1h3e Citations

Class I tyrosyl-tRNA synthetase has a class II mode of cognate tRNA recognition.

EMBO J 21 3829-40 (2002)
Cited: 150 times
EuropePMC logo PMID: 12110594

Abstract

Bacterial tyrosyl-tRNA synthetases (TyrRS) possess a flexibly linked C-terminal domain of approximately 80 residues, which has hitherto been disordered in crystal structures of the enzyme. We have determined the structure of Thermus thermophilus TyrRS at 2.0 A resolution in a crystal form in which the C-terminal domain is ordered, and confirm that the fold is similar to part of the C-terminal domain of ribosomal protein S4. We have also determined the structure at 2.9 A resolution of the complex of T.thermophilus TyrRS with cognate tRNA(tyr)(G Psi A). In this structure, the C-terminal domain binds between the characteristic long variable arm of the tRNA and the anti-codon stem, thus recognizing the unique shape of the tRNA. The anticodon bases have a novel conformation with A-36 stacked on G-34, and both G-34 and Psi-35 are base-specifically recognized. The tRNA binds across the two subunits of the dimeric enzyme and, remarkably, the mode of recognition of the class I TyrRS for its cognate tRNA resembles that of a class II synthetase in being from the major groove side of the acceptor stem.

Reviews - 1h3e mentioned but not cited (1)

  1. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)

Articles - 1h3e mentioned but not cited (38)

  1. Biocontainment of genetically modified organisms by synthetic protein design. Mandell DJ, Lajoie MJ, Mee MT, Takeuchi R, Kuznetsov G, Norville JE, Gregg CJ, Stoddard BL, Church GM. Nature 518 55-60 (2015)
  2. ModeRNA: a tool for comparative modeling of RNA 3D structure. Rother M, Rother K, Puton T, Bujnicki JM. Nucleic Acids Res. 39 4007-4022 (2011)
  3. Structural dynamics of the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase. Palencia A, Crépin T, Vu MT, Lincecum TL, Martinis SA, Cusack S. Nat. Struct. Mol. Biol. 19 677-684 (2012)
  4. Virus-encoded aminoacyl-tRNA synthetases: structural and functional characterization of mimivirus TyrRS and MetRS. Abergel C, Rudinger-Thirion J, Giegé R, Claverie JM. J. Virol. 81 12406-12417 (2007)
  5. Accurate energies of hydrogen bonded nucleic acid base pairs and triplets in tRNA tertiary interactions. Oliva R, Cavallo L, Tramontano A. Nucleic Acids Res. 34 865-879 (2006)
  6. Structural basis for recognition of cognate tRNA by tyrosyl-tRNA synthetase from three kingdoms. Tsunoda M, Kusakabe Y, Tanaka N, Ohno S, Nakamura M, Senda T, Moriguchi T, Asai N, Sekine M, Yokogawa T, Nishikawa K, Nakamura KT. Nucleic Acids Res. 35 4289-4300 (2007)
  7. Predicting RNA-binding sites from the protein structure based on electrostatics, evolution and geometry. Chen YC, Lim C. Nucleic Acids Res. 36 e29 (2008)
  8. A nonredundant structure dataset for benchmarking protein-RNA computational docking. Huang SY, Zou X. J Comput Chem 34 311-318 (2013)
  9. A knowledge-based scoring function for protein-RNA interactions derived from a statistical mechanics-based iterative method. Huang SY, Zou X. Nucleic Acids Res. 42 e55 (2014)
  10. An automated approach to network features of protein structure ensembles. Bhattacharyya M, Bhat CR, Vishveshwara S. Protein Sci. 22 1399-1416 (2013)
  11. tRNA-controlled nuclear import of a human tRNA synthetase. Fu G, Xu T, Shi Y, Wei N, Yang XL. J. Biol. Chem. 287 9330-9334 (2012)
  12. iPARTS: an improved tool of pairwise alignment of RNA tertiary structures. Wang CW, Chen KT, Lu CL. Nucleic Acids Res. 38 W340-7 (2010)
  13. Higher order structural effects stabilizing the reverse Watson-Crick Guanine-Cytosine base pair in functional RNAs. Chawla M, Abdel-Azeim S, Oliva R, Cavallo L. Nucleic Acids Res. 42 714-726 (2014)
  14. Yeast as a model of human mitochondrial tRNA base substitutions: investigation of the molecular basis of respiratory defects. Montanari A, Besagni C, De Luca C, Morea V, Oliva R, Tramontano A, Bolotin-Fukuhara M, Frontali L, Francisci S. RNA 14 275-283 (2008)
  15. Exit strategies for charged tRNA from GluRS. Black Pyrkosz A, Eargle J, Sethi A, Luthey-Schulten Z. J. Mol. Biol. 397 1350-1371 (2010)
  16. Thermodynamic properties distinguish human mitochondrial aspartyl-tRNA synthetase from bacterial homolog with same 3D architecture. Neuenfeldt A, Lorber B, Ennifar E, Gaudry A, Sauter C, Sissler M, Florentz C. Nucleic Acids Res. 41 2698-2708 (2013)
  17. Aminoacylation and conformational properties of yeast mitochondrial tRNA mutants with respiratory deficiency. Francisci S, DE Luca C, Oliva R, Morea V, Tramontano A, Frontali L. RNA 11 914-927 (2005)
  18. Sequence dependent variations in RNA duplex are related to non-canonical hydrogen bond interactions in dinucleotide steps. Kailasam S, Bhattacharyya D, Bansal M. BMC Res Notes 7 83 (2014)
  19. The tyrosyl-tRNA synthetase like gene located in the tyramine biosynthesis cluster of Enterococcus durans is transcriptionally regulated by tyrosine concentration and extracellular pH. Linares DM, Fernández M, Del-Río B, Ladero V, Martin MC, Alvarez MA. BMC Microbiol. 12 23 (2012)
  20. Adaptation to tRNA acceptor stem structure by flexible adjustment in the catalytic domain of class I tRNA synthetases. Liu C, Sanders JM, Pascal JM, Hou YM. RNA 18 213-221 (2012)
  21. Evolutionary and structural annotation of disease-associated mutations in human aminoacyl-tRNA synthetases. Datt M, Sharma A. BMC Genomics 15 1063 (2014)
  22. Flexibility-rigidity index for protein-nucleic acid flexibility and fluctuation analysis. Opron K, Xia K, Burton Z, Wei GW. J Comput Chem 37 1283-1295 (2016)
  23. RNA-binding residues prediction using structural features. Ren H, Shen Y. BMC Bioinformatics 16 249 (2015)
  24. The solution structure of YbcJ from Escherichia coli reveals a recently discovered alphaL motif involved in RNA binding. Volpon L, Lievre C, Osborne MJ, Gandhi S, Iannuzzi P, Larocque R, Cygler M, Gehring K, Ekiel I. J. Bacteriol. 185 4204-4210 (2003)
  25. An animal model for mitochondrial tyrosyl-tRNA synthetase deficiency reveals links between oxidative phosphorylation and retinal function. Jin X, Zhang Z, Nie Z, Wang C, Meng F, Yi Q, Chen M, Sun J, Zou J, Jiang P, Guan MX. J Biol Chem 296 100437 (2021)
  26. Distinct Conformation of ATP Molecule in Solution and on Protein. Kobayashi E, Yura K, Nagai Y. Biophysics (Nagoya-shi) 9 1-12 (2013)
  27. Idiosyncratic helix-turn-helix motif in Methanosarcina barkeri seryl-tRNA synthetase has a critical architectural role. Bilokapic S, Ivic N, Godinic-Mikulcic V, Piantanida I, Ban N, Weygand-Durasevic I. J. Biol. Chem. 284 10706-10713 (2009)
  28. Structure based approach for understanding organism specific recognition of protein-RNA complexes. Nagarajan R, Chothani SP, Ramakrishnan C, Sekijima M, Gromiha MM. Biol. Direct 10 8 (2015)
  29. Type-II tRNAs and Evolution of Translation Systems and the Genetic Code. Kim Y, Kowiatek B, Opron K, Burton ZF. Int J Mol Sci 19 (2018)
  30. Resurrecting the Bacterial Tyrosyl-tRNA Synthetase/tRNA Pair for Expanding the Genetic Code of Both E. coli and Eukaryotes. Italia JS, Latour C, Wrobel CJJ, Chatterjee A. Cell Chem Biol 25 1304-1312.e5 (2018)
  31. Exploring the balance between folding and functional dynamics in proteins and RNA. Jackson J, Nguyen K, Whitford PC. Int J Mol Sci 16 6868-6889 (2015)
  32. Inhibitory mechanism of reveromycin A at the tRNA binding site of a class I synthetase. Chen B, Luo S, Zhang S, Ju Y, Gu Q, Xu J, Yang XL, Zhou H. Nat Commun 12 1616 (2021)
  33. Structural Basis for tRNA Mimicry by a Bacterial Y RNA. Wang W, Chen X, Wolin SL, Xiong Y. Structure 26 1635-1644.e3 (2018)
  34. Structural basis of the interaction between cyclodipeptide synthases and aminoacylated tRNA substrates. Bourgeois G, Seguin J, Babin M, Gondry M, Mechulam Y, Schmitt E. RNA 26 1589-1602 (2020)
  35. Systematic Analysis of the Binding Surfaces between tRNAs and Their Respective Aminoacyl tRNA Synthetase Based on Structural and Evolutionary Data. Tamaki S, Tomita M, Suzuki H, Kanai A. Front Genet 8 227 (2017)
  36. iPARTS2: an improved tool for pairwise alignment of RNA tertiary structures, version 2. Yang CH, Shih CT, Chen KT, Lee PH, Tsai PH, Lin JC, Yen CY, Lin TY, Lu CL. Nucleic Acids Res. 44 W328-32 (2016)
  37. A comparative analysis of machine learning classifiers for predicting protein-binding nucleotides in RNA sequences. Agarwal A, Singh K, Kant S, Bahadur RP. Comput Struct Biotechnol J 20 3195-3207 (2022)
  38. The RNA degradosome promotes tRNA quality control through clearance of hypomodified tRNA. Kimura S, Waldor MK. Proc. Natl. Acad. Sci. U.S.A. 116 1394-1403 (2019)


Reviews citing this publication (14)

  1. Aminoacyl-tRNA synthetases: versatile players in the changing theater of translation. Francklyn C, Perona JJ, Puetz J, Hou YM. RNA 8 1363-1372 (2002)
  2. Evolution of the tRNA(Tyr)/TyrRS aminoacylation systems. Bonnefond L, Giegé R, Rudinger-Thirion J. Biochimie 87 873-883 (2005)
  3. RNA-modifying enzymes. Ferré-D'Amaré AR. Curr. Opin. Struct. Biol. 13 49-55 (2003)
  4. Recent Advances in Mitochondrial Aminoacyl-tRNA Synthetases and Disease. Sissler M, González-Serrano LE, Westhof E. Trends Mol Med 23 693-708 (2017)
  5. Expanded genetic code technologies for incorporating modified lysine at multiple sites. Yanagisawa T, Umehara T, Sakamoto K, Yokoyama S. Chembiochem 15 2181-2187 (2014)
  6. Interaction of aminoacyl-tRNA synthetases with tRNA: general principles and distinguishing characteristics of the high-molecular-weight substrate recognition. Vasil'eva IA, Moor NA. Biochemistry Mosc. 72 247-263 (2007)
  7. Emergence and evolution. Bullwinkle TJ, Ibba M. Top Curr Chem 344 43-87 (2014)
  8. Class I and II aminoacyl-tRNA synthetase tRNA groove discrimination created the first synthetase-tRNA cognate pairs and was therefore essential to the origin of genetic coding. Carter CW, Wills PR. IUBMB Life 71 1088-1098 (2019)
  9. Personalized Medicine in Mitochondrial Health and Disease: Molecular Basis of Therapeutic Approaches Based on Nutritional Supplements and Their Analogs. Tragni V, Primiano G, Tummolo A, Cafferati Beltrame L, La Piana G, Sgobba MN, Cavalluzzi MM, Paterno G, Gorgoglione R, Volpicella M, Guerra L, Marzulli D, Servidei S, De Grassi A, Petrosillo G, Lentini G, Pierri CL. Molecules 27 3494 (2022)
  10. The Evolution of Substrate Specificity by tRNA Modification Enzymes. McKenney KM, Rubio MAT, Alfonzo JD. Enzymes 41 51-88 (2017)
  11. "Superwobbling" and tRNA-34 Wobble and tRNA-37 Anticodon Loop Modifications in Evolution and Devolution of the Genetic Code. Lei L, Burton ZF. Life (Basel) 12 252 (2022)
  12. A tRNA- and Anticodon-Centric View of the Evolution of Aminoacyl-tRNA Synthetases, tRNAomes, and the Genetic Code. Kim Y, Opron K, Burton ZF. Life (Basel) 9 (2019)
  13. Incompatibility and Interchangeability in Molecular Evolution. Sloan DB, Warren JM, Williams AM, Kuster SA, Forsythe ES. Genome Biol Evol 15 evac184 (2023)
  14. The recurrent missense mutation p.(Arg367Trp) in YARS1 causes a distinct neurodevelopmental phenotype. Averdunk L, Sticht H, Surowy H, Lüdecke HJ, Koch-Hogrebe M, Alsaif HS, Kahrizi K, Alzaidan H, Alawam BS, Tohary M, Kraus C, Endele S, Wadman E, Kaplan JD, Efthymiou S, Najmabadi H, Reis A, Alkuraya FS, Wieczorek D. J Mol Med (Berl) 99 1755-1768 (2021)

Articles citing this publication (97)

  1. Mutation of the mitochondrial tyrosyl-tRNA synthetase gene, YARS2, causes myopathy, lactic acidosis, and sideroblastic anemia--MLASA syndrome. Riley LG, Cooper S, Hickey P, Rudinger-Thirion J, McKenzie M, Compton A, Lim SC, Thorburn D, Ryan MT, Giegé R, Bahlo M, Christodoulou J. Am. J. Hum. Genet. 87 52-59 (2010)
  2. Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion. Kobayashi T, Nureki O, Ishitani R, Yaremchuk A, Tukalo M, Cusack S, Sakamoto K, Yokoyama S. Nat. Struct. Biol. 10 425-432 (2003)
  3. The crystal structure of leucyl-tRNA synthetase complexed with tRNALeu in the post-transfer-editing conformation. Tukalo M, Yaremchuk A, Fukunaga R, Yokoyama S, Cusack S. Nat. Struct. Mol. Biol. 12 923-930 (2005)
  4. Protein-nucleic acid recognition: statistical analysis of atomic interactions and influence of DNA structure. Lejeune D, Delsaux N, Charloteaux B, Thomas A, Brasseur R. Proteins 61 258-271 (2005)
  5. Structural basis for functional mimicry of long-variable-arm tRNA by transfer-messenger RNA. Bessho Y, Shibata R, Sekine S, Murayama K, Higashijima K, Hori-Takemoto C, Shirouzu M, Kuramitsu S, Yokoyama S. Proc. Natl. Acad. Sci. U.S.A. 104 8293-8298 (2007)
  6. Aminoacylation complex structures of leucyl-tRNA synthetase and tRNALeu reveal two modes of discriminator-base recognition. Fukunaga R, Yokoyama S. Nat. Struct. Mol. Biol. 12 915-922 (2005)
  7. Distinct kinetic mechanisms of the two classes of Aminoacyl-tRNA synthetases. Zhang CM, Perona JJ, Ryu K, Francklyn C, Hou YM. J. Mol. Biol. 361 300-311 (2006)
  8. Crystal structure of a human aminoacyl-tRNA synthetase cytokine. Yang XL, Skene RJ, McRee DE, Schimmel P. Proc. Natl. Acad. Sci. U.S.A. 99 15369-15374 (2002)
  9. Structural snapshots of the KMSKS loop rearrangement for amino acid activation by bacterial tyrosyl-tRNA synthetase. Kobayashi T, Takimura T, Sekine R, Kelly VP, Kamata K, Sakamoto K, Nishimura S, Yokoyama S. J. Mol. Biol. 346 105-117 (2005)
  10. Crystal structures that suggest late development of genetic code components for differentiating aromatic side chains. Yang XL, Otero FJ, Skene RJ, McRee DE, Schimmel P, Ribas de Pouplana L. Proc. Natl. Acad. Sci. U.S.A. 100 15376-15380 (2003)
  11. Interconversion of ATP binding and conformational free energies by tryptophanyl-tRNA synthetase: structures of ATP bound to open and closed, pre-transition-state conformations. Retailleau P, Huang X, Yin Y, Hu M, Weinreb V, Vachette P, Vonrhein C, Bricogne G, Roversi P, Ilyin V, Carter CW. J. Mol. Biol. 325 39-63 (2003)
  12. Structure of a tyrosyl-tRNA synthetase splicing factor bound to a group I intron RNA. Paukstelis PJ, Chen JH, Chase E, Lambowitz AM, Golden BL. Nature 451 94-97 (2008)
  13. A short peptide insertion crucial for angiostatic activity of human tryptophanyl-tRNA synthetase. Kise Y, Lee SW, Park SG, Fukai S, Sengoku T, Ishii R, Yokoyama S, Kim S, Nureki O. Nat. Struct. Mol. Biol. 11 149-156 (2004)
  14. Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation. Fukunaga R, Yokoyama S. J. Mol. Biol. 346 57-71 (2005)
  15. Crystal structures of apo wild-type M. jannaschii tyrosyl-tRNA synthetase (TyrRS) and an engineered TyrRS specific for O-methyl-L-tyrosine. Zhang Y, Wang L, Schultz PG, Wilson IA. Protein Sci. 14 1340-1349 (2005)
  16. A minimal TrpRS catalytic domain supports sense/antisense ancestry of class I and II aminoacyl-tRNA synthetases. Pham Y, Li L, Kim A, Erdogan O, Weinreb V, Butterfoss GL, Kuhlman B, Carter CW. Mol. Cell 25 851-862 (2007)
  17. On the origin of the genetic code: signatures of its primordial complementarity in tRNAs and aminoacyl-tRNA synthetases. Rodin SN, Rodin AS. Heredity (Edinb) 100 341-355 (2008)
  18. Structure of the unusual seryl-tRNA synthetase reveals a distinct zinc-dependent mode of substrate recognition. Bilokapic S, Maier T, Ahel D, Gruic-Sovulj I, Söll D, Weygand-Durasevic I, Ban N. EMBO J. 25 2498-2509 (2006)
  19. Two conformations of a crystalline human tRNA synthetase-tRNA complex: implications for protein synthesis. Yang XL, Otero FJ, Ewalt KL, Liu J, Swairjo MA, Köhrer C, RajBhandary UL, Skene RJ, McRee DE, Schimmel P. EMBO J. 25 2919-2929 (2006)
  20. Improving orthogonal tRNA-synthetase recognition for efficient unnatural amino acid incorporation and application in mammalian cells. Takimoto JK, Adams KL, Xiang Z, Wang L. Mol Biosyst 5 931-934 (2009)
  21. Crystal structure of human mitochondrial tyrosyl-tRNA synthetase reveals common and idiosyncratic features. Bonnefond L, Frugier M, Touzé E, Lorber B, Florentz C, Giegé R, Sauter C, Rudinger-Thirion J. Structure 15 1505-1516 (2007)
  22. Cyclodipeptide synthases, a family of class-I aminoacyl-tRNA synthetase-like enzymes involved in non-ribosomal peptide synthesis. Sauguet L, Moutiez M, Li Y, Belin P, Seguin J, Le Du MH, Thai R, Masson C, Fonvielle M, Pernodet JL, Charbonnier JB, Gondry M. Nucleic Acids Res. 39 4475-4489 (2011)
  23. Structure of human tryptophanyl-tRNA synthetase in complex with tRNATrp reveals the molecular basis of tRNA recognition and specificity. Shen N, Guo L, Yang B, Jin Y, Ding J. Nucleic Acids Res. 34 3246-3258 (2006)
  24. Computational studies of tryptophanyl-tRNA synthetase: activation of ATP by induced-fit. Kapustina M, Carter CW. J. Mol. Biol. 362 1159-1180 (2006)
  25. tRNA-dependent active site assembly in a class I aminoacyl-tRNA synthetase. Sherlin LD, Perona JJ. Structure 11 591-603 (2003)
  26. A tyrosyl-tRNA synthetase adapted to function in group I intron splicing by acquiring a new RNA binding surface. Paukstelis PJ, Coon R, Madabusi L, Nowakowski J, Monzingo A, Robertus J, Lambowitz AM. Mol. Cell 17 417-428 (2005)
  27. Reconstitution of translation from Thermus thermophilus reveals a minimal set of components sufficient for protein synthesis at high temperatures and functional conservation of modern and ancient translation components. Zhou Y, Asahara H, Gaucher EA, Chong S. Nucleic Acids Res. 40 7932-7945 (2012)
  28. The homotetrameric phosphoseryl-tRNA synthetase from Methanosarcina mazei exhibits half-of-the-sites activity. Hauenstein SI, Hou YM, Perona JJ. J. Biol. Chem. 283 21997-22006 (2008)
  29. Crystal structures of tyrosyl-tRNA synthetases from Archaea. Kuratani M, Sakai H, Takahashi M, Yanagisawa T, Kobayashi T, Murayama K, Chen L, Liu ZJ, Wang BC, Kuroishi C, Kuramitsu S, Terada T, Bessho Y, Shirouzu M, Sekine S, Yokoyama S. J. Mol. Biol. 355 395-408 (2006)
  30. Differential modes of transfer RNASer recognition in Methanosarcina barkeri. Korencic D, Polycarpo C, Weygand-Durasevic I, Söll D. J. Biol. Chem. 279 48780-48786 (2004)
  31. Catalytic mechanism of the tryptophan activation reaction revealed by crystal structures of human tryptophanyl-tRNA synthetase in different enzymatic states. Shen N, Zhou M, Yang B, Yu Y, Dong X, Ding J. Nucleic Acids Res. 36 1288-1299 (2008)
  32. Transplantation of a tyrosine editing domain into a tyrosyl-tRNA synthetase variant enhances its specificity for a tyrosine analog. Oki K, Sakamoto K, Kobayashi T, Sasaki HM, Yokoyama S. Proc. Natl. Acad. Sci. U.S.A. 105 13298-13303 (2008)
  33. Using molecular dynamics to map interaction networks in an aminoacyl-tRNA synthetase. Budiman ME, Knaggs MH, Fetrow JS, Alexander RW. Proteins 68 670-689 (2007)
  34. An asymmetric underlying rule in the assignment of codons: possible clue to a quick early evolution of the genetic code via successive binary choices. Delarue M. RNA 13 161-169 (2007)
  35. Human mitochondrial TyrRS disobeys the tyrosine identity rules. Bonnefond L, Frugier M, Giegé R, Rudinger-Thirion J. RNA 11 558-562 (2005)
  36. Identification and evolution of fungal mitochondrial tyrosyl-tRNA synthetases with group I intron splicing activity. Paukstelis PJ, Lambowitz AM. Proc. Natl. Acad. Sci. U.S.A. 105 6010-6015 (2008)
  37. Partitioning of aminoacyl-tRNA synthetases in two classes could have been encoded in a strand-symmetric RNA world. Rodin SN, Rodin AS. DNA Cell Biol. 25 617-626 (2006)
  38. Structural basis of nonnatural amino acid recognition by an engineered aminoacyl-tRNA synthetase for genetic code expansion. Kobayashi T, Sakamoto K, Takimura T, Sekine R, Kelly VP, Kamata K, Nishimura S, Yokoyama S. Proc. Natl. Acad. Sci. U.S.A. 102 1366-1371 (2005)
  39. The double-length tyrosyl-tRNA synthetase from the eukaryote Leishmania major forms an intrinsically asymmetric pseudo-dimer. Larson ET, Kim JE, Castaneda LJ, Napuli AJ, Zhang Z, Fan E, Zucker FH, Verlinde CL, Buckner FS, Van Voorhis WC, Hol WG, Merritt EA. J. Mol. Biol. 409 159-176 (2011)
  40. Kinetic quality control of anticodon recognition by a eukaryotic aminoacyl-tRNA synthetase. Liu C, Gamper H, Shtivelband S, Hauenstein S, Perona JJ, Hou YM. J. Mol. Biol. 367 1063-1078 (2007)
  41. A novel homozygous YARS2 mutation causes severe myopathy, lactic acidosis, and sideroblastic anemia 2. Nakajima J, Eminoglu TF, Vatansever G, Nakashima M, Tsurusaki Y, Saitsu H, Kawashima H, Matsumoto N, Miyake N. J. Hum. Genet. 59 229-232 (2014)
  42. Breaking the stereo barrier of amino acid attachment to tRNA by a single nucleotide. Shitivelband S, Hou YM. J. Mol. Biol. 348 513-521 (2005)
  43. Structures of tryptophanyl-tRNA synthetase II from Deinococcus radiodurans bound to ATP and tryptophan. Insight into subunit cooperativity and domain motions linked to catalysis. Buddha MR, Crane BR. J Biol Chem 280 31965-31973 (2005)
  44. Unravelling the mechanism of non-ribosomal peptide synthesis by cyclodipeptide synthases. Moutiez M, Schmitt E, Seguin J, Thai R, Favry E, Belin P, Mechulam Y, Gondry M. Nat Commun 5 5141 (2014)
  45. Specificity determinants for the two tRNA substrates of the cyclodipeptide synthase AlbC from Streptomyces noursei. Moutiez M, Seguin J, Fonvielle M, Belin P, Jacques IB, Favry E, Arthur M, Gondry M. Nucleic Acids Res. 42 7247-7258 (2014)
  46. Two distinct domains of the beta subunit of Aquifex aeolicus leucyl-tRNA synthetase are involved in tRNA binding as revealed by a three-hybrid selection. Zheng YG, Wei H, Ling C, Martin F, Eriani G, Wang ED. Nucleic Acids Res. 32 3294-3303 (2004)
  47. A Novel Homozygous YARS2 Mutation in Two Italian Siblings and a Review of Literature. Ardissone A, Lamantea E, Quartararo J, Dallabona C, Carrara F, Moroni I, Donnini C, Garavaglia B, Zeviani M, Uziel G. JIMD Rep 20 95-101 (2015)
  48. Crucial role of the C-terminal domain of Mycobacterium tuberculosis leucyl-tRNA synthetase in aminoacylation and editing. Hu QH, Huang Q, Wang ED. Nucleic Acids Res. 41 1859-1872 (2013)
  49. Dissociating quaternary structure regulates cell-signaling functions of a secreted human tRNA synthetase. Vo MN, Yang XL, Schimmel P. J. Biol. Chem. 286 11563-11568 (2011)
  50. Nematode-specific tRNAs that decode an alternative genetic code for leucine. Hamashima K, Fujishima K, Masuda T, Sugahara J, Tomita M, Kanai A. Nucleic Acids Res. 40 3653-3662 (2012)
  51. The Neurospora crassa CYT-18 protein C-terminal RNA-binding domain helps stabilize interdomain tertiary interactions in group I introns. Chen X, Mohr G, Lambowitz AM. RNA 10 634-644 (2004)
  52. Crystal structures of three protozoan homologs of tryptophanyl-tRNA synthetase. Merritt EA, Arakaki TL, Gillespie R, Napuli AJ, Kim JE, Buckner FS, Van Voorhis WC, Verlinde CL, Fan E, Zucker F, Hol WG. Mol. Biochem. Parasitol. 177 20-28 (2011)
  53. The structure of tryptophanyl-tRNA synthetase from Giardia lamblia reveals divergence from eukaryotic homologs. Arakaki TL, Carter M, Napuli AJ, Verlinde CL, Fan E, Zucker F, Buckner FS, Van Voorhis WC, Hol WG, Merritt EA. J. Struct. Biol. 171 238-243 (2010)
  54. A single residue in leucyl-tRNA synthetase affecting amino acid specificity and tRNA aminoacylation. Lue SW, Kelley SO. Biochemistry 46 4466-4472 (2007)
  55. Asymmetric amino acid activation by class II histidyl-tRNA synthetase from Escherichia coli. Guth E, Farris M, Bovee M, Francklyn CS. J. Biol. Chem. 284 20753-20762 (2009)
  56. Evolution of different oligomeric glycyl-tRNA synthetases. Tang SN, Huang JF. FEBS Lett. 579 1441-1445 (2005)
  57. Relaxed substrate specificity leads to extensive tRNA mischarging by Streptococcus pneumoniae class I and class II aminoacyl-tRNA synthetases. Shepherd J, Ibba M. MBio 5 e01656-14 (2014)
  58. A unique insert of leucyl-tRNA synthetase is required for aminoacylation and not amino acid editing. Vu MT, Martinis SA. Biochemistry 46 5170-5176 (2007)
  59. Comparative structural dynamics of Tyrosyl-tRNA synthetase complexed with different substrates explored by molecular dynamics. Li T, Froeyen M, Herdewijn P. Eur. Biophys. J. 38 25-35 (2008)
  60. Decreased aminoacylation in pathology-related mutants of mitochondrial tRNATyr is associated with structural perturbations in tRNA architecture. Bonnefond L, Florentz C, Giegé R, Rudinger-Thirion J. RNA 14 641-648 (2008)
  61. Mechanism of the activation step of the aminoacylation reaction: a significant difference between class I and class II synthetases. Banik SD, Nandi N. J. Biomol. Struct. Dyn. 30 701-715 (2012)
  62. Alternative stable conformation capable of protein misinteraction links tRNA synthetase to peripheral neuropathy. Blocquel D, Li S, Wei N, Daub H, Sajish M, Erfurth ML, Kooi G, Zhou J, Bai G, Schimmel P, Jordanova A, Yang XL. Nucleic Acids Res. 45 8091-8104 (2017)
  63. Conformational landscapes for KMSKS loop in tyrosyl-tRNA synthetases. Datt M, Sharma A. J. Struct. Funct. Genomics 15 45-61 (2014)
  64. Crystal structure of Pyrococcus horikoshii tryptophanyl-tRNA synthetase and structure-based phylogenetic analysis suggest an archaeal origin of tryptophanyl-tRNA synthetase. Dong X, Zhou M, Zhong C, Yang B, Shen N, Ding J. Nucleic Acids Res. 38 1401-1412 (2010)
  65. Evolution of RNA-protein interactions: non-specific binding led to RNA splicing activity of fungal mitochondrial tyrosyl-tRNA synthetases. Lamech LT, Mallam AL, Lambowitz AM. PLoS Biol. 12 e1002028 (2014)
  66. Expansion of Noncanonical V-Arm-Containing tRNAs in Eukaryotes. Hamashima K, Tomita M, Kanai A. Mol. Biol. Evol. 33 530-540 (2016)
  67. Comment Genetic code expansion. Giegé R. Nat. Struct. Biol. 10 414-416 (2003)
  68. Structural states of the flexible catalytic loop of M. tuberculosis tyrosyl-tRNA synthetase in different enzyme-substrate complexes. Mykuliak VV, Dragan AI, Kornelyuk AI. Eur. Biophys. J. 43 613-622 (2014)
  69. Structure of the pseudouridine synthase RsuA from Haemophilus influenzae. Matte A, Louie GV, Sivaraman J, Cygler M, Burley SK. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61 350-354 (2005)
  70. π-π Interactions in structural stability: role in RNA binding proteins. Sivasakthi V, Anbarasu A, Ramaiah S. Cell Biochem. Biophys. 67 853-863 (2013)
  71. Engineering aminoacyl-tRNA synthetases for use in synthetic biology. Krahn N, Tharp JM, Crnković A, Söll D. Enzymes 48 351-395 (2020)
  72. Identification of an anti-TB compound targeting the tyrosyl-tRNA synthetase. Zhu N, Lin Y, Li D, Gao N, Liu C, You X, Jiang J, Jiang W, Si S. J. Antimicrob. Chemother. 70 2287-2294 (2015)
  73. NMR Structure of the C-terminal domain of a tyrosyl-tRNA synthetase that functions in group I intron splicing. Paukstelis PJ, Chari N, Lambowitz AM, Hoffman D. Biochemistry 50 3816-3826 (2011)
  74. Solution structure of hypothetical protein HP1423 (Y1423_HELPY) reveals the presence of alphaL motif related to RNA binding. Kim JH, Park SJ, Lee KY, Son WS, Sohn NY, Kwon AR, Lee BJ. Proteins 75 252-257 (2009)
  75. Structural characterization of antibiotic self-immunity tRNA synthetase in plant tumour biocontrol agent. Chopra S, Palencia A, Virus C, Schulwitz S, Temple BR, Cusack S, Reader J. Nat Commun 7 12928 (2016)
  76. A genetically encoded fluorescent tRNA is active in live-cell protein synthesis. Masuda I, Igarashi T, Sakaguchi R, Nitharwal RG, Takase R, Han KY, Leslie BJ, Liu C, Gamper H, Ha T, Sanyal S, Hou YM. Nucleic Acids Res. 45 4081-4093 (2017)
  77. The N-terminal fragment of Acanthamoeba polyphaga mimivirus tyrosyl-tRNA synthetase (TyrRS(apm)) is a monomer in solution. Choudhury A, Banerjee R. FEBS Lett. 587 590-599 (2013)
  78. Thermodynamic analysis reveals a temperature-dependent change in the catalytic mechanism of bacillus stearothermophilus tyrosyl-tRNA synthetase. Sharma G, First EA. J. Biol. Chem. 284 4179-4190 (2009)
  79. Analyses of conditions for KMSSS loop in tyrosyl-tRNA synthetase by building a mutant library. Kamijo S, Fujii A, Onodera K, Wakabayashi K. J. Biochem. 146 241-250 (2009)
  80. Anticodon G recognition by tRNA synthetases mimics the tRNA core. Klipcan L, Safro M, Schimmel P. Trends Biochem. Sci. 38 229-232 (2013)
  81. Studies on crenarchaeal tyrosylation accuracy with mutational analyses of tyrosyl-tRNA synthetase and tyrosine tRNA from Aeropyrum pernix. Iwaki J, Endo K, Ichikawa T, Suzuki R, Fujimoto Z, Momma M, Kuno A, Nishimura S, Hasegawa T. J. Biochem. 152 539-548 (2012)
  82. Synthetic Tyrosine tRNA Molecules with Noncanonical Secondary Structures. Sakamoto K, Hayashi A. Int J Mol Sci 20 (2018)
  83. The Coenzyme A Level Modulator Hopantenate (HoPan) Inhibits Phosphopantotenoylcysteine Synthetase Activity. Mostert KJ, Sharma N, van der Zwaag M, Staats R, Koekemoer L, Anand R, Sibon OCM, Strauss E. ACS Chem Biol 16 2401-2414 (2021)
  84. Two Forms of Tyrosyl-tRNA Synthetase from Pseudomonas aeruginosa: Characterization and Discovery of Inhibitory Compounds. Hughes CA, Gorabi V, Escamilla Y, Dean FB, Bullard JM. SLAS Discov 25 1072-1086 (2020)
  85. YARS2 Missense Variant in Belgian Shepherd Dogs with Cardiomyopathy and Juvenile Mortality. Gurtner C, Hug P, Kleiter M, Köhler K, Dietschi E, Jagannathan V, Leeb T. Genes (Basel) 11 (2020)
  86. A missense, loss-of-function YARS1 variant in a patient with proximal-predominant motor neuropathy. Forrest ME, Meyer AP, Laureano Figueroa SM, Antonellis A. Cold Spring Harb Mol Case Stud 8 a006246 (2022)
  87. An asymmetric structure of bacterial TrpRS supports the half-of-the-sites catalytic mechanism and facilitates antimicrobial screening. Xiang M, Xia K, Chen B, Luo Z, Yu Y, Jiang L, Zhou H. Nucleic Acids Res 51 4637-4649 (2023)
  88. Computational modeling and molecular dynamics simulations of mammalian cytoplasmic tyrosyl-tRNA synthetase and its complexes with substrates. Kravchuk VO, Savytskyi OV, Odynets KO, Mykuliak VV, Kornelyuk AI. J. Biomol. Struct. Dyn. 35 2772-2788 (2017)
  89. Correlation between equi-partition of aminoacyl-tRNA synthetases and amino-acid biosynthesis pathways. Takénaka A, Moras D. Nucleic Acids Res 48 3277-3285 (2020)
  90. Crucial optimization of translational components towards efficient incorporation of unnatural amino acids into proteins in mammalian cells. Xiang L, Moncivais K, Jiang F, Willams B, Alfonta L, Zhang ZJ. PLoS ONE 8 e67333 (2013)
  91. Eukaryotic tRNA sequences present conserved and amino acid-specific structural signatures. Westhof E, Thornlow B, Chan PP, Lowe TM. Nucleic Acids Res 50 4100-4112 (2022)
  92. Hierarchical groove discrimination by Class I and II aminoacyl-tRNA synthetases reveals a palimpsest of the operational RNA code in the tRNA acceptor-stem bases. Carter CW, Wills PR. Nucleic Acids Res. 46 9667-9683 (2018)
  93. Homozygosity for a mutation affecting the catalytic domain of tyrosyl-tRNA synthetase (YARS) causes multisystem disease. Williams KB, Brigatti KW, Puffenberger EG, Gonzaga-Jauregui C, Griffin LB, Martinez ED, Wenger OK, Yoder MA, Kandula VVR, Fox MD, Demczko MM, Poskitt L, Furuya KN, Reid JG, Overton JD, Baras A, Miles L, Radhakrishnan K, Carson VJ, Antonellis A, Jinks RN, Strauss KA. Hum. Mol. Genet. 28 525-538 (2019)
  94. Plasmodium apicoplast tyrosyl-tRNA synthetase recognizes an unusual, simplified identity set in cognate tRNATyr. Cela M, Paulus C, Santos MAS, Moura GR, Frugier M, Rudinger-Thirion J. PLoS ONE 13 e0209805 (2018)
  95. Stereospecificity control in aminoacyl-tRNA-synthetases: new evidence of d-amino acids activation and editing. Rybak MY, Rayevsky AV, Gudzera OI, Tukalo MA. Nucleic Acids Res. 47 9777-9788 (2019)
  96. Structural Divergence of the Group I Intron Binding Surface in Fungal Mitochondrial Tyrosyl-tRNA Synthetases That Function in RNA Splicing. Lamech LT, Saoji M, Paukstelis PJ, Lambowitz AM. J. Biol. Chem. 291 11911-11927 (2016)
  97. The binding mode of orphan glycyl-tRNA synthetase with tRNA supports the synthetase classification and reveals large domain movements. Han L, Luo Z, Ju Y, Chen B, Zou T, Wang J, Xu J, Gu Q, Yang XL, Schimmel P, Zhou H. Sci Adv 9 eadf1027 (2023)