1he8 Citations

Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma.

Abstract

Ras activation of phosphoinositide 3-kinase (PI3K) is important for survival of transformed cells. We find that PI3Kgamma is strongly and directly activated by H-Ras G12V in vivo or by GTPgammaS-loaded H-Ras in vitro. We have determined a crystal structure of a PI3Kgamma/Ras.GMPPNP complex. A critical loop in the Ras binding domain positions Ras so that it uses its switch I and switch II regions to bind PI3Kgamma. Mutagenesis shows that interactions with both regions are essential for binding PI3Kgamma. Ras also forms a direct contact with the PI3Kgamma catalytic domain. These unique Ras/PI3Kgamma interactions are likely to be shared by PI3Kalpha. The complex with Ras shows a change in the PI3K conformation that may represent an allosteric component of Ras activation.

Reviews - 1he8 mentioned but not cited (8)

  1. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view. Lu S, Jang H, Gu S, Zhang J, Nussinov R. Chem Soc Rev 45 4929-4952 (2016)
  2. The Key Role of Calmodulin in KRAS-Driven Adenocarcinomas. Nussinov R, Muratcioglu S, Tsai CJ, Jang H, Gursoy A, Keskin O. Mol Cancer Res 13 1265-1273 (2015)
  3. Autoinhibition in Ras effectors Raf, PI3Kα, and RASSF5: a comprehensive review underscoring the challenges in pharmacological intervention. Nussinov R, Zhang M, Tsai CJ, Liao TJ, Fushman D, Jang H. Biophys Rev 10 1263-1282 (2018)
  4. Structure-based inhibitor design of mutant RAS proteins-a paradigm shift. Nyíri K, Koppány G, Vértessy BG. Cancer Metastasis Rev 39 1091-1105 (2020)
  5. Natural Products Attenuating Biosynthesis, Processing, and Activity of Ras Oncoproteins: State of the Art and Future Perspectives. Tisi R, Gaponenko V, Vanoni M, Sacco E. Biomolecules 10 E1535 (2020)
  6. Looking lively: emerging principles of pseudokinase signaling. Sheetz JB, Lemmon MA. Trends Biochem Sci 47 875-891 (2022)
  7. Advances in chemical proteomic evaluation of lipid kinases-DAG kinases as a case study. Ware TB, Hsu KL. Curr Opin Chem Biol 65 101-108 (2021)
  8. Enhancing an Oxidative "Trojan Horse" Action of Vitamin C with Arsenic Trioxide for Effective Suppression of KRAS-Mutant Cancers: A Promising Path at the Bedside. Burska AN, Ilyassova B, Dildabek A, Khamijan M, Begimbetova D, Molnár F, Sarbassov DD. Cells 11 3454 (2022)

Articles - 1he8 mentioned but not cited (58)

  1. Effect of KRAS oncogene substitutions on protein behavior: implications for signaling and clinical outcome. Ihle NT, Byers LA, Kim ES, Saintigny P, Lee JJ, Blumenschein GR, Tsao A, Liu S, Larsen JE, Wang J, Diao L, Coombes KR, Chen L, Zhang S, Abdelmelek MF, Tang X, Papadimitrakopoulou V, Minna JD, Lippman SM, Hong WK, Herbst RS, Wistuba II, Heymach JV, Powis G. J Natl Cancer Inst 104 228-239 (2012)
  2. Benchmarking and analysis of protein docking performance in Rosetta v3.2. Chaudhury S, Berrondo M, Weitzner BD, Muthu P, Bergman H, Gray JJ. PLoS One 6 e22477 (2011)
  3. In situ selectivity profiling and crystal structure of SML-8-73-1, an active site inhibitor of oncogenic K-Ras G12C. Hunter JC, Gurbani D, Ficarro SB, Carrasco MA, Lim SM, Choi HG, Xie T, Marto JA, Chen Z, Gray NS, Westover KD. Proc Natl Acad Sci U S A 111 8895-8900 (2014)
  4. Accelerating and focusing protein-protein docking correlations using multi-dimensional rotational FFT generating functions. Ritchie DW, Kozakov D, Vajda S. Bioinformatics 24 1865-1873 (2008)
  5. Cross-link guided molecular modeling with ROSETTA. Kahraman A, Herzog F, Leitner A, Rosenberger G, Aebersold R, Malmström L. PLoS One 8 e73411 (2013)
  6. Tumour prevention by a single antibody domain targeting the interaction of signal transduction proteins with RAS. Tanaka T, Williams RL, Rabbitts TH. EMBO J 26 3250-3259 (2007)
  7. Germline KRAS mutations cause aberrant biochemical and physical properties leading to developmental disorders. Gremer L, Merbitz-Zahradnik T, Dvorsky R, Cirstea IC, Kratz CP, Zenker M, Wittinghofer A, Ahmadian MR. Hum Mutat 32 33-43 (2011)
  8. Atypical KRASG12R Mutant Is Impaired in PI3K Signaling and Macropinocytosis in Pancreatic Cancer. Hobbs GA, Baker NM, Miermont AM, Thurman RD, Pierobon M, Tran TH, Anderson AO, Waters AM, Diehl JN, Papke B, Hodge RG, Klomp JE, Goodwin CM, DeLiberty JM, Wang J, Ng RWS, Gautam P, Bryant KL, Esposito D, Campbell SL, Petricoin EF, Simanshu DK, Aguirre AJ, Wolpin BM, Wennerberg K, Rudloff U, Cox AD, Der CJ. Cancer Discov 10 104-123 (2020)
  9. Pseudomonas aeruginosa Effector ExoS Inhibits ROS Production in Human Neutrophils. Vareechon C, Zmina SE, Karmakar M, Pearlman E, Rietsch A. Cell Host Microbe 21 611-618.e5 (2017)
  10. Small molecule inhibitors of RAS-effector protein interactions derived using an intracellular antibody fragment. Quevedo CE, Cruz-Migoni A, Bery N, Miller A, Tanaka T, Petch D, Bataille CJR, Lee LYW, Fallon PS, Tulmin H, Ehebauer MT, Fernandez-Fuentes N, Russell AJ, Carr SB, Phillips SEV, Rabbitts TH. Nat Commun 9 3169 (2018)
  11. Ras Binder Induces a Modified Switch-II Pocket in GTP and GDP States. Gentile DR, Rathinaswamy MK, Jenkins ML, Moss SM, Siempelkamp BD, Renslo AR, Burke JE, Shokat KM. Cell Chem Biol 24 1455-1466.e14 (2017)
  12. Mechanisms of Ras membrane organization and signalling: Ras on a rocker. Abankwa D, Gorfe AA, Hancock JF. Cell Cycle 7 2667-2673 (2008)
  13. The RAS-Effector Interface: Isoform-Specific Differences in the Effector Binding Regions. Nakhaeizadeh H, Amin E, Nakhaei-Rad S, Dvorsky R, Ahmadian MR. PLoS One 11 e0167145 (2016)
  14. Molecular mechanism of activation of class IA phosphoinositide 3-kinases (PI3Ks) by membrane-localized HRas. Siempelkamp BD, Rathinaswamy MK, Jenkins ML, Burke JE. J Biol Chem 292 12256-12266 (2017)
  15. Assessment of mutation probabilities of KRAS G12 missense mutants and their long-timescale dynamics by atomistic molecular simulations and Markov state modeling. Pantsar T, Rissanen S, Dauch D, Laitinen T, Vattulainen I, Poso A. PLoS Comput Biol 14 e1006458 (2018)
  16. The role of conserved waters in conformational transitions of Q61H K-ras. Prakash P, Sayyed-Ahmad A, Gorfe AA. PLoS Comput Biol 8 e1002394 (2012)
  17. BRET-based RAS biosensors that show a novel small molecule is an inhibitor of RAS-effector protein-protein interactions. Bery N, Cruz-Migoni A, Bataille CJ, Quevedo CE, Tulmin H, Miller A, Russell A, Phillips SE, Carr SB, Rabbitts TH. Elife 7 e37122 (2018)
  18. A KRAS GTPase K104Q Mutant Retains Downstream Signaling by Offsetting Defects in Regulation. Yin G, Kistler S, George SD, Kuhlmann N, Garvey L, Huynh M, Bagni RK, Lammers M, Der CJ, Campbell SL. J Biol Chem 292 4446-4456 (2017)
  19. A structural model of a Ras-Raf signalosome. Mysore VP, Zhou ZW, Ambrogio C, Li L, Kapp JN, Lu C, Wang Q, Tucker MR, Okoro JJ, Nagy-Davidescu G, Bai X, Plückthun A, Jänne PA, Westover KD, Shan Y, Shaw DE. Nat Struct Mol Biol 28 847-857 (2021)
  20. MEGADOCK: an all-to-all protein-protein interaction prediction system using tertiary structure data. Ohue M, Matsuzaki Y, Uchikoga N, Ishida T, Akiyama Y. Protein Pept Lett 21 766-778 (2014)
  21. The Plasma Membrane as a Competitive Inhibitor and Positive Allosteric Modulator of KRas4B Signaling. Neale C, García AE. Biophys J 118 1129-1141 (2020)
  22. Protein Docking Model Evaluation by Graph Neural Networks. Wang X, Flannery ST, Kihara D. Front Mol Biosci 8 647915 (2021)
  23. Protein-protein binding site identification by enumerating the configurations. Guo F, Li SC, Wang L, Zhu D. BMC Bioinformatics 13 158 (2012)
  24. Classification of KRAS-Activating Mutations and the Implications for Therapeutic Intervention. Johnson C, Burkhart DL, Haigis KM. Cancer Discov 12 913-923 (2022)
  25. Prediction of Protein-Protein Interaction Sites Using Convolutional Neural Network and Improved Data Sets. Xie Z, Deng X, Shu K. Int J Mol Sci 21 E467 (2020)
  26. Specific Conformational States of Ras GTPase upon Effector Binding. Baussand J, Kleinjung J. J Chem Theory Comput 9 738-749 (2013)
  27. Analysis of Ras-effector interaction competition in large intestine and colorectal cancer context. Ibáňez Gaspar V, Catozzi S, Ternet C, Luthert PJ, Kiel C. Small GTPases 12 209-225 (2021)
  28. Comparison of tertiary structures of proteins in protein-protein complexes with unbound forms suggests prevalence of allostery in signalling proteins. Swapna LS, Mahajan S, de Brevern AG, Srinivasan N. BMC Struct Biol 12 6 (2012)
  29. Structural deformation upon protein-protein interaction: a structural alphabet approach. Martin J, Regad L, Lecornet H, Camproux AC. BMC Struct Biol 8 12 (2008)
  30. KRAS insertion mutations are oncogenic and exhibit distinct functional properties. White Y, Bagchi A, Van Ziffle J, Inguva A, Bollag G, Zhang C, Carias H, Dickens D, Loh M, Shannon K, Firestone AJ. Nat Commun 7 10647 (2016)
  31. The Function of Embryonic Stem Cell-expressed RAS (E-RAS), a Unique RAS Family Member, Correlates with Its Additional Motifs and Its Structural Properties. Nakhaei-Rad S, Nakhaeizadeh H, Kordes C, Cirstea IC, Schmick M, Dvorsky R, Bastiaens PIH, Häussinger D, Ahmadian MR. J Biol Chem 290 15892-15903 (2015)
  32. Association rate constants of ras-effector interactions are evolutionarily conserved. Kiel C, Aydin D, Serrano L. PLoS Comput Biol 4 e1000245 (2008)
  33. Nucleotide Dependent Switching in Rho GTPase: Conformational Heterogeneity and Competing Molecular Interactions. Kumawat A, Chakrabarty S, Kulkarni K. Sci Rep 7 45829 (2017)
  34. Problems of robustness in Poisson-Boltzmann binding free energies. Harris RC, Mackoy T, Fenley MO. J Chem Theory Comput 11 705-712 (2015)
  35. Selection of near-native poses in CAPRI rounds 13-19. Qin S, Zhou HX. Proteins 78 3166-3173 (2010)
  36. How to use not-always-reliable binding site information in protein-protein docking prediction. Li L, Huang Y, Xiao Y. PLoS One 8 e75936 (2013)
  37. Modeling of RAS complexes supports roles in cancer for less studied partners. Engin HB, Carlin D, Pratt D, Carter H. BMC Biophys 10 5 (2017)
  38. Identification of lysine methylation in the core GTPase domain by GoMADScan. Yoshino H, Yin G, Kawaguchi R, Popov KI, Temple B, Sasaki M, Kofuji S, Wolfe K, Kofuji K, Okumura K, Randhawa J, Malhotra A, Majd N, Ikeda Y, Shimada H, Kahoud ER, Haviv S, Iwase S, Asara JM, Campbell SL, Sasaki AT. PLoS One 14 e0219436 (2019)
  39. A machine learning approach for the prediction of protein surface loop flexibility. Hwang H, Vreven T, Whitfield TW, Wiehe K, Weng Z. Proteins 79 2467-2474 (2011)
  40. A saturation-mutagenesis analysis of the interplay between stability and activation in Ras. Hidalgo F, Nocka LM, Shah NH, Gorday K, Latorraca NR, Bandaru P, Templeton S, Lee D, Karandur D, Pelton JG, Marqusee S, Wemmer D, Kuriyan J. Elife 11 e76595 (2022)
  41. Predicting Protein-Protein Interaction Sites Using Sequence Descriptors and Site Propensity of Neighboring Amino Acids. Kuo TH, Li KB. Int J Mol Sci 17 E1788 (2016)
  42. Regulation of GTPase function by autophosphorylation. Johnson CW, Seo HS, Terrell EM, Yang MH, KleinJan F, Gebregiworgis T, Gasmi-Seabrook GMC, Geffken EA, Lakhani J, Song K, Bashyal P, Popow O, Paulo JA, Liu A, Mattos C, Marshall CB, Ikura M, Morrison DK, Dhe-Paganon S, Haigis KM. Mol Cell 82 950-968.e14 (2022)
  43. Structural insights into Ras regulation by SIN1. Zheng Y, Ding L, Meng X, Potter M, Kearney AL, Zhang J, Sun J, James DE, Yang G, Zhou C. Proc Natl Acad Sci U S A 119 e2119990119 (2022)
  44. RAS internal tandem duplication disrupts GTPase-activating protein (GAP) binding to activate oncogenic signaling. Nelson AC, Turbyville TJ, Dharmaiah S, Rigby M, Yang R, Wang TY, Columbus J, Stephens R, Taylor T, Sciacca D, Onsongo G, Sarver A, Subramanian S, Nissley DV, Simanshu DK, Lou E. J Biol Chem 295 9335-9348 (2020)
  45. Exploring the interactions of the RAS family in the human protein network and their potential implications in RAS-directed therapies. Bueno A, Morilla I, Diez D, Moya-Garcia AA, Lozano J, Ranea JA. Oncotarget 7 75810-75826 (2016)
  46. Research on Quality Markers of Guizhi Fuling Prescription for Endometriosis Treatment Based on Gray Correlation Analysis Strategy. Chen J, Gai X, Xu X, Liu Y, Ren T, Liu S, Ma T, Tian C, Liu C. Front Pharmacol 11 588549 (2020)
  47. Applying Side-chain Flexibility in Motifs for Protein Docking. Liu H, Lin F, Yang JL, Wang HR, Liu XL. Genomics Insights 8 1-10 (2015)
  48. Dynamic regulation of RAS and RAS signaling. Kolch W, Berta D, Rosta E. Biochem J 480 1-23 (2023)
  49. Functional characterisation of a novel class of in-frame insertion variants of KRAS and HRAS. Eijkelenboom A, van Schaik FMA, van Es RM, Ten Broek RW, Rinne T, van der Vleuten C, Flucke U, Ligtenberg MJL, Rehmann H. Sci Rep 9 8239 (2019)
  50. Identification of the Binding Sites on Rab5 and p110beta Phosphatidylinositol 3-kinase. Whitecross DE, Anderson DH. Sci Rep 7 16194 (2017)
  51. Allosteric activation or inhibition of PI3Kγ mediated through conformational changes in the p110γ helical domain. Harris NJ, Jenkins ML, Nam SE, Rathinaswamy MK, Parson MAH, Ranga-Prasad H, Dalwadi U, Moeller BE, Sheeky E, Hansen SD, Yip CK, Burke JE. Elife 12 RP88058 (2023)
  52. Biophysical and Structural Characterization of Novel RAS-Binding Domains (RBDs) of PI3Kα and PI3Kγ. Martinez NG, Thieker DF, Carey LM, Rasquinha JA, Kistler SK, Kuhlman BA, Campbell SL. J Mol Biol 433 166838 (2021)
  53. Peptidomimetics designed to bind to RAS effector domain are promising cancer therapeutic compounds. Pallara C, Cabot D, Rivas J, Brun S, Seco J, Abuasaker B, Tarragó T, Jaumot M, Prades R, Agell N. Sci Rep 12 15810 (2022)
  54. Re-docking scheme for generating near-native protein complexes by assembling residue interaction fingerprints. Uchikoga N, Matsuzaki Y, Ohue M, Hirokawa T, Akiyama Y. PLoS One 8 e69365 (2013)
  55. research-article Allosteric activation or inhibition of PI3Kγ mediated through conformational changes in the p110γ helical domain. Harris NJ, Jenkins ML, Nam SE, Rathinaswamy MK, Parson MA, Ranga-Prasad H, Dalwadi U, Moeller BE, Sheekey E, Hansen SD, Yip CK, Burke JE. bioRxiv 2023.04.12.536585 (2023)
  56. Characterisation of a cyclic peptide that binds to the RAS binding domain of phosphoinositide 3-kinase p110α. Ismail M, Martin SR, George R, Houghton F, Kelly G, Chaleil RAG, Anastasiou P, Wang X, O'Reilly N, Federico S, Joshi D, Nagaraj H, Cooley R, Hui NS, Molina-Arcas M, Hancock DC, Tavassoli A, Downward J. Sci Rep 13 1889 (2023)
  57. research-article Molecular basis for Gβγ-mediated activation of phosphoinositide 3-kinase γ. Chen CL, Syahirah R, Ravala SK, Yen YC, Klose T, Deng Q, Tesmer JJG. bioRxiv 2023.05.04.539492 (2023)
  58. Structural insights into the complex of oncogenic KRas4BG12V and Rgl2, a RalA/B activator. Tariq M, Ikeya T, Togashi N, Fairall L, Kamei S, Mayooramurugan S, Abbott LR, Hasan A, Bueno-Alejo C, Sukegawa S, Romartinez-Alonso B, Muro Campillo MA, Hudson AJ, Ito Y, Schwabe JW, Dominguez C, Tanaka K. Life Sci Alliance 7 e202302080 (2024)


Reviews citing this publication (112)

  1. Targeting RAS signalling pathways in cancer therapy. Downward J. Nat Rev Cancer 3 11-22 (2003)
  2. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Engelman JA. Nat Rev Cancer 9 550-562 (2009)
  3. RAS oncogenes: the first 30 years. Malumbres M, Barbacid M. Nat Rev Cancer 3 459-465 (2003)
  4. The emerging mechanisms of isoform-specific PI3K signalling. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B, Bilanges B. Nat Rev Mol Cell Biol 11 329-341 (2010)
  5. Synthesis and function of 3-phosphorylated inositol lipids. Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD. Annu Rev Biochem 70 535-602 (2001)
  6. Hyperactive Ras in developmental disorders and cancer. Schubbert S, Shannon K, Bollag G. Nat Rev Cancer 7 295-308 (2007)
  7. Phosphoinositides: tiny lipids with giant impact on cell regulation. Balla T. Physiol Rev 93 1019-1137 (2013)
  8. The PI3K pathway as drug target in human cancer. Courtney KD, Corcoran RB, Engelman JA. J Clin Oncol 28 1075-1083 (2010)
  9. RAS Proteins and Their Regulators in Human Disease. Simanshu DK, Nissley DV, McCormick F. Cell 170 17-33 (2017)
  10. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL, Franklin RA, McCubrey JA. Leukemia 17 590-603 (2003)
  11. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Thorpe LM, Yuzugullu H, Zhao JJ. Nat Rev Cancer 15 7-24 (2015)
  12. PI3K/AKT signaling pathway and cancer: an updated review. Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E. Ann Med 46 372-383 (2014)
  13. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Mol Cancer 18 26 (2019)
  14. Rap1 signalling: adhering to new models. Bos JL, de Rooij J, Reedquist KA. Nat Rev Mol Cell Biol 2 369-377 (2001)
  15. Class I PI3K in oncogenic cellular transformation. Zhao L, Vogt PK. Oncogene 27 5486-5496 (2008)
  16. Regulation of RAF protein kinases in ERK signalling. Lavoie H, Therrien M. Nat Rev Mol Cell Biol 16 281-298 (2015)
  17. The role of PI3K in immune cells. Koyasu S. Nat Immunol 4 313-319 (2003)
  18. Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Ostrem JM, Shokat KM. Nat Rev Drug Discov 15 771-785 (2016)
  19. Amino acid regulation of TOR complex 1. Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N. Am J Physiol Endocrinol Metab 296 E592-602 (2009)
  20. Phosphoinositide 3-kinase signalling--which way to target? Wymann MP, Zvelebil M, Laffargue M. Trends Pharmacol Sci 24 366-376 (2003)
  21. Emerging common themes in regulation of PIKKs and PI3Ks. Lempiäinen H, Halazonetis TD. EMBO J 28 3067-3073 (2009)
  22. Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Degirmenci U, Wang M, Hu J. Cells 9 E198 (2020)
  23. Roles of PI3Ks in leukocyte chemotaxis and phagocytosis. Stephens L, Ellson C, Hawkins P. Curr Opin Cell Biol 14 203-213 (2002)
  24. PI3Kgamma inhibition: towards an 'aspirin of the 21st century'? Rückle T, Schwarz MK, Rommel C. Nat Rev Drug Discov 5 903-918 (2006)
  25. Mammalian phosphoinositide kinases and phosphatases. Sasaki T, Takasuga S, Sasaki J, Kofuji S, Eguchi S, Yamazaki M, Suzuki A. Prog Lipid Res 48 307-343 (2009)
  26. Ras GTPases: integrins' friends or foes? Kinbara K, Goldfinger LE, Hansen M, Chou FL, Ginsberg MH. Nat Rev Mol Cell Biol 4 767-776 (2003)
  27. Proliferative aspects of airway smooth muscle. Hirst SJ, Martin JG, Bonacci JV, Chan V, Fixman ED, Hamid QA, Herszberg B, Lavoie JP, McVicker CG, Moir LM, Nguyen TT, Peng Q, Ramos-Barbón D, Stewart AG. J Allergy Clin Immunol 114 S2-17 (2004)
  28. Structural basis for activation and inhibition of class I phosphoinositide 3-kinases. Vadas O, Burke JE, Zhang X, Berndt A, Williams RL. Sci Signal 4 re2 (2011)
  29. Big roles for small GTPases in the control of directed cell movement. Charest PG, Firtel RA. Biochem J 401 377-390 (2007)
  30. Specificity in Ras and Rap signaling. Raaijmakers JH, Bos JL. J Biol Chem 284 10995-10999 (2009)
  31. Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Artemenko Y, Lampert TJ, Devreotes PN. Cell Mol Life Sci 71 3711-3747 (2014)
  32. Epidermal growth factor family of receptors in preneoplasia and lung cancer: perspectives for targeted therapies. Hirsch FR, Scagliotti GV, Langer CJ, Varella-Garcia M, Franklin WA. Lung Cancer 41 Suppl 1 S29-42 (2003)
  33. Ras-effector interactions: after one decade. Herrmann C. Curr Opin Struct Biol 13 122-129 (2003)
  34. Conserved and divergent paths that regulate self-renewal in mouse and human embryonic stem cells. Rao M. Dev Biol 275 269-286 (2004)
  35. Regulation of chemotaxis by the orchestrated activation of Ras, PI3K, and TOR. Sasaki AT, Firtel RA. Eur J Cell Biol 85 873-895 (2006)
  36. Take your PIK: phosphatidylinositol 3-kinase inhibitors race through the clinic and toward cancer therapy. Ihle NT, Powis G. Mol Cancer Ther 8 1-9 (2009)
  37. Signal transduction pathways and transcriptional mechanisms of ABCB1/Pgp-mediated multiple drug resistance in human cancer cells. Sui H, Fan ZZ, Li Q. J Int Med Res 40 426-435 (2012)
  38. Pharmacological targeting of RAS: Recent success with direct inhibitors. O'Bryan JP. Pharmacol Res 139 503-511 (2019)
  39. Should individual PI3 kinase isoforms be targeted in cancer? Jia S, Roberts TM, Zhao JJ. Curr Opin Cell Biol 21 199-208 (2009)
  40. Crossroads of PI3K and Rac pathways. Campa CC, Ciraolo E, Ghigo A, Germena G, Hirsch E. Small GTPases 6 71-80 (2015)
  41. Targeting PI3 kinase in cancer. Bauer TM, Patel MR, Infante JR. Pharmacol Ther 146 53-60 (2015)
  42. Small Molecule NF-κB Pathway Inhibitors in Clinic. Ramadass V, Vaiyapuri T, Tergaonkar V. Int J Mol Sci 21 E5164 (2020)
  43. Targeting mutant KRAS for anticancer therapeutics: a review of novel small molecule modulators. Wang Y, Kaiser CE, Frett B, Li HY. J Med Chem 56 5219-5230 (2013)
  44. Invited review: the circle of life: cell cycle regulation in airway smooth muscle. Ammit AJ, Panettieri RA. J Appl Physiol (1985) 91 1431-1437 (2001)
  45. Structural insight into substrate specificity and regulatory mechanisms of phosphoinositide 3-kinases. Djordjevic S, Driscoll PC. Trends Biochem Sci 27 426-432 (2002)
  46. The many faces of Ras: recognition of small GTP-binding proteins. Corbett KD, Alber T. Trends Biochem Sci 26 710-716 (2001)
  47. Emerging strategies to target RAS signaling in human cancer therapy. Chen K, Zhang Y, Qian L, Wang P. J Hematol Oncol 14 116 (2021)
  48. Insights into the oncogenic effects of PIK3CA mutations from the structure of p110alpha/p85alpha. Huang CH, Mandelker D, Gabelli SB, Amzel LM. Cell Cycle 7 1151-1156 (2008)
  49. The regulation of class IA PI 3-kinases by inter-subunit interactions. Backer JM. Curr Top Microbiol Immunol 346 87-114 (2010)
  50. Role of PRMTs in cancer: Could minor isoforms be leaving a mark? Baldwin RM, Morettin A, Côté J. World J Biol Chem 5 115-129 (2014)
  51. Structural comparisons of class I phosphoinositide 3-kinases. Amzel LM, Huang CH, Mandelker D, Lengauer C, Gabelli SB, Vogelstein B. Nat Rev Cancer 8 665-669 (2008)
  52. Activating mutations of TOR (target of rapamycin). Hardt M, Chantaravisoot N, Tamanoi F. Genes Cells 16 141-151 (2011)
  53. Structures of Ras superfamily effector complexes: What have we learnt in two decades? Mott HR, Owen D. Crit Rev Biochem Mol Biol 50 85-133 (2015)
  54. Review: Precision medicine and driver mutations: Computational methods, functional assays and conformational principles for interpreting cancer drivers. Nussinov R, Jang H, Tsai CJ, Cheng F. PLoS Comput Biol 15 e1006658 (2019)
  55. Therapeutic targeting of RAS: New hope for drugging the "undruggable". Khan I, Rhett JM, O'Bryan JP. Biochim Biophys Acta Mol Cell Res 1867 118570 (2020)
  56. 'Pathway drug cocktail': targeting Ras signaling based on structural pathways. Nussinov R, Tsai CJ, Mattos C. Trends Mol Med 19 695-704 (2013)
  57. Twice upon a time: PI3K's secret double life exposed. Hirsch E, Braccini L, Ciraolo E, Morello F, Perino A. Trends Biochem Sci 34 244-248 (2009)
  58. Airway smooth muscle: immunomodulatory cells that modulate airway remodeling? Panettieri RA. Respir Physiol Neurobiol 137 277-293 (2003)
  59. BRAF and KRAS mutations in metastatic colorectal cancer: future perspectives for personalized therapy. Li ZN, Zhao L, Yu LF, Wei MJ. Gastroenterol Rep (Oxf) 8 192-205 (2020)
  60. Tailoring Ras-pathway--inhibitor combinations for cancer therapy. Blum R, Kloog Y. Drug Resist Updat 8 369-380 (2005)
  61. Regulatory links between PLC enzymes and Ras superfamily GTPases: signalling via PLCepsilon. Bunney TD, Baxendale RW, Katan M. Adv Enzyme Regul 49 54-58 (2009)
  62. Pocket-based drug design: exploring pocket space. Zheng X, Gan L, Wang E, Wang J. AAPS J 15 228-241 (2013)
  63. Fibroblast growth factor signaling in mammalian tooth development. Li CY, Prochazka J, Goodwin AF, Klein OD. Odontology 102 1-13 (2014)
  64. Molecular Mechanisms of Human Disease Mediated by Oncogenic and Primary Immunodeficiency Mutations in Class IA Phosphoinositide 3-Kinases. Dornan GL, Burke JE. Front Immunol 9 575 (2018)
  65. Cell polarity during motile processes: keeping on track with the exocyst complex. Hertzog M, Chavrier P. Biochem J 433 403-409 (2011)
  66. Leukocytes on the move with phosphoinositide 3-kinase and its downstream effectors. Procko E, McColl SR. Bioessays 27 153-163 (2005)
  67. Ras Dimer Formation as a New Signaling Mechanism and Potential Cancer Therapeutic Target. Chen M, Peters A, Huang T, Nan X. Mini Rev Med Chem 16 391-403 (2016)
  68. PI3K: A Crucial Piece in the RAS Signaling Puzzle. Krygowska AA, Castellano E. Cold Spring Harb Perspect Med 8 a031450 (2018)
  69. PI3K inhibitors in thrombosis and cardiovascular disease. Durrant TN, Hers I. Clin Transl Med 9 8 (2020)
  70. Plasma membrane regulates Ras signaling networks. Chavan TS, Muratcioglu S, Marszalek R, Jang H, Keskin O, Gursoy A, Nussinov R, Gaponenko V. Cell Logist 5 e1136374 (2015)
  71. The Interdependent Activation of Son-of-Sevenless and Ras. Bandaru P, Kondo Y, Kuriyan J. Cold Spring Harb Perspect Med 9 a031534 (2019)
  72. The Role of PI3K/AKT and MAPK Signaling Pathways in Erythropoietin Signalization. Tóthová Z, Šemeláková M, Solárová Z, Tomc J, Debeljak N, Solár P. Int J Mol Sci 22 7682 (2021)
  73. At a crossroads: how to translate the roles of PI3K in oncogenic and metabolic signalling into improvements in cancer therapy. Vasan N, Cantley LC. Nat Rev Clin Oncol 19 471-485 (2022)
  74. A family-based approach reveals the function of residues in the nuclear receptor ligand-binding domain. Folkertsma S, van Noort P, Van Durme J, Joosten HJ, Bettler E, Fleuren W, Oliveira L, Horn F, de Vlieg J, Vriend G. J Mol Biol 341 321-335 (2004)
  75. Phosphatidylinositol-3,4,5-trisphosphate: tool of choice for class I PI 3-kinases. Salamon RS, Backer JM. Bioessays 35 602-611 (2013)
  76. Choose your own path: specificity in Ras GTPase signaling. Goldfinger LE. Mol Biosyst 4 293-299 (2008)
  77. Inhibitors of phosphatidylinositol-3-kinase in cancer therapy. Ihle NT, Powis G. Mol Aspects Med 31 135-144 (2010)
  78. Differential functions of Ras for malignant phenotypic conversion. Moon A. Arch Pharm Res 29 113-122 (2006)
  79. RAS signaling and anti-RAS therapy: lessons learned from genetically engineered mouse models, human cancer cells, and patient-related studies. Fang B. Acta Biochim Biophys Sin (Shanghai) 48 27-38 (2016)
  80. Liquid Biopsy in Colorectal Carcinoma: Clinical Applications and Challenges. Kolenčík D, Shishido SN, Pitule P, Mason J, Hicks J, Kuhn P. Cancers (Basel) 12 E1376 (2020)
  81. KRAS mutational status as a predictor of epidermal growth factor receptor inhibitor efficacy in colorectal cancer. Baynes RD, Gansert J. Am J Ther 16 554-561 (2009)
  82. Melanoma mutagenesis and aberrant cell signaling. Bello DM, Ariyan CE, Carvajal RD. Cancer Control 20 261-281 (2013)
  83. Structural basis of membrane trafficking by Rab family small G protein. Park HH. Int J Mol Sci 14 8912-8923 (2013)
  84. The role of the phosphatidylinositol 3-kinase (PI3K) pathway in the development and treatment of uterine cancer. Naumann RW. Gynecol Oncol 123 411-420 (2011)
  85. Function, Regulation and Biological Roles of PI3Kγ Variants. Nürnberg B, Beer-Hammer S. Biomolecules 9 E427 (2019)
  86. Somatic mutations in PI3Kalpha: structural basis for enzyme activation and drug design. Gabelli SB, Mandelker D, Schmidt-Kittler O, Vogelstein B, Amzel LM. Biochim Biophys Acta 1804 533-540 (2010)
  87. Specific PI3K isoform modulation in heart failure: lessons from transgenic mice. Ghigo A, Morello F, Perino A, Damilano F, Hirsch E. Curr Heart Fail Rep 8 168-175 (2011)
  88. The role of PI3Kγ in the immune system: new insights and translational implications. Lanahan SM, Wymann MP, Lucas CL. Nat Rev Immunol 22 687-700 (2022)
  89. Activation of heterotrimeric G-proteins independent of a G-protein coupled receptor and the implications for signal processing. Cismowski MJ, Lanier SM. Rev Physiol Biochem Pharmacol 155 57-80 (2005)
  90. Current status of the development of Ras inhibitors. Shima F, Matsumoto S, Yoshikawa Y, Kawamura T, Isa M, Kataoka T. J Biochem 158 91-99 (2015)
  91. RAS Function in cancer cells: translating membrane biology and biochemistry into new therapeutics. Kattan WE, Hancock JF. Biochem J 477 2893-2919 (2020)
  92. Searching for the Chokehold of NRAS Mutant Melanoma. Posch C, Vujic I, Monshi B, Sanlorenzo M, Weihsengruber F, Rappersberger K, Ortiz-Urda S. J Invest Dermatol 136 1330-1336 (2016)
  93. Therapeutic Approaches to RAS Mutation. Scott AJ, Lieu CH, Messersmith WA. Cancer J 22 165-174 (2016)
  94. Novel approaches to inhibitor design for the p110β phosphoinositide 3-kinase. Dbouk HA, Backer JM. Trends Pharmacol Sci 34 149-153 (2013)
  95. Signalling via class IA PI3Ks. Stephens L, Hawkins P. Adv Enzyme Regul 51 27-36 (2011)
  96. The Importance of Being PI3K in the RAS Signaling Network. Cuesta C, Arévalo-Alameda C, Castellano E. Genes (Basel) 12 1094 (2021)
  97. The molecular functions of RIT1 and its contribution to human disease. Van R, Cuevas-Navarro A, Castel P, McCormick F. Biochem J 477 2755-2770 (2020)
  98. Promising Molecular Targets for the Targeted Therapy of Biliary Tract Cancers: An Overview. Yang W, Sun Y. Onco Targets Ther 14 1341-1366 (2021)
  99. Structural flexibility of small GTPases. Can it explain their functional versatility? Helmreich EJ. Biol Chem 385 1121-1136 (2004)
  100. Inhibition of Ras-mediated signaling pathways in CML stem cells. Bertacchini J, Ketabchi N, Mediani L, Capitani S, Marmiroli S, Saki N. Cell Oncol (Dordr) 38 407-418 (2015)
  101. Chemical biology of compounds obtained from screening using disease models. Tashiro E, Imoto M. Arch Pharm Res 38 1651-1660 (2015)
  102. The Mutational Landscape of Myeloid Leukaemia in Down Syndrome. de Castro CPM, Cadefau M, Cuartero S. Cancers (Basel) 13 4144 (2021)
  103. A regulatory role of membrane by direct modulation of the catalytic kinase domain. Prakash P. Small GTPases 12 246-256 (2021)
  104. More paths to PI3Kγ. Stephens L, Hawkins P. PLoS Biol 11 e1001594 (2013)
  105. Recent advance of herbal medicines in cancer- a molecular approach. Ali M, Wani SUD, Salahuddin M, S N M, K M, Dey T, Zargar MI, Singh J. Heliyon 9 e13684 (2023)
  106. PI3K/AKT/mTOR Dysregulation and Reprogramming Metabolic Pathways in Renal Cancer: Crosstalk with the VHL/HIF Axis. Badoiu SC, Greabu M, Miricescu D, Stanescu-Spinu II, Ilinca R, Balan DG, Balcangiu-Stroescu AE, Mihai DA, Vacaroiu IA, Stefani C, Jinga V. Int J Mol Sci 24 8391 (2023)
  107. Ras Multimers on the Membrane: Many Ways for a Heart-to-Heart Conversation. Ozdemir ES, Koester AM, Nan X. Genes (Basel) 13 219 (2022)
  108. The orchestrated signaling by PI3Kα and PTEN at the membrane interface. Kotzampasi DM, Premeti K, Papafotika A, Syropoulou V, Christoforidis S, Cournia Z, Leondaritis G. Comput Struct Biotechnol J 20 5607-5621 (2022)
  109. From bench to bedside: current development and emerging trend of KRAS-targeted therapy. Chen Y, Liu QP, Xie H, Ding J. Acta Pharmacol Sin (2023)
  110. Kinases on Double Duty: A Review of UniProtKB Annotated Bifunctionality within the Kinome. Rangwala AM, Mingione VR, Georghiou G, Seeliger MA. Biomolecules 12 685 (2022)
  111. Receptor, Signal, Nucleus, Action: Signals That Pass through Akt on the Road to Head and Neck Cancer Cell Migration. Alzawi A, Iftikhar A, Shalgm B, Jones S, Ellis I, Islam M. Cancers (Basel) 14 2606 (2022)
  112. The Nanotechnology-Based Approaches against Kirsten Rat Sarcoma-Mutated Cancers. Andrade F, German-Cortés J, Montero S, Carcavilla P, Baranda-Martínez-Abascal D, Moltó-Abad M, Seras-Franzoso J, Díaz-Riascos ZV, Rafael D, Abasolo I. Pharmaceutics 15 1686 (2023)

Articles citing this publication (229)

  1. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Funamoto S, Meili R, Lee S, Parry L, Firtel RA. Cell 109 611-623 (2002)
  2. RAS Interaction with PI3K: More Than Just Another Effector Pathway. Castellano E, Downward J. Genes Cancer 2 261-274 (2011)
  3. Ras history: The saga continues. Cox AD, Der CJ. Small GTPases 1 2-27 (2010)
  4. Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Gupta S, Ramjaun AR, Haiko P, Wang Y, Warne PH, Nicke B, Nye E, Stamp G, Alitalo K, Downward J. Cell 129 957-968 (2007)
  5. P-Rex1, a PtdIns(3,4,5)P3- and Gbetagamma-regulated guanine-nucleotide exchange factor for Rac. Welch HC, Coadwell WJ, Ellson CD, Ferguson GJ, Andrews SR, Erdjument-Bromage H, Tempst P, Hawkins PT, Stephens LR. Cell 108 809-821 (2002)
  6. The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations. Huang CH, Mandelker D, Schmidt-Kittler O, Samuels Y, Velculescu VE, Kinzler KW, Vogelstein B, Gabelli SB, Amzel LM. Science 318 1744-1748 (2007)
  7. Structural evidence for feedback activation by Ras.GTP of the Ras-specific nucleotide exchange factor SOS. Margarit SM, Sondermann H, Hall BE, Nagar B, Hoelz A, Pirruccello M, Bar-Sagi D, Kuriyan J. Cell 112 685-695 (2003)
  8. Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Zhao L, Vogt PK. Proc Natl Acad Sci U S A 105 2652-2657 (2008)
  9. Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. Sasaki AT, Chun C, Takeda K, Firtel RA. J Cell Biol 167 505-518 (2004)
  10. PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40(phox). Ellson CD, Gobert-Gosse S, Anderson KE, Davidson K, Erdjument-Bromage H, Tempst P, Thuring JW, Cooper MA, Lim ZY, Holmes AB, Gaffney PR, Coadwell J, Chilvers ER, Hawkins PT, Stephens LR. Nat Cell Biol 3 679-682 (2001)
  11. Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3kγ, a single convergent point promoting tumor inflammation and progression. Schmid MC, Avraamides CJ, Dippold HC, Franco I, Foubert P, Ellies LG, Acevedo LM, Manglicmot JR, Song X, Wrasidlo W, Blair SL, Ginsberg MH, Cheresh DA, Hirsch E, Field SJ, Varner JA. Cancer Cell 19 715-727 (2011)
  12. Signaling specificity by Ras family GTPases is determined by the full spectrum of effectors they regulate. Rodriguez-Viciana P, Sabatier C, McCormick F. Mol Cell Biol 24 4943-4954 (2004)
  13. Therapeutic strategies for targeting ras proteins. Gysin S, Salt M, Young A, McCormick F. Genes Cancer 2 359-372 (2011)
  14. FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy. Kompier LC, Lurkin I, van der Aa MN, van Rhijn BW, van der Kwast TH, Zwarthoff EC. PLoS One 5 e13821 (2010)
  15. PI3K promotes voltage-dependent calcium channel trafficking to the plasma membrane. Viard P, Butcher AJ, Halet G, Davies A, Nürnberg B, Heblich F, Dolphin AC. Nat Neurosci 7 939-946 (2004)
  16. RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isoforms. Fritsch R, de Krijger I, Fritsch K, George R, Reason B, Kumar MS, Diefenbacher M, Stamp G, Downward J. Cell 153 1050-1063 (2013)
  17. In silico discovery of small-molecule Ras inhibitors that display antitumor activity by blocking the Ras-effector interaction. Shima F, Yoshikawa Y, Ye M, Araki M, Matsumoto S, Liao J, Hu L, Sugimoto T, Ijiri Y, Takeda A, Nishiyama Y, Sato C, Muraoka S, Tamura A, Osoda T, Tsuda K, Miyakawa T, Fukunishi H, Shimada J, Kumasaka T, Yamamoto M, Kataoka T. Proc Natl Acad Sci U S A 110 8182-8187 (2013)
  18. Roles of G beta gamma in membrane recruitment and activation of p110 gamma/p101 phosphoinositide 3-kinase gamma. Brock C, Schaefer M, Reusch HP, Czupalla C, Michalke M, Spicher K, Schultz G, Nürnberg B. J Cell Biol 160 89-99 (2003)
  19. The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways. Tarricone C, Xiao B, Justin N, Walker PA, Rittinger K, Gamblin SJ, Smerdon SJ. Nature 411 215-219 (2001)
  20. The complex of Arl2-GTP and PDE delta: from structure to function. Hanzal-Bayer M, Renault L, Roversi P, Wittinghofer A, Hillig RC. EMBO J 21 2095-2106 (2002)
  21. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Chen F, Liu H, Sun H, Pan P, Li Y, Li D, Hou T. Phys Chem Chem Phys 18 22129-22139 (2016)
  22. Allosteric modulation of Ras positions Q61 for a direct role in catalysis. Buhrman G, Holzapfel G, Fetics S, Mattos C. Proc Natl Acad Sci U S A 107 4931-4936 (2010)
  23. G protein-independent Ras/PI3K/F-actin circuit regulates basic cell motility. Sasaki AT, Janetopoulos C, Lee S, Charest PG, Takeda K, Sundheimer LW, Meili R, Devreotes PN, Firtel RA. J Cell Biol 178 185-191 (2007)
  24. A Small Molecule RAS-Mimetic Disrupts RAS Association with Effector Proteins to Block Signaling. Athuluri-Divakar SK, Vasquez-Del Carpio R, Dutta K, Baker SJ, Cosenza SC, Basu I, Gupta YK, Reddy MV, Ueno L, Hart JR, Vogt PK, Mulholland D, Guha C, Aggarwal AK, Reddy EP. Cell 165 643-655 (2016)
  25. Receptor tyrosine kinases exert dominant control over PI3K signaling in human KRAS mutant colorectal cancers. Ebi H, Corcoran RB, Singh A, Chen Z, Song Y, Lifshits E, Ryan DP, Meyerhardt JA, Benes C, Settleman J, Wong KK, Cantley LC, Engelman JA. J Clin Invest 121 4311-4321 (2011)
  26. Ras membrane orientation and nanodomain localization generate isoform diversity. Abankwa D, Gorfe AA, Inder K, Hancock JF. Proc Natl Acad Sci U S A 107 1130-1135 (2010)
  27. A novel switch region regulates H-ras membrane orientation and signal output. Abankwa D, Hanzal-Bayer M, Ariotti N, Plowman SJ, Gorfe AA, Parton RG, McCammon JA, Hancock JF. EMBO J 27 727-735 (2008)
  28. Mitofusin 2 triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway. Guo X, Chen KH, Guo Y, Liao H, Tang J, Xiao RP. Circ Res 101 1113-1122 (2007)
  29. H-Ras-specific activation of Rac-MKK3/6-p38 pathway: its critical role in invasion and migration of breast epithelial cells. Shin I, Kim S, Song H, Kim HR, Moon A. J Biol Chem 280 14675-14683 (2005)
  30. PB1 domain-mediated heterodimerization in NADPH oxidase and signaling complexes of atypical protein kinase C with Par6 and p62. Wilson MI, Gill DJ, Perisic O, Quinn MT, Williams RL. Mol Cell 12 39-50 (2003)
  31. Recognizing and defining true Ras binding domains I: biochemical analysis. Wohlgemuth S, Kiel C, Krämer A, Serrano L, Wittinghofer F, Herrmann C. J Mol Biol 348 741-758 (2005)
  32. Multivalent Small-Molecule Pan-RAS Inhibitors. Welsch ME, Kaplan A, Chambers JM, Stokes ME, Bos PH, Zask A, Zhang Y, Sanchez-Martin M, Badgley MA, Huang CS, Tran TH, Akkiraju H, Brown LM, Nandakumar R, Cremers S, Yang WS, Tong L, Olive KP, Ferrando A, Stockwell BR. Cell 168 878-889.e29 (2017)
  33. The phosphoinositide 3-kinase pathway in human cancer: genetic alterations and therapeutic implications. Arcaro A, Guerreiro AS. Curr Genomics 8 271-306 (2007)
  34. Gbetagammas and the Ras binding domain of p110gamma are both important regulators of PI(3)Kgamma signalling in neutrophils. Suire S, Condliffe AM, Ferguson GJ, Ellson CD, Guillou H, Davidson K, Welch H, Coadwell J, Turner M, Chilvers ER, Hawkins PT, Stephens L. Nat Cell Biol 8 1303-1309 (2006)
  35. The p110 delta structure: mechanisms for selectivity and potency of new PI(3)K inhibitors. Berndt A, Miller S, Williams O, Le DD, Houseman BT, Pacold JI, Gorrec F, Hon WC, Liu Y, Rommel C, Gaillard P, Rückle T, Schwarz MK, Shokat KM, Shaw JP, Williams RL. Nat Chem Biol 6 117-124 (2010)
  36. Cooperative activation of PI3K by Ras and Rho family small GTPases. Yang HW, Shin MG, Lee S, Kim JR, Park WS, Cho KH, Meyer T, Heo WD. Mol Cell 47 281-290 (2012)
  37. Interactions between Ras1, dMyc, and dPI3K signaling in the developing Drosophila wing. Prober DA, Edgar BA. Genes Dev 16 2286-2299 (2002)
  38. Pim-1 ligand-bound structures reveal the mechanism of serine/threonine kinase inhibition by LY294002. Jacobs MD, Black J, Futer O, Swenson L, Hare B, Fleming M, Saxena K. J Biol Chem 280 13728-13734 (2005)
  39. Coordinate direct input of both KRAS and IGF1 receptor to activation of PI3 kinase in KRAS-mutant lung cancer. Molina-Arcas M, Hancock DC, Sheridan C, Kumar MS, Downward J. Cancer Discov 3 548-563 (2013)
  40. Bidirectional signals transduced by TOPK-ERK interaction increase tumorigenesis of HCT116 colorectal cancer cells. Zhu F, Zykova TA, Kang BS, Wang Z, Ebeling MC, Abe Y, Ma WY, Bode AM, Dong Z. Gastroenterology 133 219-231 (2007)
  41. Structural basis for Arl1-dependent targeting of homodimeric GRIP domains to the Golgi apparatus. Panic B, Perisic O, Veprintsev DB, Williams RL, Munro S. Mol Cell 12 863-874 (2003)
  42. Exo84 and Sec5 are competitive regulatory Sec6/8 effectors to the RalA GTPase. Jin R, Junutula JR, Matern HT, Ervin KE, Scheller RH, Brunger AT. EMBO J 24 2064-2074 (2005)
  43. H-Ras forms dimers on membrane surfaces via a protein-protein interface. Lin WC, Iversen L, Tu HL, Rhodes C, Christensen SM, Iwig JS, Hansen SD, Huang WY, Groves JT. Proc Natl Acad Sci U S A 111 2996-3001 (2014)
  44. Structural and mechanistic insights into ras association domains of phospholipase C epsilon. Bunney TD, Harris R, Gandarillas NL, Josephs MB, Roe SM, Sorli SC, Paterson HF, Rodrigues-Lima F, Esposito D, Ponting CP, Gierschik P, Pearl LH, Driscoll PC, Katan M. Mol Cell 21 495-507 (2006)
  45. Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors. Andersen JN, Sathyanarayanan S, Di Bacco A, Chi A, Zhang T, Chen AH, Dolinski B, Kraus M, Roberts B, Arthur W, Klinghoffer RA, Gargano D, Li L, Feldman I, Lynch B, Rush J, Hendrickson RC, Blume-Jensen P, Paweletz CP. Sci Transl Med 2 43ra55 (2010)
  46. Ras-mediated activation of the TORC2-PKB pathway is critical for chemotaxis. Cai H, Das S, Kamimura Y, Long Y, Parent CA, Devreotes PN. J Cell Biol 190 233-245 (2010)
  47. The Structural Basis of Oncogenic Mutations G12, G13 and Q61 in Small GTPase K-Ras4B. Lu S, Jang H, Nussinov R, Zhang J. Sci Rep 6 21949 (2016)
  48. The RAS effector RIN1 directly competes with RAF and is regulated by 14-3-3 proteins. Wang Y, Waldron RT, Dhaka A, Patel A, Riley MM, Rozengurt E, Colicelli J. Mol Cell Biol 22 916-926 (2002)
  49. ARAP3 is a PI3K- and rap-regulated GAP for RhoA. Krugmann S, Williams R, Stephens L, Hawkins PT. Curr Biol 14 1380-1384 (2004)
  50. Analysis of binding site hot spots on the surface of Ras GTPase. Buhrman G, O'Connor C, Zerbe B, Kearney BM, Napoleon R, Kovrigina EA, Vajda S, Kozakov D, Kovrigin EL, Mattos C. J Mol Biol 413 773-789 (2011)
  51. Intrabodies based on intracellular capture frameworks that bind the RAS protein with high affinity and impair oncogenic transformation. Tanaka T, Rabbitts TH. EMBO J 22 1025-1035 (2003)
  52. Activation of phosphoinositide 3-kinase gamma by Ras. Suire S, Hawkins P, Stephens L. Curr Biol 12 1068-1075 (2002)
  53. Recognizing and defining true Ras binding domains II: in silico prediction based on homology modelling and energy calculations. Kiel C, Wohlgemuth S, Rousseau F, Schymkowitz J, Ferkinghoff-Borg J, Wittinghofer F, Serrano L. J Mol Biol 348 759-775 (2005)
  54. Structural basis of the interaction between RalA and Sec5, a subunit of the sec6/8 complex. Fukai S, Matern HT, Jagath JR, Scheller RH, Brunger AT. EMBO J 22 3267-3278 (2003)
  55. Novel type of Ras effector interaction established between tumour suppressor NORE1A and Ras switch II. Stieglitz B, Bee C, Schwarz D, Yildiz O, Moshnikova A, Khokhlatchev A, Herrmann C. EMBO J 27 1995-2005 (2008)
  56. Structural basis for conformational dynamics of GTP-bound Ras protein. Shima F, Ijiri Y, Muraoka S, Liao J, Ye M, Araki M, Matsumoto K, Yamamoto N, Sugimoto T, Yoshikawa Y, Kumasaka T, Yamamoto M, Tamura A, Kataoka T. J Biol Chem 285 22696-22705 (2010)
  57. The RAP1 guanine nucleotide exchange factor Epac2 couples cyclic AMP and Ras signals at the plasma membrane. Li Y, Asuri S, Rebhun JF, Castro AF, Paranavitana NC, Quilliam LA. J Biol Chem 281 2506-2514 (2006)
  58. Rab8a interacts directly with PI3Kγ to modulate TLR4-driven PI3K and mTOR signalling. Luo L, Wall AA, Yeo JC, Condon ND, Norwood SJ, Schoenwaelder S, Chen KW, Jackson S, Jenkins BJ, Hartland EL, Schroder K, Collins BM, Sweet MJ, Stow JL. Nat Commun 5 4407 (2014)
  59. Regulation of RAS oncogenicity by acetylation. Yang MH, Nickerson S, Kim ET, Liot C, Laurent G, Spang R, Philips MR, Shan Y, Shaw DE, Bar-Sagi D, Haigis MC, Haigis KM. Proc Natl Acad Sci U S A 109 10843-10848 (2012)
  60. The Functional Proximal Proteome of Oncogenic Ras Includes mTORC2. Kovalski JR, Bhaduri A, Zehnder AM, Neela PH, Che Y, Wozniak GG, Khavari PA. Mol Cell 73 830-844.e12 (2019)
  61. Antibody targeting intracellular oncogenic Ras mutants exerts anti-tumour effects after systemic administration. Shin SM, Choi DK, Jung K, Bae J, Kim JS, Park SW, Song KH, Kim YS. Nat Commun 8 15090 (2017)
  62. Phosphoinositide 3-kinase pathway activation in phosphate and tensin homolog (PTEN)-deficient prostate cancer cells is independent of receptor tyrosine kinases and mediated by the p110beta and p110delta catalytic subunits. Jiang X, Chen S, Asara JM, Balk SP. J Biol Chem 285 14980-14989 (2010)
  63. RasC is required for optimal activation of adenylyl cyclase and Akt/PKB during aggregation. Lim CJ, Spiegelman GB, Weeks G. EMBO J 20 4490-4499 (2001)
  64. Discovery of a Direct Ras Inhibitor by Screening a Combinatorial Library of Cell-Permeable Bicyclic Peptides. Trinh TB, Upadhyaya P, Qian Z, Pei D. ACS Comb Sci 18 75-85 (2016)
  65. Inhibition of Ras signaling by blocking Ras-effector interactions with cyclic peptides. Upadhyaya P, Qian Z, Selner NG, Clippinger SR, Wu Z, Briesewitz R, Pei D. Angew Chem Int Ed Engl 54 7602-7606 (2015)
  66. The RA domain of Ste50 adaptor protein is required for delivery of Ste11 to the plasma membrane in the filamentous growth signaling pathway of the yeast Saccharomyces cerevisiae. Truckses DM, Bloomekatz JE, Thorner J. Mol Cell Biol 26 912-928 (2006)
  67. Two distinct functions for PI3-kinases in macropinocytosis. Hoeller O, Bolourani P, Clark J, Stephens LR, Hawkins PT, Weiner OD, Weeks G, Kay RR. J Cell Sci 126 4296-4307 (2013)
  68. Gain of interaction with IRS1 by p110α-helical domain mutants is crucial for their oncogenic functions. Hao Y, Wang C, Cao B, Hirsch BM, Song J, Markowitz SD, Ewing RM, Sedwick D, Liu L, Zheng W, Wang Z. Cancer Cell 23 583-593 (2013)
  69. Identification of a small molecule with synthetic lethality for K-ras and protein kinase C iota. Guo W, Wu S, Liu J, Fang B. Cancer Res 68 7403-7408 (2008)
  70. Structural basis for the function of the beta subunit of the eukaryotic signal recognition particle receptor. Schwartz T, Blobel G. Cell 112 793-803 (2003)
  71. Structure of Mycobacterium tuberculosis FtsZ reveals unexpected, G protein-like conformational switches. Leung AK, Lucile White E, Ross LJ, Reynolds RC, DeVito JA, Borhani DW. J Mol Biol 342 953-970 (2004)
  72. Hot-spot mutations in p110alpha of phosphatidylinositol 3-kinase (pI3K): differential interactions with the regulatory subunit p85 and with RAS. Zhao L, Vogt PK. Cell Cycle 9 596-600 (2010)
  73. HER2 Amplification in Tumors Activates PI3K/Akt Signaling Independent of HER3. Ruiz-Saenz A, Dreyer C, Campbell MR, Steri V, Gulizia N, Moasser MM. Cancer Res 78 3645-3658 (2018)
  74. PDE4 inhibitor, roflumilast protects cardiomyocytes against NO-induced apoptosis via activation of PKA and Epac dual pathways. Kwak HJ, Park KM, Choi HE, Chung KS, Lim HJ, Park HY. Cell Signal 20 803-814 (2008)
  75. H-ras regulates angiogenesis and vascular permeability by activation of distinct downstream effectors. Serban D, Leng J, Cheresh D. Circ Res 102 1350-1358 (2008)
  76. Src promotes GTPase activity of Ras via tyrosine 32 phosphorylation. Bunda S, Heir P, Srikumar T, Cook JD, Burrell K, Kano Y, Lee JE, Zadeh G, Raught B, Ohh M. Proc Natl Acad Sci U S A 111 E3785-94 (2014)
  77. The distinct roles of Ras and Rac in PI 3-kinase-dependent protrusion during EGF-stimulated cell migration. Yip SC, El-Sibai M, Coniglio SJ, Mouneimne G, Eddy RJ, Drees BE, Neilsen PO, Goswami S, Symons M, Condeelis JS, Backer JM. J Cell Sci 120 3138-3146 (2007)
  78. The Biological Role of PI3K Pathway in Lung Cancer. Sarris EG, Saif MW, Syrigos KN. Pharmaceuticals (Basel) 5 1236-1264 (2012)
  79. Nuclear but not cytosolic phosphoinositide 3-kinase beta has an essential function in cell survival. Kumar A, Redondo-Muñoz J, Perez-García V, Cortes I, Chagoyen M, Carrera AC. Mol Cell Biol 31 2122-2133 (2011)
  80. A detailed thermodynamic analysis of ras/effector complex interfaces. Kiel C, Serrano L, Herrmann C. J Mol Biol 340 1039-1058 (2004)
  81. The crossregulation between ERK and PI3K signaling pathways determines the tumoricidal efficacy of MEK inhibitor. Won JK, Yang HW, Shin SY, Lee JH, Heo WD, Cho KH. J Mol Cell Biol 4 153-163 (2012)
  82. The ubiquitin domain superfold: structure-based sequence alignments and characterization of binding epitopes. Kiel C, Serrano L. J Mol Biol 355 821-844 (2006)
  83. Ras is an indispensable coregulator of the class IB phosphoinositide 3-kinase p87/p110gamma. Kurig B, Shymanets A, Bohnacker T, Prajwal, Brock C, Ahmadian MR, Schaefer M, Gohla A, Harteneck C, Wymann MP, Jeanclos E, Nürnberg B. Proc Natl Acad Sci U S A 106 20312-20317 (2009)
  84. Solution structure of the state 1 conformer of GTP-bound H-Ras protein and distinct dynamic properties between the state 1 and state 2 conformers. Araki M, Shima F, Yoshikawa Y, Muraoka S, Ijiri Y, Nagahara Y, Shirono T, Kataoka T, Tamura A. J Biol Chem 286 39644-39653 (2011)
  85. Allosteric modulation of Ras-GTP is linked to signal transduction through RAF kinase. Buhrman G, Kumar VS, Cirit M, Haugh JM, Mattos C. J Biol Chem 286 3323-3331 (2011)
  86. Regulation of PI3K by PKC and MARCKS: Single-Molecule Analysis of a Reconstituted Signaling Pathway. Ziemba BP, Burke JE, Masson G, Williams RL, Falke JJ. Biophys J 110 1811-1825 (2016)
  87. Structural insights into activation of phosphatidylinositol 4-kinase (Pik1) by yeast frequenin (Frq1). Strahl T, Huttner IG, Lusin JD, Osawa M, King D, Thorner J, Ames JB. J Biol Chem 282 30949-30959 (2007)
  88. A nutrient-induced affinity switch controls mTORC1 activation by its Rag GTPase-Ragulator lysosomal scaffold. Lawrence RE, Cho KF, Rappold R, Thrun A, Tofaute M, Kim DJ, Moldavski O, Hurley JH, Zoncu R. Nat Cell Biol 20 1052-1063 (2018)
  89. Input from Ras is required for maximal PI(3)K signalling in Drosophila. Orme MH, Alrubaie S, Bradley GL, Walker CD, Leevers SJ. Nat Cell Biol 8 1298-1302 (2006)
  90. Post-transcriptional regulation of cyclin D1 expression during G2 phase. Guo Y, Stacey DW, Hitomi M. Oncogene 21 7545-7556 (2002)
  91. Follicle-stimulating hormone-induced aromatase in immature rat Sertoli cells requires an active phosphatidylinositol 3-kinase pathway and is inhibited via the mitogen-activated protein kinase signaling pathway. McDonald CA, Millena AC, Reddy S, Finlay S, Vizcarra J, Khan SA, Davis JS. Mol Endocrinol 20 608-618 (2006)
  92. GTP Binding and Oncogenic Mutations May Attenuate Hypervariable Region (HVR)-Catalytic Domain Interactions in Small GTPase K-Ras4B, Exposing the Effector Binding Site. Lu S, Banerjee A, Jang H, Zhang J, Gaponenko V, Nussinov R. J Biol Chem 290 28887-28900 (2015)
  93. Insulin-like growth factor-1 and PTEN deletion enhance cardiac L-type Ca2+ currents via increased PI3Kalpha/PKB signaling. Sun H, Kerfant BG, Zhao D, Trivieri MG, Oudit GY, Penninger JM, Backx PH. Circ Res 98 1390-1397 (2006)
  94. Integrated RAS signaling defined by parallel NMR detection of effectors and regulators. Smith MJ, Ikura M. Nat Chem Biol 10 223-230 (2014)
  95. Interfering with RAS-effector protein interactions prevent RAS-dependent tumour initiation and causes stop-start control of cancer growth. Tanaka T, Rabbitts TH. Oncogene 29 6064-6070 (2010)
  96. The Ras-PI3K signaling pathway is involved in clathrin-independent endocytosis and the internalization of influenza viruses. Fujioka Y, Tsuda M, Hattori T, Sasaki J, Sasaki T, Miyazaki T, Ohba Y. PLoS One 6 e16324 (2011)
  97. The human formin FHOD1 contains a bipartite structure of FH3 and GTPase-binding domains required for activation. Schulte A, Stolp B, Schönichen A, Pylypenko O, Rak A, Fackler OT, Geyer M. Structure 16 1313-1323 (2008)
  98. The Ras-Byr2RBD complex: structural basis for Ras effector recognition in yeast. Scheffzek K, Grünewald P, Wohlgemuth S, Kabsch W, Tu H, Wigler M, Wittinghofer A, Herrmann C. Structure 9 1043-1050 (2001)
  99. Activation of cAMP-guanine exchange factor confers PKA-independent protection from hepatocyte apoptosis. Cullen KA, McCool J, Anwer MS, Webster CR. Am J Physiol Gastrointest Liver Physiol 287 G334-43 (2004)
  100. GPCR activation of Ras and PI3Kc in neutrophils depends on PLCb2/b3 and the RasGEF RasGRP4. Suire S, Lécureuil C, Anderson KE, Damoulakis G, Niewczas I, Davidson K, Guillou H, Pan D, Jonathan Clark, Phillip T Hawkins, Stephens L. EMBO J 31 3118-3129 (2012)
  101. Functional differences between two classes of oncogenic mutation in the PIK3CA gene. Chaussade C, Cho K, Mawson C, Rewcastle GW, Shepherd PR. Biochem Biophys Res Commun 381 577-581 (2009)
  102. Two conformational states of Ras GTPase exhibit differential GTP-binding kinetics. Liao J, Shima F, Araki M, Ye M, Muraoka S, Sugimoto T, Kawamura M, Yamamoto N, Tamura A, Kataoka T. Biochem Biophys Res Commun 369 327-332 (2008)
  103. PI3 kinase is important for Ras, MEK and Erk activation of Epo-stimulated human erythroid progenitors. Schmidt EK, Fichelson S, Feller SM. BMC Biol 2 7 (2004)
  104. Structure of a transient intermediate for GTP hydrolysis by ras. Ford B, Hornak V, Kleinman H, Nassar N. Structure 14 427-436 (2006)
  105. What makes Ras an efficient molecular switch: a computational, biophysical, and structural study of Ras-GDP interactions with mutants of Raf. Filchtinski D, Sharabi O, Rüppel A, Vetter IR, Herrmann C, Shifman JM. J Mol Biol 399 422-435 (2010)
  106. A Diaphanous-related formin links Ras signaling directly to actin assembly in macropinocytosis and phagocytosis. Junemann A, Filić V, Winterhoff M, Nordholz B, Litschko C, Schwellenbach H, Stephan T, Weber I, Faix J. Proc Natl Acad Sci U S A 113 E7464-E7473 (2016)
  107. Identification of functionally conserved residues with the use of entropy-variability plots. Oliveira L, Paiva PB, Paiva AC, Vriend G. Proteins 52 544-552 (2003)
  108. Higher metastatic efficiency of KRas G12V than KRas G13D in a colorectal cancer model. Alamo P, Gallardo A, Di Nicolantonio F, Pavón MA, Pavón MA, Casanova I, Trias M, Mangues MA, Lopez-Pousa A, Villaverde A, Vázquez E, Bardelli A, Céspedes MV, Mangues R. FASEB J 29 464-476 (2015)
  109. Solution structure of the Ras binding domain of the protein kinase Byr2 from Schizosaccharomyces pombe. Gronwald W, Huber F, Grünewald P, Spörner M, Wohlgemuth S, Herrmann C, Kalbitzer HR. Structure 9 1029-1041 (2001)
  110. Single-Molecule Study Reveals How Receptor and Ras Synergistically Activate PI3Kα and PIP3 Signaling. Buckles TC, Ziemba BP, Masson GR, Williams RL, Falke JJ. Biophys J 113 2396-2405 (2017)
  111. Organic solvents order the dynamic switch II in Ras crystals. Buhrman G, de Serrano V, Mattos C. Structure 11 747-751 (2003)
  112. The regulatory subunits of PI3Kγ control distinct neutrophil responses. Deladeriere A, Gambardella L, Pan D, Anderson KE, Hawkins PT, Stephens LR. Sci Signal 8 ra8 (2015)
  113. The structural basis for Ras activation of PI3Kα lipid kinase. Zhang M, Jang H, Nussinov R. Phys Chem Chem Phys 21 12021-12028 (2019)
  114. Galphaq binds to p110alpha/p85alpha phosphoinositide 3-kinase and displaces Ras. Ballou LM, Chattopadhyay M, Li Y, Scarlata S, Lin RZ. Biochem J 394 557-562 (2006)
  115. Molecular insights into the membrane-associated phosphatidylinositol 4-kinase IIα. Zhou Q, Li J, Yu H, Zhai Y, Gao Z, Liu Y, Pang X, Zhang L, Schulten K, Sun F, Chen C. Nat Commun 5 3552 (2014)
  116. The structure of the ternary complex of Krev interaction trapped 1 (KRIT1) bound to both the Rap1 GTPase and the heart of glass (HEG1) cytoplasmic tail. Gingras AR, Puzon-McLaughlin W, Ginsberg MH. J Biol Chem 288 23639-23649 (2013)
  117. Distinct dynamics and interaction patterns in H- and K-Ras oncogenic P-loop mutants. Sayyed-Ahmad A, Prakash P, Gorfe AA. Proteins 85 1618-1632 (2017)
  118. PKCβ phosphorylates PI3Kγ to activate it and release it from GPCR control. Walser R, Burke JE, Gogvadze E, Bohnacker T, Zhang X, Hess D, Küenzi P, Leitges M, Hirsch E, Williams RL, Laffargue M, Wymann MP. PLoS Biol 11 e1001587 (2013)
  119. RasGRP3, a Ras activator, contributes to signaling and the tumorigenic phenotype in human melanoma. Yang D, Tao J, Li L, Kedei N, Tóth ZE, Czap A, Velasquez JF, Mihova D, Michalowski AM, Yuspa SH, Blumberg PM. Oncogene 30 4590-4600 (2011)
  120. A genome-wide Ras-effector interaction network. Kiel C, Foglierini M, Kuemmerer N, Beltrao P, Serrano L. J Mol Biol 370 1020-1032 (2007)
  121. Diverging gain-of-function mechanisms of two novel KRAS mutations associated with Noonan and cardio-facio-cutaneous syndromes. Cirstea IC, Gremer L, Dvorsky R, Zhang SC, Piekorz RP, Zenker M, Ahmadian MR. Hum Mol Genet 22 262-270 (2013)
  122. Egfr/Ras signaling regulates DE-cadherin/Shotgun localization to control vein morphogenesis in the Drosophila wing. O'Keefe DD, Prober DA, Moyle PS, Rickoll WL, Edgar BA. Dev Biol 311 25-39 (2007)
  123. Eukaryotic elongation factor 1A2 cooperates with phosphatidylinositol-4 kinase III beta to stimulate production of filopodia through increased phosphatidylinositol-4,5 bisphosphate generation. Jeganathan S, Morrow A, Amiri A, Lee JM. Mol Cell Biol 28 4549-4561 (2008)
  124. Prognostic biomarkers in phase II trial of cetuximab-containing induction and chemoradiation in resectable HNSCC: Eastern cooperative oncology group E2303. Psyrri A, Lee JW, Pectasides E, Vassilakopoulou M, Kosmidis EK, Burtness BA, Rimm DL, Wanebo HJ, Forastiere AA. Clin Cancer Res 20 3023-3032 (2014)
  125. A Homogenous Bioluminescent System for Measuring GTPase, GTPase Activating Protein, and Guanine Nucleotide Exchange Factor Activities. Mondal S, Hsiao K, Goueli SA. Assay Drug Dev Technol 13 444-455 (2015)
  126. Improved binding of raf to Ras.GDP is correlated with biological activity. Kiel C, Filchtinski D, Spoerner M, Schreiber G, Kalbitzer HR, Herrmann C. J Biol Chem 284 31893-31902 (2009)
  127. Molecular Mechanism for Conformational Dynamics of Ras·GTP Elucidated from In-Situ Structural Transition in Crystal. Matsumoto S, Miyano N, Baba S, Liao J, Kawamura T, Tsuda C, Takeda A, Yamamoto M, Kumasaka T, Kataoka T, Shima F. Sci Rep 6 25931 (2016)
  128. Structural insight into the rearrangement of the switch I region in GTP-bound G12A K-Ras. Xu S, Long BN, Boris GH, Chen A, Ni S, Kennedy MA. Acta Crystallogr D Struct Biol 73 970-984 (2017)
  129. Structure of the DOCK2-ELMO1 complex provides insights into regulation of the auto-inhibited state. Chang L, Yang J, Jo CH, Boland A, Zhang Z, McLaughlin SH, Abu-Thuraia A, Killoran RC, Smith MJ, Côté JF, Barford D. Nat Commun 11 3464 (2020)
  130. CELF2 suppresses non-small cell lung carcinoma growth by inhibiting the PREX2-PTEN interaction. Yeung YT, Fan S, Lu B, Yin S, Yang S, Nie W, Wang M, Zhou L, Li T, Li X, Bode AM, Dong Z. Carcinogenesis 41 377-389 (2020)
  131. Protein kinase N controls a lysosomal lipid switch to facilitate nutrient signalling via mTORC1. Wallroth A, Koch PA, Marat AL, Krause E, Haucke V. Nat Cell Biol 21 1093-1101 (2019)
  132. Activating mutations in TOR are in similar structures as oncogenic mutations in PI3KCalpha. Sturgill TW, Hall MN. ACS Chem Biol 4 999-1015 (2009)
  133. Structural Dynamics in Ras and Related Proteins upon Nucleotide Switching. Harrison RA, Lu J, Carrasco M, Hunter J, Manandhar A, Gondi S, Westover KD, Engen JR. J Mol Biol 428 4723-4735 (2016)
  134. Defective K-Ras oncoproteins overcome impaired effector activation to initiate leukemia in vivo. Shieh A, Ward AF, Donlan KL, Harding-Theobald ER, Xu J, Mullighan CG, Zhang C, Chen SC, Su X, Downing JR, Bollag GE, Shannon KM. Blood 121 4884-4893 (2013)
  135. A new dimension to Ras function: a novel role for nucleotide-free Ras in Class II phosphatidylinositol 3-kinase beta (PI3KC2β) regulation. Wong KA, Russo A, Wang X, Chen YJ, Lavie A, O'Bryan JP. PLoS One 7 e45360 (2012)
  136. Mechanism of the regulation of type IB phosphoinositide 3OH-kinase byG-protein betagamma subunits. Krugmann S, Cooper MA, Williams DH, Hawkins PT, Stephens LR. Biochem J 362 725-731 (2002)
  137. Use of the GRP1 PH domain as a tool to measure the relative levels of PtdIns(3,4,5)P3 through a protein-lipid overlay approach. Guillou H, Lécureuil C, Anderson KE, Suire S, Ferguson GJ, Ellson CD, Gray A, Divecha N, Hawkins PT, Stephens LR. J Lipid Res 48 726-732 (2007)
  138. Receptor interacting protein 3 suppresses vascular smooth muscle cell growth by inhibition of the phosphoinositide 3-kinase-Akt axis. Li Q, Li G, Lan X, Zheng M, Chen KH, Cao CM, Xiao RP. J Biol Chem 285 9535-9544 (2010)
  139. Regulation of Ras signal transduction during T cell development and activation. Lapinski PE, King PD. Am J Clin Exp Immunol 1 147-153 (2012)
  140. Relation between the conformational heterogeneity and reaction cycle of Ras: molecular simulation of Ras. Kobayashi C, Saito S. Biophys J 99 3726-3734 (2010)
  141. Impairment of ubiquitylation by mutation in Drosophila E1 promotes both cell-autonomous and non-cell-autonomous Ras-ERK activation in vivo. Yan H, Chin ML, Horvath EA, Kane EA, Pfleger CM. J Cell Sci 122 1461-1470 (2009)
  142. Mapping of functional domains of the lipid kinase phosphatidylinositol 4-kinase type III alpha involved in enzymatic activity and hepatitis C virus replication. Harak C, Radujkovic D, Taveneau C, Reiss S, Klein R, Bressanelli S, Lohmann V. J Virol 88 9909-9926 (2014)
  143. Neuronal activity-dependent STAT3 localization to nucleus is dependent on Tyr-705 and Ser-727 phosphorylation in rat hippocampal neurons. Murase S, McKay RD. Eur J Neurosci 39 557-565 (2014)
  144. Obesity-Altered Adipose Stem Cells Promote ER⁺ Breast Cancer Metastasis through Estrogen Independent Pathways. Sabol RA, Beighley A, Giacomelli P, Wise RM, Harrison MAA, O'Donnnell BA, Sullivan BN, Lampenfeld JD, Matossian MD, Bratton MR, Wang G, Collins-Burow BM, Burow ME, Bunnell BA. Int J Mol Sci 20 E1419 (2019)
  145. Structural basis for the interaction of the adaptor protein grb14 with activated ras. Qamra R, Hubbard SR. PLoS One 8 e72473 (2013)
  146. Systems Biology of Immunomodulation for Post-Stroke Neuroplasticity: Multimodal Implications of Pharmacotherapy and Neurorehabilitation. Alam MA, Subramanyam Rallabandi VP, Roy PK. Front Neurol 7 94 (2016)
  147. An Inducible Retroviral Expression System for Tandem Affinity Purification Mass-Spectrometry-Based Proteomics Identifies Mixed Lineage Kinase Domain-like Protein (MLKL) as an Heat Shock Protein 90 (HSP90) Client. Bigenzahn JW, Fauster A, Rebsamen M, Kandasamy RK, Scorzoni S, Vladimer GI, Müller AC, Gstaiger M, Zuber J, Bennett KL, Superti-Furga G. Mol Cell Proteomics 15 1139-1150 (2016)
  148. Crystal structure of Lamellipodin implicates diverse functions in actin polymerization and Ras signaling. Chang YC, Zhang H, Brennan ML, Wu J. Protein Cell 4 211-219 (2013)
  149. Functional analysis of a duplication (p.E63_D69dup) in the switch II region of HRAS: new aspects of the molecular pathogenesis underlying Costello syndrome. Lorenz S, Lissewski C, Simsek-Kiper PO, Alanay Y, Boduroglu K, Zenker M, Rosenberger G. Hum Mol Genet 22 1643-1653 (2013)
  150. Genetic Interactions of STAT3 and Anticancer Drug Development. Fang B. Cancers (Basel) 6 494-525 (2014)
  151. Genetics of melanoma. Wangari-Talbot J, Chen S. Front Genet 3 330 (2012)
  152. Protection of adult mouse progenitor cells and human glioma cells by de novo decorin expression in an oxygen- and glucose-deprived cell culture model system. Santra M, Katakowski M, Zhang RL, Zhang ZG, Meng H, Jiang F, Chopp M. J Cereb Blood Flow Metab 26 1311-1322 (2006)
  153. Solution structure of ASPP2 N-terminal domain (N-ASPP2) reveals a ubiquitin-like fold. Tidow H, Andreeva A, Rutherford TJ, Fersht AR. J Mol Biol 371 948-958 (2007)
  154. Structural Features that Distinguish Inactive and Active PI3K Lipid Kinases. Zhang M, Jang H, Nussinov R. J Mol Biol 432 5849-5859 (2020)
  155. Structure of the phosphoinositide 3-kinase (PI3K) p110γ-p101 complex reveals molecular mechanism of GPCR activation. Rathinaswamy MK, Dalwadi U, Fleming KD, Adams C, Stariha JTB, Pardon E, Baek M, Vadas O, DiMaio F, Steyaert J, Hansen SD, Yip CK, Burke JE. Sci Adv 7 eabj4282 (2021)
  156. A "fuzzy"-logic language for encoding multiple physical traits in biomolecules. Warszawski S, Netzer R, Tawfik DS, Fleishman SJ. J Mol Biol 426 4125-4138 (2014)
  157. Chemistry and biology of moverastins, inhibitors of cancer cell migration, produced by Aspergillus. Takemoto Y, Watanabe H, Uchida K, Matsumura K, Nakae K, Tashiro E, Shindo K, Kitahara T, Imoto M. Chem Biol 12 1337-1347 (2005)
  158. Ras effector mutant expression suggest a negative regulator inhibits lung tumor formation. Vandal G, Geiling B, Dankort D. PLoS One 9 e84745 (2014)
  159. Vasoactive intestinal peptide and PACAP38 control N-methyl-D-aspartic acid-induced dendrite motility by modifying the activities of Rho GTPases and phosphatidylinositol 3-kinases. Henle F, Fischer C, Meyer DK, Leemhuis J. J Biol Chem 281 24955-24969 (2006)
  160. eIF4E binding protein 1 and H-Ras are novel substrates for the protein kinase activity of class-I phosphoinositide 3-kinase. Foukas LC, Shepherd PR. Biochem Biophys Res Commun 319 541-549 (2004)
  161. Structure, dynamics, lipid binding, and physiological relevance of the putative GTPase-binding domain of Dictyostelium formin C. Dames SA, Junemann A, Sass HJ, Schönichen A, Stopschinski BE, Grzesiek S, Faix J, Geyer M. J Biol Chem 286 36907-36920 (2011)
  162. Evidence from bioinformatics, expression and inhibition studies of phosphoinositide-3 kinase signalling in Giardia intestinalis. Cox SS, van der Giezen M, Tarr SJ, Crompton MR, Tovar J. BMC Microbiol 6 45 (2006)
  163. Frontline Science: TNF-α and GM-CSF1 priming augments the role of SOS1/2 in driving activation of Ras, PI3K-γ, and neutrophil proinflammatory responses. Suire S, Baltanas FC, Segonds-Pichon A, Davidson K, Santos E, Hawkins PT, Stephens LR. J Leukoc Biol 106 815-822 (2019)
  164. Genetic ablation of PI3Kγ results in defective IL-17RA signalling in T lymphocytes and increased IL-17 levels. Harris SJ, Ciuclan L, Finan PM, Wymann MP, Walker C, Westwick J, Ward SG, Thomas MJ. Eur J Immunol 42 3394-3404 (2012)
  165. PI3Kγ Is Critical for Dendritic Cell-Mediated CD8+ T Cell Priming and Viral Clearance during Influenza Virus Infection. Nobs SP, Schneider C, Heer AK, Huotari J, Helenius A, Kopf M. PLoS Pathog 12 e1005508 (2016)
  166. RAS interaction with Sin1 is dispensable for mTORC2 assembly and activity. Castel P, Dharmaiah S, Sale MJ, Messing S, Rizzuto G, Cuevas-Navarro A, Cheng A, Trnka MJ, Urisman A, Esposito D, Simanshu DK, McCormick F. Proc Natl Acad Sci U S A 118 e2103261118 (2021)
  167. Squalene synthase promotes the invasion of lung cancer cells via the osteopontin/ERK pathway. Yang YF, Chang YC, Jan YH, Yang CJ, Huang MS, Hsiao M. Oncogenesis 9 78 (2020)
  168. Evolution of AF6-RAS association and its implications in mixed-lineage leukemia. Smith MJ, Ottoni E, Ishiyama N, Goudreault M, Haman A, Meyer C, Tucholska M, Gasmi-Seabrook G, Menezes S, Laister RC, Minden MD, Marschalek R, Gingras AC, Hoang T, Ikura M. Nat Commun 8 1099 (2017)
  169. Gβγ is a direct regulator of endogenous p101/p110γ and p84/p110γ PI3Kγ complexes in mouse neutrophils. Rynkiewicz NK, Anderson KE, Suire S, Collins DM, Karanasios E, Vadas O, Williams R, Oxley D, Clark J, Stephens LR, Hawkins PT. Sci Signal 13 eaaz4003 (2020)
  170. The Q61H mutation decouples KRAS from upstream regulation and renders cancer cells resistant to SHP2 inhibitors. Gebregiworgis T, Kano Y, St-Germain J, Radulovich N, Udaskin ML, Mentes A, Huang R, Poon BPK, He W, Valencia-Sama I, Robinson CM, Huestis M, Miao J, Yeh JJ, Zhang ZY, Irwin MS, Lee JE, Tsao MS, Raught B, Marshall CB, Ohh M, Ikura M. Nat Commun 12 6274 (2021)
  171. Apoptosis signaling by the novel compound 3-Cl-AHPC involves increased EGFR proteolysis and accompanying decreased phosphatidylinositol 3-kinase and AKT kinase activities. Farhana L, Dawson MI, Huang Y, Zhang Y, Rishi AK, Reddy KB, Freeman RS, Fontana JA. Oncogene 23 1874-1884 (2004)
  172. Critical roles of interactions among switch I-preceding residues and between switch II and its neighboring alpha-helix in conformational dynamics of the GTP-bound Ras family small GTPases. Matsumoto K, Shima F, Muraoka S, Araki M, Hu L, Ijiri Y, Hirai R, Liao J, Yoshioka T, Kumasaka T, Yamamoto M, Tamura A, Kataoka T. J Biol Chem 286 15403-15412 (2011)
  173. Endothelial Rap1 (Ras-Association Proximate 1) Restricts Inflammatory Signaling to Protect From the Progression of Atherosclerosis. Singh B, Kosuru R, Lakshmikanthan S, Sorci-Thomas MG, Zhang DX, Sparapani R, Vasquez-Vivar J, Chrzanowska M. Arterioscler Thromb Vasc Biol 41 638-650 (2021)
  174. Expression profile of critical genes involved in FGF signaling pathway in the developing human primary dentition. Huang F, Hu X, Fang C, Liu H, Lin C, Zhang Y, Hu X. Histochem Cell Biol 144 457-469 (2015)
  175. MTOR Pathway-Based Discovery of Genetic Susceptibility to L-DOPA-Induced Dyskinesia in Parkinson's Disease Patients. Martín-Flores N, Fernández-Santiago R, Antonelli F, Cerquera C, Moreno V, Martí MJ, Ezquerra M, Malagelada C. Mol Neurobiol 56 2092-2100 (2019)
  176. Vibrational Stark effect spectroscopy reveals complementary electrostatic fields created by protein-protein binding at the interface of Ras and Ral. Walker DM, Hayes EC, Webb LJ. Phys Chem Chem Phys 15 12241-12252 (2013)
  177. Antagonistic effect of flavonoids on NSC-741909-mediated antitumor activity via scavenging of reactive oxygen species. Guo W, Wei X, Wu S, Wang L, Peng H, Wang J, Fang B. Eur J Pharmacol 649 51-58 (2010)
  178. Different inhibition of Gβγ-stimulated class IB phosphoinositide 3-kinase (PI3K) variants by a monoclonal antibody. Specific function of p101 as a Gβγ-dependent regulator of PI3Kγ enzymatic activity. Shymanets A, Prajwal, Vadas O, Czupalla C, LoPiccolo J, Brenowitz M, Ghigo A, Hirsch E, Krause E, Wetzker R, Williams RL, Harteneck C, Nürnberg B. Biochem J 469 59-69 (2015)
  179. Disease-related mutations in PI3Kγ disrupt regulatory C-terminal dynamics and reveal a path to selective inhibitors. Rathinaswamy MK, Gaieb Z, Fleming KD, Borsari C, Harris NJ, Moeller BE, Wymann MP, Amaro RE, Burke JE. Elife 10 e64691 (2021)
  180. Phosphoinositide 3-kinase targeting by the beta galactoside binding protein cytokine negates akt gene expression and leads aggressive breast cancer cells to apoptotic death. Wells V, Mallucci L. Breast Cancer Res 11 R2 (2009)
  181. Interaction of Calmodulin with the cSH2 Domain of the p85 Regulatory Subunit. Wang G, Zhang M, Jang H, Lu S, Lin S, Chen G, Nussinov R, Zhang J, Gaponenko V. Biochemistry 57 1917-1928 (2018)
  182. Nucleotide-Specific Autoinhibition of Full-Length K-Ras4B Identified by Extensive Conformational Sampling. Dudas B, Merzel F, Jang H, Nussinov R, Perahia D, Balog E. Front Mol Biosci 7 145 (2020)
  183. Prediction of Ras-effector interactions using position energy matrices. Kiel C, Serrano L. Bioinformatics 23 2226-2230 (2007)
  184. Structural basis of phosphatidylinositol 3-kinase C2α function. Lo WT, Zhang Y, Vadas O, Roske Y, Gulluni F, De Santis MC, Zagar AV, Stephanowitz H, Hirsch E, Liu F, Daumke O, Kudryashev M, Haucke V. Nat Struct Mol Biol 29 218-228 (2022)
  185. The G-Protein Rab5A Activates VPS34 Complex II, a Class III PI3K, by a Dual Regulatory Mechanism. Buckles TC, Ohashi Y, Tremel S, McLaughlin SH, Pardon E, Steyaert J, Gordon MT, Williams RL, Falke JJ. Biophys J 119 2205-2218 (2020)
  186. Development of a cell-free split-luciferase biochemical assay as a tool for screening for inhibitors of challenging protein-protein interaction targets. Cooley R, Kara N, Hui NS, Tart J, Roustan C, George R, Hancock DC, Binkowski BF, Wood KV, Ismail M, Downward J. Wellcome Open Res 5 20 (2020)
  187. Site-specific reflex response of ubiquitin to loop insertions. Ferraro DM, Hope EK, Robertson AD. J Mol Biol 352 575-584 (2005)
  188. Spatiotemporal dynamics of membrane surface charge regulates cell polarity and migration. Banerjee T, Biswas D, Pal DS, Miao Y, Iglesias PA, Devreotes PN. Nat Cell Biol 24 1499-1515 (2022)
  189. Identification of New KRAS G12D Inhibitors through Computer-Aided Drug Discovery Methods. Kulkarni AM, Kumar V, Parate S, Lee G, Yoon S, Lee KW. Int J Mol Sci 23 1309 (2022)
  190. Novel pyrrolo-quinoline derivatives as potent inhibitors for PI3-kinase related kinases. Peng H, Kim DI, Sarkaria JN, Cho YS, Abraham RT, Zalkow LH. Bioorg Med Chem 10 167-174 (2002)
  191. The IQGAP-related protein DGAP1 mediates signaling to the actin cytoskeleton as an effector and a sequestrator of Rac1 GTPases. Filić V, Marinović M, Faix J, Weber I. Cell Mol Life Sci 71 2775-2785 (2014)
  192. Characterization and mechanism of phosphoinositide 3-kinases (PI3Ks) members in insulin-induced changes of protein metabolism in yellow catfish Pelteobagrus fulvidraco. Zhuo MQ, Pan YX, Wu K, Xu YH, Luo Z. Gen Comp Endocrinol 247 34-45 (2017)
  193. Conserved electrostatic fields at the Ras-effector interface measured through vibrational Stark effect spectroscopy explain the difference in tilt angle in the Ras binding domains of Raf and RalGDS. Walker DM, Wang R, Webb LJ. Phys Chem Chem Phys 16 20047-20060 (2014)
  194. Conserved sequence motifs and the structure of the mTOR kinase domain. Sauer E, Imseng S, Maier T, Hall MN. Biochem Soc Trans 41 889-895 (2013)
  195. Identification of Potential Core Genes in Parkinson's Disease Using Bioinformatics Analysis. Quan W, Li J, Jin X, Liu L, Zhang Q, Qin Y, Pei X, Chen J. Parkinsons Dis 2021 1690341 (2021)
  196. Molecular Signals Elicited by GPCR Agonists in Hypertension, Cardiovascular Remodeling: Are MMPs and ADAMs Elusive Therapeutic Targets? Wang X, Bosonea AM, Odenbach J, Fernandez-Patron C. Curr Hypertens Rev 8 159-180 (2012)
  197. RAS ubiquitylation modulates effector interactions. Thurman R, Siraliev-Perez E, Campbell SL. Small GTPases 11 180-185 (2020)
  198. Ras classical effectors: new tales from in silico complexes. Fuentes G, Valencia A. Trends Biochem Sci 34 533-539 (2009)
  199. Letter Structural basis for intramolecular interaction of post-translationally modified H-Ras•GTP prepared by protein ligation. Ke H, Matsumoto S, Murashima Y, Taniguchi-Tamura H, Miyamoto R, Yoshikawa Y, Tsuda C, Kumasaka T, Mizohata E, Edamatsu H, Kataoka T. FEBS Lett 591 2470-2481 (2017)
  200. Structure of the ciliogenesis-associated CPLANE complex. Langousis G, Cavadini S, Boegholm N, Lorentzen E, Kempf G, Matthias P. Sci Adv 8 eabn0832 (2022)
  201. A comprehensive analysis of RAS-effector interactions reveals interaction hotspots and new binding partners. Rezaei Adariani S, Kazemein Jasemi NS, Bazgir F, Wittich C, Amin E, Seidel CAM, Dvorsky R, Ahmadian MR. J Biol Chem 296 100626 (2021)
  202. Development of selective inhibitors of phosphatidylinositol 3-kinase C2α. Lo WT, Belabed H, Kücükdisli M, Metag J, Roske Y, Prokofeva P, Ohashi Y, Horatscheck A, Cirillo D, Krauss M, Schmied C, Neuenschwander M, von Kries JP, Médard G, Kuster B, Perisic O, Williams RL, Daumke O, Payrastre B, Severin S, Nazaré M, Haucke V. Nat Chem Biol 19 18-27 (2023)
  203. Inhibition of RAS-driven signaling and tumorigenesis with a pan-RAS monobody targeting the Switch I/II pocket. Wallon L, Khan I, Teng KW, Koide A, Zuberi M, Li J, Ketavarapu G, Traaseth NJ, O'Bryan JP, Koide S. Proc Natl Acad Sci U S A 119 e2204481119 (2022)
  204. P2RY2-AKT activation is a therapeutically actionable consequence of XPO1 inhibition in acute myeloid leukemia. Lin KH, Rutter JC, Xie A, Killarney ST, Vaganay C, Benaksas C, Ling F, Sodaro G, Meslin PA, Bassil CF, Fenouille N, Hoj J, Washart R, Ang HX, Cerda-Smith C, Chaintreuil P, Jacquel A, Auberger P, Forget A, Itzykson R, Lu M, Lin J, Pierobon M, Sheng Z, Li X, Chilkoti A, Owzar K, Rizzieri DA, Pardee TS, Benajiba L, Petricoin E, Puissant A, Wood KC. Nat Cancer 3 837-851 (2022)
  205. Molecular basis for differential activation of p101 and p84 complexes of PI3Kγ by Ras and GPCRs. Rathinaswamy MK, Jenkins ML, Duewell BR, Zhang X, Harris NJ, Evans JT, Stariha JTB, Dalwadi U, Fleming KD, Ranga-Prasad H, Yip CK, Williams RL, Hansen SD, Burke JE. Cell Rep 42 112172 (2023)
  206. Ras-dependent and Ras-independent effects of PI3K in Drosophila motor neurons. Johnson C, Chun-Jen Lin C, Stern M. Genes Brain Behav 11 848-858 (2012)
  207. HPLC method to resolve, identify and quantify guanine nucleotides bound to recombinant ras GTPase. Hannan JP, Swisher GH, Martyr JG, Cordaro NJ, Erbse AH, Falke JJ. Anal Biochem 631 114338 (2021)
  208. Killing tumors by keeping ras and PI3' kinase apart. Yuan TL, McCormick F. Cancer Cell 24 562-563 (2013)
  209. Non-canonical regulation of phosphatidylinositol 3-kinase gamma isoform activity in retinal rod photoreceptor cells. Gupta VK, Rajala A, Rajala RV. Cell Commun Signal 13 7 (2015)
  210. Novel PI3Kγ mutation in a 44-year-old man with chronic infections and chronic pelvic pain. Bojarski EF, Strauss AC, Fagin AP, Plantinga TS, Hoischen A, Veltman J, Allsop SA, Granadillo VJ, William A, Netea MG, Dimitrakoff J. PLoS One 8 e68118 (2013)
  211. PI3King the right partner: unique interactions and signaling by p110β. Dbouk HA. Postdoc J 3 71-87 (2015)
  212. Phosphoinositide 3-kinase gamma has multiple phospholipid binding sites. Schmidt C, Schilli-Westermann M, Klinger R, Kirsch C. Protein J 29 127-135 (2010)
  213. Probing mutation-induced conformational transformation of the GTP/M-RAS complex through Gaussian accelerated molecular dynamics simulations. Bao H, Wang W, Sun H, Chen J. J Enzyme Inhib Med Chem 38 2195995 (2023)
  214. Ras-guanine nucleotide complexes: A UV spectral deconvolution method to analyze protein concentration, nucleotide stoichiometry, and purity. Swisher GH, Hannan JP, Cordaro NJ, Erbse AH, Falke JJ. Anal Biochem 618 114066 (2021)
  215. Synthesis and biological evaluation of novel farnesylthiosalicylic acid derivatives for cancer treatment. Ling Y, Wang X, Zhu H, Wang Z, Xu C, Wang X, Chen L, Zhang W. Arch Pharm (Weinheim) 347 327-333 (2014)
  216. The novel duplication HRAS c.186_206dup p.(Glu62_Arg68dup): clinical and functional aspects. Gripp KW, Baker L, Robbins KM, Stabley DL, Bellus GA, Kolbe V, Nauth T, Rosenberger G. Eur J Hum Genet 28 1548-1554 (2020)
  217. Actuation of single downstream nodes in growth factor network steers immune cell migration. Pal DS, Banerjee T, Lin Y, de Trogoff F, Borleis J, Iglesias PA, Devreotes PN. Dev Cell 58 1170-1188.e7 (2023)
  218. Afadin couples RAS GTPases to the polarity rheostat Scribble. Goudreault M, Gagné V, Jo CH, Singh S, Killoran RC, Gingras AC, Smith MJ. Nat Commun 13 4562 (2022)
  219. Association between ABCB1 (3435C>T) polymorphism and susceptibility of colorectal cancer: A meta-analysis. Han LL, Zuo BL, Cai WL, Guo ZN, Tong BH, Wei HL, Zhu Z, Li GY. Medicine (Baltimore) 99 e19189 (2020)
  220. Chemical remodeling of a cellular chaperone to target the active state of mutant KRAS. Schulze CJ, Seamon KJ, Zhao Y, Yang YC, Cregg J, Kim D, Tomlinson A, Choy TJ, Wang Z, Sang B, Pourfarjam Y, Lucas J, Cuevas-Navarro A, Ayala-Santos C, Vides A, Li C, Marquez A, Zhong M, Vemulapalli V, Weller C, Gould A, Whalen DM, Salvador A, Milin A, Saldajeno-Concar M, Dinglasan N, Chen A, Evans J, Knox JE, Koltun ES, Singh M, Nichols R, Wildes D, Gill AL, Smith JAM, Lito P. Science 381 794-799 (2023)
  221. Inhibition mechanism of MRTX1133 on KRASG12D: a molecular dynamics simulation and Markov state model study. Liang F, Kang Z, Sun X, Chen J, Duan X, He H, Cheng J. J Comput Aided Mol Des 37 157-166 (2023)
  222. RAS and ROS-A Story of Pseudomonas Survival. Kolar SL, Liu GY. Cell Host Microbe 21 551-552 (2017)
  223. Binding of active Ras and its mutants to the Ras binding domain of PI-3-kinase: A quantitative approach to KD measurements. Fleming IR, Hannan JP, Swisher GH, Tesdahl CD, Martyr JG, Cordaro NJ, Erbse AH, Falke JJ. Anal Biochem 663 115019 (2023)
  224. Class I PI3K Biology. Aytenfisu TY, Campbell HM, Chakrabarti M, Amzel LM, Gabelli SB. Curr Top Microbiol Immunol 436 3-49 (2022)
  225. Design and purification of active truncated phosphoinositide 3-kinase gamma protein constructs for structural studies. Vujičić Žagar A, Scapozza L, Vadas O. Protein Expr Purif 135 1-7 (2017)
  226. Case Reports Long-term survival of a patient with pancreatic cancer and lung metastasis: A case report and review of literature. Yang WW, Yang L, Lu HZ, Sun YK. World J Clin Cases 9 9134-9143 (2021)
  227. Path Sampling Simulations Reveal How the Q61L Mutation Alters the Dynamics of KRas. Roet S, Hooft F, Bolhuis PG, Swenson DWH, Vreede J. J Phys Chem B 126 10034-10044 (2022)
  228. Poor prognosis, hypomethylation, and immune infiltrates are associated with downregulation of INMT in head and neck squamous cell carcinoma. Cui K, Yao X, Wei Z, Yang Y, Liu X, Huang Z, Huo H, Tang J, Xie Y. Front Genet 13 917344 (2022)
  229. Whole-exome sequencing identified recurrent and novel variants in benzene-induced leukemia. Lin D, Wang D, Li P, Deng L, Zhang Z, Zhang Y, Zhang M, Zhang N. BMC Med Genomics 16 13 (2023)