4S] Cluster in [FeFe]-Hydrogenases. Senger M, Laun K, Wittkamp F, Duan J, Haumann M, Happe T, Winkler M, Apfel UP, Stripp ST. Angew Chem Int Ed Engl 56 16503-16506 (2017)
  109. Heterolytic cleavage of hydrogen by an iron hydrogenase model: an Fe-H⋅⋅⋅H-N dihydrogen bond characterized by neutron diffraction. Liu T, Wang X, Hoffmann C, DuBois DL, Bullock RM. Angew Chem Int Ed Engl 53 5300-5304 (2014)
  110. Nuclear resonance vibrational spectroscopy and electron paramagnetic resonance spectroscopy of 57Fe-enriched [FeFe] hydrogenase indicate stepwise assembly of the H-cluster. Kuchenreuther JM, Guo Y, Wang H, Myers WK, George SJ, Boyke CA, Yoda Y, Alp EE, Zhao J, Britt RD, Swartz JR, Cramer SP. Biochemistry 52 818-826 (2013)
  111. The cytochrome c3-[Fe]-hydrogenase electron-transfer complex: structural model by NMR restrained docking. ElAntak L, Morelli X, Bornet O, Hatchikian C, Czjzek M, Dolla A, Guerlesquin F. FEBS Lett 548 1-4 (2003)
  112. The possible role of an [FeFe]-hydrogenase-like protein in the plant responses to changing atmospheric oxygen levels. Cavazza C, Martin L, Mondy S, Gaillard J, Ratet P, Fontecilla-Camps JC. J Inorg Biochem 102 1359-1365 (2008)
  113. Tricarbonylmanganese(I)-lysozyme complex: a structurally characterized organometallic protein. Razavet M, Artero V, Cavazza C, Oudart Y, Lebrun C, Fontecilla-Camps JC, Fontecave M. Chem Commun (Camb) 2805-2807 (2007)
  114. Carbon monoxide as an electron donor for the biological reduction of sulphate. Parshina SN, Sipma J, Henstra AM, Stams AJ. Int J Microbiol 2010 319527 (2010)
  115. Models of the iron-only hydrogenase: structural studies of chelating diphosphine complexes [Fe2(CO)4(micro-pdt)(kappa2P,P'-diphosphine)]. Adam FI, Hogarth G, Richards I, Sanchez BE. Dalton Trans 2495-2498 (2007)
  116. On the mechanism of carbonyl hydrogenation catalyzed by iron catalyst. Zhang H, Chen D, Zhang Y, Zhang G, Liu J. Dalton Trans 39 1972-1978 (2010)
  117. Alpha proteobacterial ancestry of the [Fe-Fe]-hydrogenases in anaerobic eukaryotes. Degli Esposti M, Cortez D, Lozano L, Rasmussen S, Nielsen HB, Martinez Romero E. Biol Direct 11 34 (2016)
  118. Convergent Evolution of Hydrogenosomes from Mitochondria by Gene Transfer and Loss. Lewis WH, Lind AE, Sendra KM, Onsbring H, Williams TA, Esteban GF, Hirt RP, Ettema TJG, Embley TM. Mol Biol Evol 37 524-539 (2020)
  119. Diiron proton reduction catalysts possessing electron-rich and electron-poor naphthalene-1,8-dithiolate ligands. Wright RJ, Lim C, Tilley TD. Chemistry 15 8518-8525 (2009)
  120. How [FeFe]-Hydrogenase Facilitates Bidirectional Proton Transfer. Senger M, Eichmann V, Laun K, Duan J, Wittkamp F, Knör G, Apfel UP, Happe T, Winkler M, Heberle J, Stripp ST. J Am Chem Soc 141 17394-17403 (2019)
  121. Protonation, electrochemical properties and molecular structures of halogen-functionalized diiron azadithiolate complexes related to the active site of iron-only hydrogenases. Wang F, Wang M, Liu X, Jin K, Dong W, Sun L. Dalton Trans 3812-3819 (2007)
  122. Atomic resolution modeling of the ferredoxin:[FeFe] hydrogenase complex from Chlamydomonas reinhardtii. Chang CH, King PW, Ghirardi ML, Kim K. Biophys J 93 3034-3045 (2007)
  123. Biomimetic model for [FeFe]-hydrogenase: asymmetrically disubstituted diiron complex with a redox-active 2,2'-bipyridyl ligand. Roy S, Groy TL, Jones AK. Dalton Trans 42 3843-3853 (2013)
  124. Hydrogen cycling by enzymes: electrocatalysis and implications for future energy technology. Vincent KA, Cracknell JA, Parkin A, Armstrong FA. Dalton Trans 3397-3403 (2005)
  125. Implementation of photobiological H2 production: the O 2 sensitivity of hydrogenases. Ghirardi ML. Photosynth Res 125 383-393 (2015)
  126. New Fe(I) -Fe(I) complex featuring a rotated conformation related to the [2 Fe](H) subsite of [Fe-Fe] hydrogenase. Munery S, Capon JF, De Gioia L, Elleouet C, Greco C, Pétillon FY, Schollhammer P, Talarmin J, Zampella G. Chemistry 19 15458-15461 (2013)
  127. Photocatalytic hydrogen evolution by [FeFe] hydrogenase mimics in homogeneous solution. Wang WG, Wang F, Wang HY, Si G, Tung CH, Wu LZ. Chem Asian J 5 1796-1803 (2010)
  128. Spectroscopic and crystallographic evidence for the N-protonated FeIFeI azadithiolate complex related to the active site of Fe-only hydrogenases. Wang F, Wang M, Liu X, Jin K, Dong W, Li G, Akermark B, Sun L. Chem Commun (Camb) 3221-3223 (2005)
  129. pH-Dependent isotope exchange and hydrogenation catalysed by water-soluble NiRu complexes as functional models for [NiFe]hydrogenases. Kure B, Matsumoto T, Ichikawa K, Fukuzumi S, Higuchi Y, Yagi T, Ogo S. Dalton Trans 4747-4755 (2008)
  130. Application of gene-shuffling for the rapid generation of novel [FeFe]-hydrogenase libraries. Nagy LE, Meuser JE, Plummer S, Seibert M, Ghirardi ML, King PW, Ahmann D, Posewitz MC. Biotechnol Lett 29 421-430 (2007)
  131. Carboxy-terminal processing of the large subunit of [Fe] hydrogenase from Desulfovibrio desulfuricans ATCC 7757. Hatchikian EC, Magro V, Forget N, Nicolet Y, Fontecilla-Camps JC. J Bacteriol 181 2947-2952 (1999)
  132. First insights into the protonation of dissymetrically disubstituted di-iron azadithiolate models of the [FeFe]H2ases active site. Ezzaher S, Orain PY, Capon JF, Gloaguen F, Pétillon FY, Roisnel T, Schollhammer P, Talarmin J. Chem Commun (Camb) 2547-2549 (2008)
  133. In Vivo EPR Characterization of Semi-Synthetic [FeFe] Hydrogenases. Mészáros LS, Németh B, Esmieu C, Ceccaldi P, Berggren G. Angew Chem Int Ed Engl 57 2596-2599 (2018)
  134. Protonation of [FeFe]-hydrogenase sub-site analogues: revealing mechanism using FTIR stopped-flow techniques. Wright JA, Webster L, Jablonskyte A, Woi PM, Ibrahim SK, Pickett CJ. Faraday Discuss 148 359-71; discussion 421-41 (2011)
  135. Reactivity of coordinatively unsaturated iron complexes towards carbon monoxide: to bind or not to bind? Benito-Garagorri D, Lagoja I, Veiros LF, Kirchner KA. Dalton Trans 40 4778-4792 (2011)
  136. A Redox Active [2Fe-2S] Cluster on the Hydrogenase Maturase HydF. Shepard EM, Byer AS, Betz JN, Peters JW, Broderick JB. Biochemistry 55 3514-3527 (2016)
  137. Bioassembly of complex iron-sulfur enzymes: hydrogenases and nitrogenases. Britt RD, Rao G, Tao L. Nat Rev Chem 4 542-549 (2020)
  138. Comment Biomimetic chemistry: Merging the old with the new. Darensbourg MY, Bethel RD. Nat Chem 4 11-13 (2011)
  139. Characterization of a putative sensory [FeFe]-hydrogenase provides new insight into the role of the active site architecture. Land H, Sekretareva A, Huang P, Redman HJ, Németh B, Polidori N, Mészáros LS, Senger M, Stripp ST, Berggren G. Chem Sci 11 12789-12801 (2020)
  140. Computational definition of a mixed valent Fe(II)Fe(I) model of the [FeFe]hydrogenase active site resting state. Thomas CM, Darensbourg MY, Hall MB. J Inorg Biochem 101 1752-1757 (2007)
  141. Electronic Structure of Two Catalytic States of the [FeFe] Hydrogenase H-Cluster As Probed by Pulse Electron Paramagnetic Resonance Spectroscopy. Rao G, Britt RD. Inorg Chem 57 10935-10944 (2018)
  142. Hydrogenase biomimetics: Fe2(CO)4(μ-dppf)(μ-pdt) (dppf = 1,1'-bis(diphenylphosphino)ferrocene) both a proton-reduction and hydrogen oxidation catalyst. Ghosh S, Hogarth G, Hollingsworth N, Holt KB, Kabir SE, Sanchez BE. Chem Commun (Camb) 50 945-947 (2014)
  143. Mixed-valence [Fe(I)Fe(II)] hydrogenase active site model complexes stabilized by a bidentate carborane bis-phosphine ligand. Karnahl M, Tschierlei S, Erdem ÖF, Pullen S, Santoni MP, Reijerse EJ, Lubitz W, Ott S. Dalton Trans 41 12468-12477 (2012)
  144. Pentacoordinate iron complexes as functional models of the distal iron in [FeFe] hydrogenases. Beyler M, Ezzaher S, Karnahl M, Santoni MP, Lomoth R, Ott S. Chem Commun (Camb) 47 11662-11664 (2011)
  145. Selenium-bridged diiron hexacarbonyl complexes as biomimetic models for the active site of Fe-Fe hydrogenases. Gao S, Fan J, Sun S, Peng X, Zhao X, Hou J. Dalton Trans 2128-2135 (2008)
  146. Tridentate thiolate ligands: application to the synthesis of the site-differentiated [4Fe-4S] cluster having a hydrosulfide ligand at the unique iron center. Terada T, Wakimoto T, Nakamura T, Hirabayashi K, Tanaka K, Li J, Matsumoto T, Tatsumi K. Chem Asian J 7 920-929 (2012)
  147. Biomimetic peptide-based models of [FeFe]-hydrogenases: utilization of phosphine-containing peptides. Roy S, Nguyen TA, Gan L, Jones AK. Dalton Trans 44 14865-14876 (2015)
  148. Comparison of the membrane-bound [NiFe] hydrogenases from R. eutropha H16 and D. vulgaris Miyazaki F in the oxidized ready state by pulsed EPR. Saggu M, Teutloff C, Ludwig M, Brecht M, Pandelia ME, Lenz O, Friedrich B, Lubitz W, Hildebrandt P, Lendzian F, Bittl R. Phys Chem Chem Phys 12 2139-2148 (2010)
  149. Correlation between computed gas-phase and experimentally determined solution-phase infrared spectra: models of the iron-iron hydrogenase enzyme active site. Tye JW, Darensbourg MY, Hall MB. J Comput Chem 27 1454-1462 (2006)
  150. EPR/ENDOR, Mössbauer, and quantum-chemical investigations of diiron complexes mimicking the active oxidized state of [FeFe]hydrogenase. Silakov A, Olsen MT, Sproules S, Reijerse EJ, Rauchfuss TB, Lubitz W. Inorg Chem 51 8617-8628 (2012)
  151. Preparation, structures and electrochemical property of phosphine substituted diiron azadithiolates relevant to the active site of Fe-only hydrogenases. Dong W, Wang M, Liu T, Liu X, Jin K, Sun L. J Inorg Biochem 101 506-513 (2007)
  152. Synthesis and structural characterization of the mono- and diphosphine-containing diiron propanedithiolate complexes related to [FeFe]-hydrogenases. Biomimetic H2 evolution catalyzed by (mu-PDT)Fe2(CO)4[(Ph2P)2N(n-Pr)]. Song LC, Li CG, Ge JH, Yang ZY, Wang HT, Zhang J, Hu QM. J Inorg Biochem 102 1973-1979 (2008)
  153. The role of a dipeptide outer-coordination sphere on H2-production catalysts: influence on catalytic rates and electron transfer. Reback ML, Ginovska-Pangovska B, Ho MH, Jain A, Squier TC, Raugei S, Roberts JA, Shaw WJ. Chemistry 19 1928-1941 (2013)
  154. Amphiphilic polymeric micelles as microreactors: improving the photocatalytic hydrogen production of the [FeFe]-hydrogenase mimic in water. Wang F, Wen M, Feng K, Liang WJ, Li XB, Chen B, Tung CH, Wu LZ. Chem Commun (Camb) 52 457-460 (2016)
  155. Attachment of a hydrogen-bonding carboxylate side chain to an [FeFe]-hydrogenase model complex: influence on the catalytic mechanism. Gao W, Sun J, Akermark T, Li M, Eriksson L, Sun L, Akermark B. Chemistry 16 2537-2546 (2010)
  156. Biosynthesis of the [FeFe] Hydrogenase H Cluster: A Central Role for the Radical SAM Enzyme HydG. Suess DL, Kuchenreuther JM, De La Paz L, Swartz JR, Britt RD. Inorg Chem 55 478-487 (2016)
  157. Characterization of a [2Fe-2S] protein encoded in the iron-hydrogenase operon of Thermotoga maritima. Pan G, Menon AL, Adams MW. J Biol Inorg Chem 8 469-474 (2003)
  158. Coordination and conformational isomers in mononuclear iron complexes with pertinence to the [FeFe] hydrogenase active site. Orthaber A, Karnahl M, Tschierlei S, Streich D, Stein M, Ott S. Dalton Trans 43 4537-4549 (2014)
  159. Crystal Structure of the [FeFe]-Hydrogenase Maturase HydE Bound to Complex-B. Rohac R, Martin L, Liu L, Basu D, Tao L, Britt RD, Rauchfuss TB, Nicolet Y. J Am Chem Soc 143 8499-8508 (2021)
  160. Dynamic electrochemical experiments on hydrogenases. Armstrong FA. Photosynth Res 102 541-550 (2009)
  161. Electrocatalytic dihydrogen evolution mechanism of [Fe2(CO)4(kappa(2)-Ph2PCH2CH2PPh2)(mu-S(CH2)3S)] and related models of the [FeFe]-hydrogenases active site: a DFT investigation. Greco C, Fantucci P, De Gioia L, Suarez-Bertoa R, Bruschi M, Talarmin J, Schollhammer P. Dalton Trans 39 7320-7329 (2010)
  162. Electron Spin Relaxation and Biochemical Characterization of the Hydrogenase Maturase HydF: Insights into [2Fe-2S] and [4Fe-4S] Cluster Communication and Hydrogenase Activation. Shepard EM, Byer AS, Aggarwal P, Betz JN, Scott AG, Shisler KA, Usselman RJ, Eaton GR, Eaton SS, Broderick JB. Biochemistry 56 3234-3247 (2017)
  163. Electron transfer activation of a second water channel for proton transport in [FeFe]-hydrogenase. Sode O, Voth GA. J Chem Phys 141 22D527 (2014)
  164. Generation of a functional, semisynthetic [FeFe]-hydrogenase in a photosynthetic microorganism. Wegelius A, Khanna N, Esmieu C, Barone GD, Pinto F, Tamagnini P, Berggren G, Lindblad P. Energy Environ Sci 11 3163-3167 (2018)
  165. Influence of an electron-deficient bridging o-carborane on the electronic properties of an [FeFe] hydrogenase active site model. Schwartz L, Eriksson L, Lomoth R, Teixidor F, Viñas C, Ott S. Dalton Trans 2379-2381 (2008)
  166. Iron-sulfur cluster coordination in the [FeFe]-hydrogenase H cluster biosynthetic factor HydF. Joshi N, Shepard EM, Byer AS, Swanson KD, Broderick JB, Peters JW. FEBS Lett 586 3939-3943 (2012)
  167. Monitoring H-cluster assembly using a semi-synthetic HydF protein. Németh B, Esmieu C, Redman HJ, Berggren G. Dalton Trans 48 5978-5986 (2019)
  168. Spectroscopic and biochemical insight into an electron-bifurcating [FeFe] hydrogenase. Chongdar N, Pawlak K, Rüdiger O, Reijerse EJ, Rodríguez-Maciá P, Lubitz W, Birrell JA, Ogata H. J Biol Inorg Chem 25 135-149 (2020)
  169. Structures, protonation, and electrochemical properties of diiron dithiolate complexes containing pyridyl-phosphine ligands. Li P, Wang M, Chen L, Liu J, Zhao Z, Sun L. Dalton Trans 1919-1926 (2009)
  170. Synthesis, characterization and electrocatalysis of diiron propanediselenolate derivatives as the active site models of [FeFe]-hydrogenases. Song LC, Gai B, Wang HT, Hu QM. J Inorg Biochem 103 805-812 (2009)
  171. The mechanism for the hydrogenation of ketones catalyzed by Knölker's iron-catalyst. Lu X, Zhang Y, Yun P, Zhang M, Li T. Org Biomol Chem 11 5264-5277 (2013)
  172. Access to Formally Ni(I) States in a Heterobimetallic NiZn System. Uyeda C, Peters JC. Chem Sci 4 157-163 (2013)
  173. Analysis of extensive [FeFe] hydrogenase gene diversity within the gut microbiota of insects representing five families of Dictyoptera. Ballor NR, Leadbetter JR. Microb Ecol 63 586-595 (2012)
  174. Compositional and structural insights into the nature of the H-cluster precursor on HydF. Scott AG, Szilagyi RK, Mulder DW, Ratzloff MW, Byer AS, King PW, Broderick WE, Shepard EM, Broderick JB. Dalton Trans 47 9521-9535 (2018)
  175. Critical aspects of [NiFe]hydrogenase ligand composition. Ichikawa K, Matsumoto T, Ogo S. Dalton Trans 4304-4309 (2009)
  176. Diiron species containing a cyclic P(Ph)2N(Ph)2 diphosphine related to the [FeFe]H2ases active site. Lounissi S, Capon JF, Gloaguen F, Matoussi F, Pétillon FY, Schollhammer P, Talarmin J. Chem Commun (Camb) 47 878-880 (2011)
  177. Dynamic ligation at the first amine-coordinated iron hydrogenase active site mimic. Schwartz L, Ekström J, Lomoth R, Ott S. Chem Commun (Camb) 4206-4208 (2006)
  178. Influence of the [4Fe-4S] cluster coordinating cysteines on active site maturation and catalytic properties of C. reinhardtii [FeFe]-hydrogenase. Kertess L, Adamska-Venkatesh A, Rodríguez-Maciá P, Rüdiger O, Lubitz W, Happe T. Chem Sci 8 8127-8137 (2017)
  179. On the electronic structure of the hydrogenase H-cluster. Schwab DE, Tard C, Brecht E, Peters JW, Pickett CJ, Szilagyi RK. Chem Commun (Camb) 3696-3698 (2006)
  180. Preparation and reactivity of a nickel dihydride complex. Matsumoto T, Nagahama T, Cho J, Hizume T, Suzuki M, Ogo S. Angew Chem Int Ed Engl 50 10578-10580 (2011)
  181. Reaction of Fe3(CO)12 with octreotide--chemical, electrochemical and biological investigations. Apfel UP, Rudolph M, Apfel C, Robl C, Langenegger D, Hoyer D, Jaun B, Ebert MO, Alpermann T, Seebach D, Weigand W. Dalton Trans 39 3065-3071 (2010)
  182. Simple ligand effects switch a hydrogenase mimic between H2 and O2 activation. Kim K, Matsumoto T, Robertson A, Nakai H, Ogo S. Chem Asian J 7 1394-1400 (2012)
  183. Spectroscopic investigations under whole-cell conditions provide new insight into the metal hydride chemistry of [FeFe]-hydrogenase. Mészáros LS, Ceccaldi P, Lorenzi M, Redman HJ, Pfitzner E, Heberle J, Senger M, Stripp ST, Berggren G. Chem Sci 11 4608-4617 (2020)
  184. The final steps of [FeFe]-hydrogenase maturation. Lampret O, Esselborn J, Haas R, Rutz A, Booth RL, Kertess L, Wittkamp F, Megarity CF, Armstrong FA, Winkler M, Happe T. Proc Natl Acad Sci U S A 116 15802-15810 (2019)
  185. Diiron dithiolate complexes containing intra-ligand NH ... S hydrogen bonds: [FeFe] hydrogenase active site models for the electrochemical proton reduction of HOAc with low overpotential. Yu Z, Wang M, Li P, Dong W, Wang F, Sun L. Dalton Trans 2400-2406 (2008)
  186. Electric-field effects on the [FeFe]-hydrogenase active site. Finkelmann AR, Stiebritz MT, Reiher M. Chem Commun (Camb) 49 8099-8101 (2013)
  187. Heterologous expression and properties of the gamma-subunit of the Fe-only hydrogenase from Thermotoga maritima. Verhagen MF, O'Rourke TW, Menon AL, Adams MW, Adams MW. Biochim Biophys Acta 1505 209-219 (2001)
  188. Hydrogen generation: aromatic dithiolate-bridged metal carbonyl complexes as hydrogenase catalytic site models. Pandey IK, Natarajan M, Kaur-Ghumaan S. J Inorg Biochem 143 88-110 (2015)
  189. On the structure of a proposed mixed-valent analogue of the diiron subsite of [FeFe]-hydrogenase. Best SP, Borg SJ, White JM, Razavet M, Pickett CJ. Chem Commun (Camb) 4348-4350 (2007)
  190. Oxidation state changes and electron flow in enzymatic catalysis and electrocatalysis through Wannier-function analysis. Sit PH, Zipoli F, Chen J, Car R, Cohen MH, Selloni A. Chemistry 17 12136-12143 (2011)
  191. Preparative and structural studies on iron(II)-thiolate cyanocarbonyls: relevance to the [NiFe]/[Fe]-hydrogenases. Chen CH, Chang YS, Yang CY, Chen TN, Lee CM, Liaw WF. Dalton Trans 137-143 (2004)
  192. Redox-Polymer-Based High-Current-Density Gas-Diffusion H2 -Oxidation Bioanode Using [FeFe] Hydrogenase from Desulfovibrio desulfuricans in a Membrane-free Biofuel Cell. Szczesny J, Birrell JA, Conzuelo F, Lubitz W, Ruff A, Schuhmann W. Angew Chem Int Ed Engl 59 16506-16510 (2020)
  193. The Nonphysiological Reductant Sodium Dithionite and [FeFe] Hydrogenase: Influence on the Enzyme Mechanism. Martini MA, Rüdiger O, Breuer N, Nöring B, DeBeer S, Rodríguez-Maciá P, Birrell JA. J Am Chem Soc 143 18159-18171 (2021)
  194. The structure of RdDddP from Roseobacter denitrificans reveals that DMSP lyases in the DddP-family are metalloenzymes. Hehemann JH, Law A, Redecke L, Boraston AB. PLoS One 9 e103128 (2014)
  195. Three diiron complexes bearing an aromatic ring as mimics of the diiron subunit of [FeFe]-hydrogenase: synthesis, electron transfer and coupled chemical reactions. Zhao J, Wei Z, Zeng X, Liu X. Dalton Trans 41 11125-11133 (2012)
  196. (NEt(4))(2)[Fe(CN)(2)(CO)('S(3)')]: an iron thiolate complex modeling the [Fe(CN)(2)(CO)(S-Cys)(2)] site of [NiFe] hydrogenase centers. Sellmann D, Geipel F, Heinemann FW. Chemistry 8 958-966 (2002)
  197. Diiron carbonyl complexes possessing a {Fe(II)Fe(II)} core: synthesis, characterisation, and electrochemical investigation. Xiao Z, Wei Z, Long L, Wang Y, Evans DJ, Liu X. Dalton Trans 40 4291-4299 (2011)
  198. Electrochemical and theoretical investigations of the role of the appended base on the reduction of protons by [Fe2(CO)4(κ2-PNP(R)(μ-S(CH2)3S] (PNP(R) ={Ph2PCH2}2NR, R=Me, Ph). Lounissi S, Zampella G, Capon JF, De Gioia L, Matoussi F, Mahfoudhi S, Pétillon FY, Schollhammer P, Talarmin J. Chemistry 18 11123-11138 (2012)
  199. Expanded redox accessibility via ligand substitution in an octahedral Fe6Br6 cluster. Harris TD, Zhao Q, Sánchez RH, Betley TA. Chem Commun (Camb) 47 6344-6346 (2011)
  200. Influences on the rotated structure of diiron dithiolate complexes: electronic asymmetry vs. secondary coordination sphere interaction. Liu YC, Tu LK, Yen TH, Lee GH, Chiang MH. Dalton Trans 40 2528-2541 (2011)
  201. IscR of Rhodobacter sphaeroides functions as repressor of genes for iron-sulfur metabolism and represents a new type of iron-sulfur-binding protein. Remes B, Eisenhardt BD, Srinivasan V, Klug G. Microbiologyopen 4 790-802 (2015)
  202. Ligand effects on the electrochemical behavior of [Fe2(CO)5(L){μ-(SCH2)2(Ph)P=O}] (L = PPh3, P(OEt)3) hydrogenase model complexes. Almazahreh LR, Imhof W, Talarmin J, Schollhammer P, Görls H, El-khateeb M, Weigand W. Dalton Trans 44 7177-7189 (2015)
  203. Resin-bound models of the [FeFe]-hydrogenase enzyme active site and studies of their reactivity. Green KN, Hess JL, Thomas CM, Darensbourg MY. Dalton Trans 4344-4350 (2009)
  204. Synthesis and characterisation of polymeric materials consisting of {Fe2(CO)5}-unit and their relevance to the diiron sub-unit of [FeFe]-hydrogenase. Zhan C, Wang X, Wei Z, Evans DJ, Ru X, Zeng X, Liu X. Dalton Trans 39 11255-11262 (2010)
  205. Comment Synthetic chemistry: making a natural fuel cell. Darensbourg MY. Nature 433 589-591 (2005)
  206. [FeFe]-Hydrogenase active site models with relatively low reduction potentials: Diiron dithiolate complexes containing rigid bridges. Li P, Wang M, Pan J, Chen L, Wang N, Sun L. J Inorg Biochem 102 952-959 (2008)
  207. Hydrophilic Quaternary Ammonium-Group-Containing [FeFe]-Hydrogenase Models: Synthesis, Structures, and Electrocatalytic Hydrogen Production. Song LC, Wang YX, Xing XK, Ding SD, Zhang LD, Wang XY, Zhang HT. Chemistry 22 16304-16314 (2016)
  208. Identifying conformational changes with site-directed spin labeling reveals that the GTPase domain of HydF is a molecular switch. Galazzo L, Maso L, De Rosa E, Bortolus M, Doni D, Acquasaliente L, De Filippis V, Costantini P, Carbonera D. Sci Rep 7 1714 (2017)
  209. Investigation of amino acid containing [FeFe] hydrogenase models concerning pendant base effects. Apfel UP, Kowol CR, Halpin Y, Kloss F, Kübel J, Görls H, Vos JG, Keppler BK, Morera E, Lucente G, Weigand W. J Inorg Biochem 103 1236-1244 (2009)
  210. Mimicking the Electron Transport Chain and Active Site of [FeFe] Hydrogenases in One Metal-Organic Framework: Factors That Influence Charge Transport. Castner AT, Johnson BA, Cohen SM, Ott S. J Am Chem Soc 143 7991-7999 (2021)
  211. Oxidation of diiron and triiron sulfurdithiolato complexes: mimics for the active site of [FeFe]-hydrogenase. Windhager J, Seidel RA, Apfel UP, Görls H, Linti G, Weigand W. Chem Biodivers 5 2023-2041 (2008)
  212. Probing the effects of one-electron reduction and protonation on the electronic properties of the Fe-S clusters in the active-ready form of [FeFe]-hydrogenases. A QM/MM investigation. Greco C, Bruschi M, Fantucci P, Ryde U, De Gioia L. Chemphyschem 12 3376-3382 (2011)
  213. Regioselective (12)CO/(13)CO exchange activity of a mixed-valent Fe(ii)Fe(i) model of the H(ox) state of [FeFe]-hydrogenase. Thomas CM, Liu T, Hall MB, Darensbourg MY. Chem Commun (Camb) 1563-1565 (2008)
  214. Steric effect of the dithiolato linker on the reduction mechanism of [Fe2(CO)6{μ-(XCH2)2CRR'}] hydrogenase models (X = S, Se). Trautwein R, Almazahreh LR, Görls H, Weigand W. Dalton Trans 44 18780-18794 (2015)
  215. [FeFe]-hydrogenase models assembled into vesicular structures. Menzel K, Apfel UP, Wolter N, Rüger R, Alpermann T, Steiniger F, Gabel D, Förster S, Weigand W, Fahr A. J Liposome Res 24 59-68 (2014)
  216. trans- Jiang J, Koch SA. Angew Chem Int Ed Engl 40 2629-2631 (2001)
  217. Bio-inspired hydrogenase models: mixed-valence triion complexes as proton reduction catalysts. Ghosh S, Hogarth G, Holt KB, Kabir SE, Rahaman A, Unwin DG. Chem Commun (Camb) 47 11222-11224 (2011)
  218. Cyanide Binding to [FeFe]-Hydrogenase Stabilizes the Alternative Configuration of the Proton Transfer Pathway. Duan J, Hemschemeier A, Burr DJ, Stripp ST, Hofmann E, Happe T. Angew Chem Int Ed Engl 62 e202216903 (2023)
  219. Dithiolate-bridged Fe-Ni-Fe trinuclear complexes consisting of Fe(CO)(3-n)(CN)(n) (n = 0, 1) components relevant to the active site of [NiFe] hydrogenase. Pal S, Ohki Y, Yoshikawa T, Kuge K, Tatsumi K. Chem Asian J 4 961-968 (2009)
  220. Fluorophenyl-substituted Fe-only hydrogenases active site ADT models: different electrocatalytic process for proton reduction in HOAc and HBF4/Et2O. Wang WG, Wang HY, Si G, Tung CH, Wu LZ. Dalton Trans 2712-2720 (2009)
  221. Isocyanide in biochemistry? A theoretical investigation of the electronic effects and energetics of cyanide ligand protonation in [FeFe]-hydrogenases. Greco C, Bruschi M, Fantucci P, Ryde U, De Gioia L. Chemistry 17 1954-1965 (2011)
  222. Synthesis, characterization, and H/D exchange of μ-hydride-containing [FeFe]-hydrogenase subsite models formed by protonation reactions of (μ-TDT)Fe2(CO)4(PMe3)2 (TDT = SCH2SCH2S) with protic acids. Song LC, Zhu AG, Guo YQ. Dalton Trans 45 5021-5029 (2016)
  223. Bioinspired Hydrogenase Models: The Mixed-Valence Triiron Complex [Fe3(CO)7(μ-edt)2] and Phosphine Derivatives [Fe3(CO)7-x (PPh3) x (μ-edt)2] (x = 1, 2) and [Fe3(CO)52-diphosphine)(μ-edt)2] as Proton Reduction Catalysts. Rahaman A, Ghosh S, Unwin DG, Basak-Modi S, Holt KB, Kabir SE, Nordlander E, Richmond MG, Hogarth G. Organometallics 33 1356-1366 (2014)
  224. Di/mono-nuclear iron(I)/(II) complexes as functional models for the 2Fe2S subunit and distal Fe moiety of the active site of [FeFe] hydrogenases: protonations, molecular structures and electrochemical properties. Gao S, Fan J, Sun S, Song F, Peng X, Duan Q, Jiang D, Liang Q. Dalton Trans 41 12064-12074 (2012)
  225. Effect of the S-to-S bridge on the redox properties and H2 activation performance of diiron complexes related to the [FeFe]-hydrogenase active site. Cheng M, Wang M, Zheng D, Sun L. Dalton Trans 45 17687-17696 (2016)
  226. Evaluation of biosynthetic pathways for the unique dithiolate ligand of the FeFe hydrogenase H-cluster. Grigoropoulos A, Szilagyi RK. J Biol Inorg Chem 15 1177-1182 (2010)
  227. Hyperfine interactions and electron distribution in Fe(II)Fe (I) and Fe (I)Fe (I) models for the active site of the [FeFe] hydrogenases: Mössbauer spectroscopy studies of low-spin Fe(I.). Stoian SA, Hsieh CH, Singleton ML, Casuras AF, Darensbourg MY, McNeely K, Sweely K, Popescu CV. J Biol Inorg Chem 18 609-622 (2013)
  228. Impact of amino acid substitutions near the catalytic site on the spectral properties of an O2-tolerant membrane-bound [NiFe] hydrogenase. Saggu M, Ludwig M, Friedrich B, Hildebrandt P, Bittl R, Lendzian F, Lenz O, Zebger I. Chemphyschem 11 1215-1224 (2010)
  229. Intramolecular stabilization of a catalytic [FeFe]-hydrogenase mimic investigated by experiment and theory. Pandey IK, Natarajan M, Faujdar H, Hussain F, Stein M, Kaur-Ghumaan S. Dalton Trans 47 4941-4949 (2018)
  230. Kinetic characterization of Desulfovibrio gigas hydrogenase upon selective chemical modification of amino acid groups as a tool for structure-function relationships. De Lacey AL, Santamaria E, Hatchikian EC, Fernandez VM. Biochim Biophys Acta 1481 371-380 (2000)
  231. Mechanism of Diiron Hydrogenase Complexes Controlled by Nature of Bridging Dithiolate Ligand. Natarajan M, Kumar N, Joshi M, Stein M, Kaur-Ghumaan S. ChemistryOpen 11 e202100238 (2022)
  232. Non-Covalent Integration of a [FeFe]-Hydrogenase Mimic to Multiwalled Carbon Nanotubes for Electrocatalytic Hydrogen Evolution. Zamader A, Reuillard B, Pécaut J, Billon L, Bousquet A, Berggren G, Artero V. Chemistry 28 e202202260 (2022)
  233. Photochemical Dynamics of a Trimethyl-Phosphine Derivatized [FeFe]-Hydrogenase Model Compound. Meyer RL, Zhandosova AD, Biser TM, Heilweil EJ, Stromberg CJ. Chem Phys 512 (2018)
  234. Spectroscopical Investigations on the Redox Chemistry of [FeFe]-Hydrogenases in the Presence of Carbon Monoxide. Laun K, Mebs S, Duan J, Wittkamp F, Apfel UP, Happe T, Winkler M, Haumann M, Stripp ST. Molecules 23 E1669 (2018)
  235. Stability of the H-cluster under whole-cell conditions-formation of an Htrans-like state and its reactivity towards oxygen. Lorenzi M, Ceccaldi P, Rodríguez-Maciá P, Redman HJ, Zamader A, Birrell JA, Mészáros LS, Berggren G. J Biol Inorg Chem 27 345-355 (2022)
  236. Studies on inhibition of transformation of 2,4,6-trinitrotoluene catalyzed by Fe-only hydrogenase from Clostridium acetobutylicum. Kutty R, Bennett GN. J Ind Microbiol Biotechnol 33 368-376 (2006)
  237. Synthesis, characterization, and electrochemical properties of diiron propaneditellurolate (PDTe) complexes as active site models of [FeFe]-hydrogenases. Song LC, Li QL, Feng ZH, Sun XJ, Xie ZJ, Song HB. Dalton Trans 42 1612-1626 (2013)
  238. Synthesis, structures and electrochemistry studies of 2Fe2S-Fe(ii)(S-2N)(2) models for H-cluster of [FeFe]-hydrogenase. Hu MQ, Wen HM, Ma CB, Li N, Yan QY, Chen H, Chen CN. Dalton Trans 39 9484-9486 (2010)
  239. The reactions of pyridinyl thioesters with triiron dodecacarbonyl: their novel diiron carbonyl complexes and mechanistic investigations. Long L, Xiao Z, Zampella G, Wei Z, De Gioia L, Liu X. Dalton Trans 41 9482-9492 (2012)
  240. Using computational methods to explore improvements to Knölker's iron catalyst. Lu X, Zhang Y, Turner N, Zhang M, Li T. Org Biomol Chem 12 4361-4371 (2014)
  241. Binding of exogenous cyanide reveals new active-site states in [FeFe] hydrogenases. Martini MA, Bikbaev K, Pang Y, Lorent C, Wiemann C, Breuer N, Zebger I, DeBeer S, Span I, Bjornsson R, Birrell JA, Rodríguez-Maciá P. Chem Sci 14 2826-2838 (2023)
  242. Comment Bioinorganic chemistry: Enzymes activated by synthetic components. Bethel RD, Darensbourg MY. Nature 499 40-41 (2013)
  243. Fast Proton Transport in FeFe Hydrogenase via a Flexible Channel and a Proton Hole Mechanism. Puthenkalathil RC, Ensing B. J Phys Chem B 126 403-411 (2022)
  244. Formation, reactivity and redox properties of carbon- and sulfur-bridged diiron complexes derived from dibenzothienyl Schiff bases: effect of N,N- and N,P-chelating moieties. Santo K, Hirotsu M, Kinoshita I. Dalton Trans 44 4155-4166 (2015)
  245. Functional insights from the structural modelling of a small Fe-hydrogenase. Tosatto SC, Giacometti GM, Valle G, Costantini P. Biochem Biophys Res Commun 339 277-283 (2006)
  246. Improving sustainable hydrogen production from green waste: [FeFe]-hydrogenases quantitative gene expression RT-qPCR analysis in presence of autochthonous consortia. Arizzi M, Morra S, Gilardi G, Pugliese M, Gullino ML, Valetti F. Biotechnol Biofuels 14 182 (2021)
  247. Investigating the role of the strong field ligands in [FeFe] hydrogenase: spectroscopic and functional characterization of a semi-synthetic mono-cyanide active site. Lorenzi M, Gellett J, Zamader A, Senger M, Duan Z, Rodríguez-Maciá P, Berggren G. Chem Sci 13 11058-11064 (2022)
  248. Ligand Displacement Reaction Paths in a Diiron Hydrogenase Active Site Model Complex. Blank JH, Moncho S, Lunsford AM, Brothers EN, Darensbourg MY, Bengali AA. Chemistry 22 12752-12760 (2016)
  249. Reactions of 7,8-dithiabicyclo[4.2.1]nona-2,4-diene 7-exo-oxide with dodecacarbonyl triiron Fe3(CO)12: a novel type of sulfenato thiolato diiron hexacarbonyl complexes. Windhager J, Apfel UP, Yoshino T, Nakata N, Görls H, Rudolph M, Ishii A, Weigand W. Chem Asian J 5 1600-1610 (2010)
  250. Switching Site Reactivity in Hydrogenase Model Systems by Introducing a Pendant Amine Ligand. Pandey IK, Agarwal T, Mobin SM, Stein M, Kaur-Ghumaan S. ACS Omega 6 4192-4203 (2021)
  251. Synthetic and structural studies on new diiron azadithiolate (ADT)-type model compounds for active site of [FeFe]hydrogenases. Song LC, Xie ZJ, Liu XF, Ming JB, Ge JH, Zhang XG, Yan TY, Gao P. Dalton Trans 40 837-846 (2011)
  252. Theoretical oxidation state analysis of Ru-(bpy)3: influence of water solvation and Hubbard correction in first-principles calculations. Reeves KG, Kanai Y. J Chem Phys 141 024305 (2014)
  253. Ultrafast Photodynamics of Cyano-Functionalized [FeFe] Hydrogenase Model Compounds. Stromberg CJ, Heilweil EJ. J Phys Chem A 122 4023-4030 (2018)
  254. [FeFe]-Hydrogenase H-Cluster Mimics with Unique Planar μ-(SCH2 )2 ER2 Linkers (E=Ge and Sn). Abul-Futouh H, Almazahreh LR, Sakamoto T, Stessman NY, Lichtenberger DL, Glass RS, Görls H, El-Khateeb M, Schollhammer P, Mloston G, Weigand W. Chemistry 23 346-359 (2017)
  255. [FeFe]-Hydrogenase H-cluster mimics mediated by naphthalene monoimide derivatives of peri-substituted dichalcogenides. Abul-Futouh H, Zagranyarski Y, Müller C, Schulz M, Kupfer S, Görls H, El-Khateeb M, Gräfe S, Dietzek B, Peneva K, Weigand W. Dalton Trans 46 11180-11191 (2017)
  256. A Narf-like gene from Cryptosporidium parvum resembles homologues observed in aerobic protists and higher eukaryotes. Stejskal F, Slapeta J, Ctrnáctá V, Keithly JS. FEMS Microbiol Lett 229 91-96 (2003)
  257. Biomimetic assembly of the [FeFe] hydrogenase: synthetic mimics in a biological shell. Apfel UP, Weigand W. Chembiochem 14 2237-2238 (2013)
  258. Desulfovibrio vulgaris Hildenborough HydE and HydG interact with the HydA subunit of the [FeFe] hydrogenase. Mansure JJ, Hallenbeck PC. Biotechnol Lett 30 1765-1769 (2008)
  259. Diferrate [Fe2 (CO)6 (μ-CO){μ-P(aryl)2 }]- as Self-Assembling Iron/Phosphor-Based Catalyst for the Hydrogen Evolution Reaction in Photocatalytic Proton Reduction-Spectroscopic Insights. Fischer S, Rösel A, Kammer A, Barsch E, Schoch R, Junge H, Bauer M, Beller M, Ludwig R. Chemistry 24 16052-16065 (2018)
  260. Does the environment around the H-cluster allow coordination of the pendant amine to the catalytic iron center in [FeFe] hydrogenases? Answers from theory. Miyake T, Bruschi M, Cosentino U, Baffert C, Fourmond V, Léger C, Moro G, De Gioia L, Greco C. J Biol Inorg Chem 18 693-700 (2013)
  261. EPR Spectroscopic Studies of [FeFe]-Hydrogenase Maturation. Suess DL, Britt RD. Catal Letters 58 699-707 (2015)
  262. In silico evaluation of proposed biosynthetic pathways for the unique dithiolate ligand of the H-cluster of [FeFe]-hydrogenase. Grigoropoulos A, Szilagyi RK. J Comput Chem 32 3194-3206 (2011)
  263. Increasing the O2 Resistance of the [FeFe]-Hydrogenase CbA5H through Enhanced Protein Flexibility. Rutz A, Das CK, Fasano A, Jaenecke J, Yadav S, Apfel UP, Engelbrecht V, Fourmond V, Léger C, Schäfer LV, Happe T. ACS Catal 13 856-865 (2023)
  264. Iron(0)-Mediated Stereoselective (3+2)-Cycloaddition of Thiochalcones via a Diradical Intermediate. Buday P, Seeber P, Zens C, Abul-Futouh H, Görls H, Gräfe S, Matczak P, Matczak P, Kupfer S, Weigand W, Mloston G. Chemistry 26 11412-11416 (2020)
  265. Lewis acid protection turns cyanide containing [FeFe]-hydrogenase mimics into proton reduction catalysts. Redman HJ, Huang P, Haumann M, Cheah MH, Berggren G. Dalton Trans 51 4634-4643 (2022)
  266. Redox communication within multinuclear iron-sulfur complexes related to electronic interplay in the active site of [FeFe]hydrogenase. Chu KT, Liu YC, Huang YL, Lee GH, Tseng MC, Chiang MH. Chemistry 21 6852-6861 (2015)
  267. Reduced thione ligation is preferred over neutral phosphine ligation in diiron biomimics regarding electronic functionality: a spectroscopic and computational investigation. Yen TH, He ZC, Lee GH, Tseng MC, Shen YH, Tseng TW, Liaw WF, Chiang MH. Chem Commun (Camb) 53 332-335 (2016)
  268. Synthesis and characterization of diiron dithiolate complexes containing a quinoxaline bridge. Xu F, Du S, Liu Y, Hassan J, Zhang J, Bond AM. Dalton Trans 40 10907-10917 (2011)
  269. The Birthplace of Proto-Life: Role of Secondary Minerals in Forming Metallo-Proteins through Water-Rock Interaction of Hadean Rocks. Yoshiya K, Sato T, Omori S, Maruyama S. Orig Life Evol Biosph 48 373-393 (2018)
  270. The influence of phosphine ligand substituted [2Fe2S] model complexes as electro-catalyst on proton reduction. Zhang X, Ma X, Zhang T, Li B, Jiang S, Zhang G, Hai L, Wang J, Shao X. RSC Adv 8 42262-42268 (2018)
  271. Towards [NiFe]-hydrogenase biomimetic models that couple H2 binding with functionally relevant intramolecular electron transfers: a quantum chemical study. Greco C. Dalton Trans 42 13845-13854 (2013)
  272. A ruthenium-based biomimetic hydrogen cluster for efficient photocatalytic hydrogen generation from formic acid. Chang CH, Chen MH, Du WS, Gliniak J, Lin JH, Wu HH, Chan HF, Yu JS, Wu TK. Chemistry 21 6617-6622 (2015)
  273. Bridgehead isomer effects in bis(phosphido)-bridged diiron hexacarbonyl proton reduction electrocatalysts. Rahaman A, Gimbert-Suriñach C, Ficks A, Ball GE, Bhadbhade M, Haukka M, Higham L, Nordlander E, Colbran SB. Dalton Trans 46 3207-3222 (2017)
  274. Can carbene decorated [FeFe]-hydrogenase model complexes catalytically produce dihydrogen? An insight from theory. Borthakur B, Phukan AK. Dalton Trans 48 11298-11307 (2019)
  275. Crystal and electronic structure of a hexacarbonyldiiron cluster tethered to naphthalene-2-thiolate ligands. Mebi C, Gerasimchuk N, Labrecque J. Acta Crystallogr C Struct Chem 74 224-228 (2018)
  276. Effect of Lewis acid on the structure of a diiron dithiolate complex based on the active site of [FeFe]-hydrogenase assessed by density functional theory. Lee JW, Jo WH. Dalton Trans 8532-8537 (2009)
  277. Enhancement in catalytic proton reduction by an internal base in a diiron pentacarbonyl complex: its synthesis, characterisation, inter-conversion and electrochemical investigation. Li Z, Xiao Z, Xu F, Zeng X, Liu X. Dalton Trans 46 1864-1871 (2017)
  278. First-principles computation of electron transfer and reaction rate at a perovskite cathode for hydrogen production. Liu CT, Chu JF, Lin CK, Hong CW. Phys Chem Chem Phys 19 8300-8306 (2017)
  279. Harnessing selenocysteine to enhance microbial cell factories for hydrogen production. Patel A, Mulder DW, Söll D, Krahn N. Front Catal 2 1089176 (2022)
  280. Hydrophilic quaternary ammonium-group-containing [FeFe]H2ase models prepared by quaternization of the pyridyl N atoms in pyridylazadiphosphine- and pyridylmethylazadiphosphine-bridged diiron complexes with various electrophiles. Song LC, Feng L, Guo YQ. Dalton Trans 48 1443-1453 (2019)
  281. Insights into Triazolylidene Ligands Behaviour at a Di-Iron Site Related to [FeFe]-Hydrogenases. Mele A, Arrigoni F, Elleouet C, Pétillon FY, Schollhammer P, Zampella G. Molecules 27 4700 (2022)
  282. MetREx: a protein design approach for the exploration of sequence-reactivity relationships in metalloenzymes. Stiebritz MT. J Comput Chem 36 553-563 (2015)
  283. Photodynamics of Asymmetric Di-Iron-Cyano Hydrogenases Examined by Time-Resolved Mid-Infrared Spectroscopy. Meyers A, Heilweil EJ, Stromberg CJ. J Phys Chem A 125 1413-1423 (2021)
  284. Photoswitchable electrochemical behaviour of a [FeFe] hydrogenase model with a dithienylethene derivative. Wen HM, Wang JY, Hu MQ, Li B, Chen ZN, Chen CN. Dalton Trans 41 11813-11819 (2012)
  285. Synthesis and crystal structure of deca-carbon-yl(μ3-3,7-di-thia-nonane-1,9-di-thiol-ato)bis-(μ2-propane-1,3-di-thiol-ato)nickel(II)tetra-iron(II) di-chloro-methane disolvate. Ren G, Sang G. Acta Crystallogr E Crystallogr Commun 74 328-331 (2018)
  286. Synthesis, Spectroscopy, and Structure of [FeRu(μ-dithiolate)(CN)2(CO)4]2. Zhang Y, Wang P, Xue S, Woods T, Guo Y, Zampella G, Rauchfuss TB, Arrigoni F. Inorg Chem 62 16842-16853 (2023)
  287. Synthetic styrene-based bioinspired model of the [FeFe]-hydrogenase active site for electrocatalytic hydrogen evolution. Zamader A, Reuillard B, Pérard J, Billon L, Berggren G, Artero V. Sustain Energy Fuels 7 4967-4976 (2023)
  288. The useful properties of H2O as a ligand of a hydrogenase mimic. Zheng C, Kim K, Matsumoto T, Ogo S. Dalton Trans 39 2218-2225 (2010)
  289. Time-Resolved Infrared Spectroscopy Reveals the pH-Independence of the First Electron Transfer Step in the [FeFe] Hydrogenase Catalytic Cycle. Sanchez MLK, Wiley S, Reijerse E, Lubitz W, Birrell JA, Dyer RB. J Phys Chem Lett 13 5986-5990 (2022)
  290. Using directed evolution to improve hydrogen production in chimeric hydrogenases from Clostridia species. Plummer SM, Plummer MA, Merkel PA, Hagen M, Biddle JF, Waidner LA. Enzyme Microb Technol 93-94 132-141 (2016)