1h1w Citations

High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site.

EMBO J 21 4219-28 (2002)
Cited: 129 times
EuropePMC logo PMID: 12169624

Abstract

3-phosphoinositide dependent protein kinase-1 (PDK1) plays a key role in regulating signalling pathways by activating AGC kinases such as PKB/Akt and S6K. Here we describe the 2.0 A crystal structure of the PDK1 kinase domain in complex with ATP. The structure defines the hydrophobic pocket termed the "PIF-pocket", which plays a key role in mediating the interaction and phosphorylation of certain substrates such as S6K1. Phosphorylation of S6K1 at its C-terminal PIF-pocket-interacting motif promotes the binding of S6K1 with PDK1. In the PDK1 structure, this pocket is occupied by a crystallographic contact with another molecule of PDK1. Interestingly, close to the PIF-pocket in PDK1, there is an ordered sulfate ion, interacting tightly with four surrounding side chains. The roles of these residues were investigated through a combination of site-directed mutagenesis and kinetic studies, the results of which confirm that this region of PDK1 represents a phosphate-dependent docking site. We discuss the possibility that an analogous phosphate-binding regulatory motif may participate in the activation of other AGC kinases. Furthermore, the structure of PDK1 provides a scaffold for the design of specific PDK1 inhibitors.

Reviews - 1h1w mentioned but not cited (2)

  1. Substrate and docking interactions in serine/threonine protein kinases. Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM. Chem Rev 107 5065-5081 (2007)
  2. PDK1 inhibitors. Barile E, De SK, Pellecchia M. Pharm Pat Anal 1 145-163 (2012)

Articles - 1h1w mentioned but not cited (19)

  1. High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site. Biondi RM, Komander D, Thomas CC, Lizcano JM, Deak M, Alessi DR, van Aalten DM. EMBO J 21 4219-4228 (2002)
  2. Turning a protein kinase on or off from a single allosteric site via disulfide trapping. Sadowsky JD, Burlingame MA, Wolan DW, McClendon CL, Jacobson MP, Wells JA. Proc Natl Acad Sci U S A 108 6056-6061 (2011)
  3. Predicting new indications for approved drugs using a proteochemometric method. Dakshanamurthy S, Issa NT, Assefnia S, Seshasayee A, Peters OJ, Madhavan S, Uren A, Brown ML, Byers SW. J Med Chem 55 6832-6848 (2012)
  4. Allosteric activation of the protein kinase PDK1 with low molecular weight compounds. Engel M, Hindie V, Lopez-Garcia LA, Stroba A, Schaeffer F, Adrian I, Imig J, Idrissova L, Nastainczyk W, Zeuzem S, Alzari PM, Hartmann RW, Piiper A, Biondi RM. EMBO J 25 5469-5480 (2006)
  5. Elevated PDK1 Expression Drives PI3K/AKT/MTOR Signaling Promotes Radiation-Resistant and Dedifferentiated Phenotype of Hepatocellular Carcinoma. Bamodu OA, Chang HL, Ong JR, Lee WH, Yeh CT, Tsai JT. Cells 9 E746 (2020)
  6. Human immunodeficiency virus type 1 matrix protein assembles on membranes as a hexamer. Alfadhli A, Huseby D, Kapit E, Colman D, Barklis E. J Virol 81 1472-1478 (2007)
  7. Conservation, variability and the modeling of active protein kinases. Knight JD, Qian B, Baker D, Kothary R. PLoS One 2 e982 (2007)
  8. Structural basis for activation of the autoinhibitory C-terminal kinase domain of p90 RSK2. Malakhova M, Tereshko V, Lee SY, Yao K, Cho YY, Bode A, Dong Z. Nat Struct Mol Biol 15 112-113 (2008)
  9. Casein kinase 1 dynamics underlie substrate selectivity and the PER2 circadian phosphoswitch. Philpott JM, Narasimamurthy R, Ricci CG, Freeberg AM, Hunt SR, Yee LE, Pelofsky RS, Tripathi S, Virshup DM, Partch CL. Elife 9 e52343 (2020)
  10. A chimeric mechanism for polyvalent trans-phosphorylation of PKA by PDK1. Romano RA, Kannan N, Kornev AP, Allison CJ, Taylor SS. Protein Sci 18 1486-1497 (2009)
  11. Structural bases of PAS domain-regulated kinase (PASK) activation in the absence of activation loop phosphorylation. Kikani CK, Antonysamy SA, Bonanno JB, Romero R, Zhang FF, Russell M, Gheyi T, Iizuka M, Emtage S, Sauder JM, Turk BE, Burley SK, Rutter J. J Biol Chem 285 41034-41043 (2010)
  12. The PH domain of phosphoinositide-dependent kinase-1 exhibits a novel, phospho-regulated monomer-dimer equilibrium with important implications for kinase domain activation: single-molecule and ensemble studies. Ziemba BP, Pilling C, Calleja V, Larijani B, Falke JJ. Biochemistry 52 4820-4829 (2013)
  13. Suppressor screening reveals common kleisin-hinge interaction in condensin and cohesin, but different modes of regulation. Xu X, Yanagida M. Proc Natl Acad Sci U S A 116 10889-10898 (2019)
  14. A Preliminary Assessment of the Structure-Activity Relationship of Benzimidazole-Based Anti-Proliferative Agents. Winfield LL, Smith DM, Halemano K, Leggett CS. Lett Drug Des Discov 5 369-376 (2008)
  15. FTMove: A Web Server for Detection and Analysis of Cryptic and Allosteric Binding Sites by Mapping Multiple Protein Structures. Egbert M, Jones G, Collins MR, Kozakov D, Vajda S. J Mol Biol 434 167587 (2022)
  16. Elastic network model of allosteric regulation in protein kinase PDK1. Williams G. BMC Struct Biol 10 11 (2010)
  17. Molecular Insights into the Regulation of 3-Phosphoinositide-Dependent Protein Kinase 1: Modeling the Interaction between the Kinase and the Pleckstrin Homology Domains. Garcia-Viloca M, Bayascas JR, Lluch JM, González-Lafont À. ACS Omega 7 25186-25199 (2022)
  18. Applying conformational selection theory to improve crossdocking efficiency in 3-phosphoinositide dependent protein kinase-1. Kotasthane A, Mulakala C, Viswanadhan VN. Proteins 82 436-451 (2014)
  19. Elucidation of protein function using computational docking and hotspot analysis by ClusPro and FTMap. Jones G, Jindal A, Ghani U, Kotelnikov S, Egbert M, Hashemi N, Vajda S, Padhorny D, Kozakov D. Acta Crystallogr D Struct Biol 78 690-697 (2022)


Reviews citing this publication (25)

  1. The nuts and bolts of AGC protein kinases. Pearce LR, Komander D, Alessi DR. Nat Rev Mol Cell Biol 11 9-22 (2010)
  2. Mechanisms of specificity in protein phosphorylation. Ubersax JA, Ferrell JE. Nat Rev Mol Cell Biol 8 530-541 (2007)
  3. PI3K/Akt and apoptosis: size matters. Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C. Oncogene 22 8983-8998 (2003)
  4. Regulation of protein kinases; controlling activity through activation segment conformation. Nolen B, Taylor S, Ghosh G. Mol Cell 15 661-675 (2004)
  5. Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Newton AC. Biochem J 370 361-371 (2003)
  6. PDK1, the master regulator of AGC kinase signal transduction. Mora A, Komander D, van Aalten DM, Alessi DR. Semin Cell Dev Biol 15 161-170 (2004)
  7. Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. Bhattacharyya RP, Reményi A, Yeh BJ, Lim WA. Annu Rev Biochem 75 655-680 (2006)
  8. Unravelling the activation mechanisms of protein kinase B/Akt. Scheid MP, Woodgett JR. FEBS Lett 546 108-112 (2003)
  9. The structural basis for control of eukaryotic protein kinases. Endicott JA, Noble ME, Johnson LN. Annu Rev Biochem 81 587-613 (2012)
  10. Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Jura N, Zhang X, Endres NF, Seeliger MA, Schindler T, Kuriyan J. Mol Cell 42 9-22 (2011)
  11. Docking interactions in protein kinase and phosphatase networks. Reményi A, Good MC, Lim WA. Curr Opin Struct Biol 16 676-685 (2006)
  12. AGC protein kinases: from structural mechanism of regulation to allosteric drug development for the treatment of human diseases. Arencibia JM, Pastor-Flores D, Bauer AF, Schulze JO, Biondi RM. Biochim Biophys Acta 1834 1302-1321 (2013)
  13. mTOR-dependent cell survival mechanisms. Hung CM, Garcia-Haro L, Sparks CA, Guertin DA. Cold Spring Harb Perspect Biol 4 a008771 (2012)
  14. Mitotic exit and separation of mother and daughter cells. Weiss EL. Genetics 192 1165-1202 (2012)
  15. Small-molecule inhibitors of PDK1. Peifer C, Alessi DR. ChemMedChem 3 1810-1838 (2008)
  16. AGC kinases, mechanisms of regulation ‎and innovative drug development. Leroux AE, Schulze JO, Biondi RM. Semin Cancer Biol 48 1-17 (2018)
  17. Lining the pockets of kinases and phosphatases. Gold MG, Barford D, Komander D. Curr Opin Struct Biol 16 693-701 (2006)
  18. αC helix displacement as a general approach for allosteric modulation of protein kinases. Palmieri L, Rastelli G. Drug Discov Today 18 407-414 (2013)
  19. Concerted roles of SGK1 and the Na+/H+ exchanger regulatory factor 2 (NHERF2) in regulation of NHE3. Yun CC. Cell Physiol Biochem 13 29-40 (2003)
  20. The TORC2-Dependent Signaling Network in the Yeast Saccharomyces cerevisiae. Roelants FM, Leskoske KL, Martinez Marshall MN, Locke MN, Thorner J. Biomolecules 7 E66 (2017)
  21. A survey of the year 2002 commercial optical biosensor literature. Rich RL, Myszka DG. J Mol Recognit 16 351-382 (2003)
  22. Disordered Protein Kinase Regions in Regulation of Kinase Domain Cores. Gógl G, Kornev AP, Reményi A, Taylor SS. Trends Biochem Sci 44 300-311 (2019)
  23. PDK1 disruptors and modulators: a patent review. Hossen MJ, Kim SC, Yang S, Kim HG, Jeong D, Yi YS, Sung NY, Lee JO, Kim JH, Cho JY. Expert Opin Ther Pat 25 513-537 (2015)
  24. The chemical diversity and structure-based discovery of allosteric modulators for the PIF-pocket of protein kinase PDK1. Xu X, Chen Y, Fu Q, Ni D, Zhang J, Li X, Lu S. J Enzyme Inhib Med Chem 34 361-374 (2019)
  25. The Landscape of PDK1 in Breast Cancer. Wang N, Fu J, Li Z, Jiang N, Chen Y, Peng J. Cancers (Basel) 14 811 (2022)

Articles citing this publication (83)

  1. Structure of the human Parkin ligase domain in an autoinhibited state. Wauer T, Komander D. EMBO J 32 2099-2112 (2013)
  2. A phosphoserine/threonine-binding pocket in AGC kinases and PDK1 mediates activation by hydrophobic motif phosphorylation. Frödin M, Antal TL, Dümmler BA, Jensen CJ, Deak M, Gammeltoft S, Biondi RM. EMBO J 21 5396-5407 (2002)
  3. Structural evolution of the protein kinase-like superfamily. Scheeff ED, Bourne PE. PLoS Comput Biol 1 e49 (2005)
  4. In vivo role of the PIF-binding docking site of PDK1 defined by knock-in mutation. Collins BJ, Deak M, Arthur JS, Armit LJ, Alessi DR. EMBO J 22 4202-4211 (2003)
  5. Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. Mora A, Davies AM, Bertrand L, Sharif I, Budas GR, Jovanović S, Mouton V, Kahn CR, Lucocq JM, Gray GA, Jovanović A, Alessi DR. EMBO J 22 4666-4676 (2003)
  6. Novel small molecule inhibitors of 3-phosphoinositide-dependent kinase-1. Feldman RI, Wu JM, Polokoff MA, Kochanny MJ, Dinter H, Zhu D, Biroc SL, Alicke B, Bryant J, Yuan S, Buckman BO, Lentz D, Ferrer M, Whitlow M, Adler M, Finster S, Chang Z, Arnaiz DO. J Biol Chem 280 19867-19874 (2005)
  7. Turning enzymes ON with small molecules. Zorn JA, Wells JA. Nat Chem Biol 6 179-188 (2010)
  8. Comment TSC1-TSC2: a complex tale of PKB-mediated S6K regulation. McManus EJ, Alessi DR. Nat Cell Biol 4 E214-6 (2002)
  9. Characterization of GSK2334470, a novel and highly specific inhibitor of PDK1. Najafov A, Sommer EM, Axten JM, Deyoung MP, Alessi DR. Biochem J 433 357-369 (2011)
  10. Structure and allosteric effects of low-molecular-weight activators on the protein kinase PDK1. Hindie V, Stroba A, Zhang H, Lopez-Garcia LA, Idrissova L, Zeuzem S, Hirschberg D, Schaeffer F, Jørgensen TJ, Engel M, Alzari PM, Biondi RM. Nat Chem Biol 5 758-764 (2009)
  11. The survival pathways phosphatidylinositol-3 kinase (PI3-K)/phosphoinositide-dependent protein kinase 1 (PDK1)/Akt modulate liver regeneration through hepatocyte size rather than proliferation. Haga S, Ozaki M, Inoue H, Okamoto Y, Ogawa W, Takeda K, Akira S, Todo S. Hepatology 49 204-214 (2009)
  12. Structural basis for UCN-01 (7-hydroxystaurosporine) specificity and PDK1 (3-phosphoinositide-dependent protein kinase-1) inhibition. Komander D, Kular GS, Bain J, Elliott M, Alessi DR, Van Aalten DM. Biochem J 375 255-262 (2003)
  13. Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation. Hauge C, Antal TL, Hirschberg D, Doehn U, Thorup K, Idrissova L, Hansen K, Jensen ON, Jørgensen TJ, Biondi RM, Frödin M. EMBO J 26 2251-2261 (2007)
  14. Crystal structure of the catalytic domain of human atypical protein kinase C-iota reveals interaction mode of phosphorylation site in turn motif. Messerschmidt A, Macieira S, Velarde M, Bädeker M, Benda C, Jestel A, Brandstetter H, Neuefeind T, Blaesse M. J Mol Biol 352 918-931 (2005)
  15. Molecular mechanism of an oncogenic mutation that alters membrane targeting: Glu17Lys modifies the PIP lipid specificity of the AKT1 PH domain. Landgraf KE, Pilling C, Falke JJ. Biochemistry 47 12260-12269 (2008)
  16. Phosphoinositide-dependent phosphorylation of PDK1 regulates nuclear translocation. Scheid MP, Parsons M, Woodgett JR. Mol Cell Biol 25 2347-2363 (2005)
  17. Structural and functional insights into the regulation of Arabidopsis AGC VIIIa kinases. Zegzouti H, Li W, Lorenz TC, Xie M, Payne CT, Smith K, Glenny S, Payne GS, Christensen SK. J Biol Chem 281 35520-35530 (2006)
  18. Crystal structure of a cAMP-dependent protein kinase mutant at 1.26A: new insights into the catalytic mechanism. Yang J, Ten Eyck LF, Xuong NH, Taylor SS. J Mol Biol 336 473-487 (2004)
  19. Insulin-induced Drosophila S6 kinase activation requires phosphoinositide 3-kinase and protein kinase B. Lizcano JM, Alrubaie S, Kieloch A, Deak M, Leevers SJ, Alessi DR. Biochem J 374 297-306 (2003)
  20. Interactions of LY333531 and other bisindolyl maleimide inhibitors with PDK1. Komander D, Kular GS, Schüttelkopf AW, Deak M, Prakash KR, Bain J, Elliott M, Garrido-Franco M, Kozikowski AP, Alessi DR, van Aalten DM. Structure 12 215-226 (2004)
  21. Localization and quaternary structure of the PKA RIβ holoenzyme. Ilouz R, Bubis J, Wu J, Yim YY, Deal MS, Kornev AP, Ma Y, Blumenthal DK, Taylor SS. Proc Natl Acad Sci U S A 109 12443-12448 (2012)
  22. A small-molecule mimic of a peptide docking motif inhibits the protein kinase PDK1. Rettenmaier TJ, Sadowsky JD, Thomsen ND, Chen SC, Doak AK, Arkin MR, Wells JA. Proc Natl Acad Sci U S A 111 18590-18595 (2014)
  23. Allosteric regulation of protein kinase PKCζ by the N-terminal C1 domain and small compounds to the PIF-pocket. Lopez-Garcia LA, Schulze JO, Fröhner W, Zhang H, Süss E, Weber N, Navratil J, Amon S, Hindie V, Zeuzem S, Jørgensen TJ, Alzari PM, Neimanis S, Engel M, Biondi RM. Chem Biol 18 1463-1473 (2011)
  24. Yeast 3-phosphoinositide-dependent protein kinase-1 (PDK1) orthologs Pkh1-3 differentially regulate phosphorylation of protein kinase A (PKA) and the protein kinase B (PKB)/S6K ortholog Sch9. Voordeckers K, Kimpe M, Haesendonckx S, Louwet W, Versele M, Thevelein JM. J Biol Chem 286 22017-22027 (2011)
  25. Hsp90 functions to balance the phosphorylation state of Akt during C2C12 myoblast differentiation. Yun BG, Matts RL. Cell Signal 17 1477-1485 (2005)
  26. The structure of MSK1 reveals a novel autoinhibitory conformation for a dual kinase protein. Smith KJ, Carter PS, Bridges A, Horrocks P, Lewis C, Pettman G, Clarke A, Brown M, Hughes J, Wilkinson M, Bax B, Reith A. Structure 12 1067-1077 (2004)
  27. A transition path ensemble study reveals a linchpin role for Mg(2+) during rate-limiting ADP release from protein kinase A. Khavrutskii IV, Grant B, Taylor SS, McCammon JA. Biochemistry 48 11532-11545 (2009)
  28. Phosphoinositide-dependent kinase 1 targets protein kinase A in a pathway that regulates interleukin 4. Nirula A, Ho M, Phee H, Roose J, Weiss A. J Exp Med 203 1733-1744 (2006)
  29. Substrate-selective inhibition of protein kinase PDK1 by small compounds that bind to the PIF-pocket allosteric docking site. Busschots K, Lopez-Garcia LA, Lammi C, Stroba A, Zeuzem S, Piiper A, Alzari PM, Neimanis S, Arencibia JM, Engel M, Schulze JO, Biondi RM. Chem Biol 19 1152-1163 (2012)
  30. Identification of allosteric PIF-pocket ligands for PDK1 using NMR-based fragment screening and 1H-15N TROSY experiments. Stockman BJ, Kothe M, Kohls D, Weibley L, Connolly BJ, Sheils AL, Cao Q, Cheng AC, Yang L, Kamath AV, Ding YH, Charlton ME. Chem Biol Drug Des 73 179-188 (2009)
  31. Quantitative site-specific phosphorylation dynamics of human protein kinases during mitotic progression. Dulla K, Daub H, Hornberger R, Nigg EA, Körner R. Mol Cell Proteomics 9 1167-1181 (2010)
  32. Conserved threonine residues within the A-loop of the receptor NIK differentially regulate the kinase function required for antiviral signaling. Santos AA, Carvalho CM, Florentino LH, Ramos HJ, Fontes EP. PLoS One 4 e5781 (2009)
  33. The Mechanism of ATP-Dependent Allosteric Protection of Akt Kinase Phosphorylation. Lu S, Deng R, Jiang H, Song H, Li S, Shen Q, Huang W, Nussinov R, Yu J, Zhang J. Structure 23 1725-1734 (2015)
  34. Hydrophobic motif phosphorylation is not required for activation loop phosphorylation of p70 ribosomal protein S6 kinase 1 (S6K1). Keshwani MM, von Daake S, Newton AC, Harris TK, Taylor SS. J Biol Chem 286 23552-23558 (2011)
  35. Hyperosmotic-induced protein kinase N 1 activation in a vesicular compartment is dependent upon Rac1 and 3-phosphoinositide-dependent kinase 1. Torbett NE, Casamassima A, Parker PJ. J Biol Chem 278 32344-32351 (2003)
  36. Role of the PH domain in regulating in vitro autophosphorylation events required for reconstitution of PDK1 catalytic activity. Gao X, Harris TK. Bioorg Chem 34 200-223 (2006)
  37. Evaluation of approaches to generation of tissue-specific knock-in mice. Bayascas JR, Sakamoto K, Armit L, Arthur JS, Alessi DR. J Biol Chem 281 28772-28781 (2006)
  38. N-terminus of the protein kinase CLK1 induces SR protein hyperphosphorylation. Aubol BE, Plocinik RM, Keshwani MM, McGlone ML, Hagopian JC, Ghosh G, Fu XD, Adams JA. Biochem J 462 143-152 (2014)
  39. Identification of a buried pocket for potent and selective inhibition of Chk1: prediction and verification. Foloppe N, Fisher LM, Francis G, Howes R, Kierstan P, Potter A. Bioorg Med Chem 14 1792-1804 (2006)
  40. The structure of Arabidopsis thaliana OST1 provides insights into the kinase regulation mechanism in response to osmotic stress. Yunta C, Martínez-Ripoll M, Zhu JK, Albert A. J Mol Biol 414 135-144 (2011)
  41. Polyphenolic Proanthocyanidin-B2 suppresses proliferation of liver cancer cells and hepatocellular carcinogenesis through directly binding and inhibiting AKT activity. Liu G, Shi A, Wang N, Li M, He X, Yin C, Tu Q, Shen X, Tao Y, Wang Q, Yin H. Redox Biol 37 101701 (2020)
  42. A first generation inhibitor of human Greatwall kinase, enabled by structural and functional characterisation of a minimal kinase domain construct. Ocasio CA, Rajasekaran MB, Walker S, Le Grand D, Spencer J, Pearl FM, Ward SE, Savic V, Pearl LH, Hochegger H, Oliver AW. Oncotarget 7 71182-71197 (2016)
  43. Selective disruption of insulin-like growth factor-1 (IGF-1) signaling via phosphoinositide-dependent kinase-1 prevents the protective effect of IGF-1 on human cancer cell death. Alberobello AT, D'Esposito V, Marasco D, Doti N, Ruvo M, Bianco R, Tortora G, Esposito I, Fiory F, Miele C, Beguinot F, Formisano P. J Biol Chem 285 6563-6572 (2010)
  44. Structural diversity of the active N-terminal kinase domain of p90 ribosomal S6 kinase 2. Malakhova M, Kurinov I, Liu K, Zheng D, D'Angelo I, Shim JH, Steinman V, Bode AM, Dong Z. PLoS One 4 e8044 (2009)
  45. Fine tuning PDK1 activity by phosphorylation at Ser163. Riojas RA, Kikani CK, Wang C, Mao X, Zhou L, Langlais PR, Hu D, Roberts JL, Dong LQ, Liu F. J Biol Chem 281 21588-21593 (2006)
  46. Multiple implications of 3-phosphoinositide-dependent protein kinase 1 in human cancer. Li Y, Yang KJ, Park J. World J Biol Chem 1 239-247 (2010)
  47. Regulation of the interaction between protein kinase C-related protein kinase 2 (PRK2) and its upstream kinase, 3-phosphoinositide-dependent protein kinase 1 (PDK1). Dettori R, Sonzogni S, Meyer L, Lopez-Garcia LA, Morrice NA, Zeuzem S, Engel M, Piiper A, Neimanis S, Frödin M, Biondi RM. J Biol Chem 284 30318-30327 (2009)
  48. Inhibition of HIV-1 Tat-mediated transcription by a coumarin derivative, BPRHIV001, through the Akt pathway. Lin PH, Ke YY, Su CT, Shiao HY, Hsieh HP, Chao YK, Lee CN, Kao CL, Chao YS, Chang SY. J Virol 85 9114-9126 (2011)
  49. Translational control in plant antiviral immunity. Machado JPB, Calil IP, Santos AA, Fontes EPB. Genet Mol Biol 40 292-304 (2017)
  50. Fine-tuning the intensity of the PKB/Akt signal enables diverse physiological responses. Zhou X, Cordon-Barris L, Zurashvili T, Bayascas JR. Cell Cycle 13 3164-3168 (2014)
  51. Mutation of the 3-Phosphoinositide-Dependent Protein Kinase 1 (PDK1) Substrate-Docking Site in the Developing Brain Causes Microcephaly with Abnormal Brain Morphogenesis Independently of Akt, Leading to Impaired Cognition and Disruptive Behaviors. Cordón-Barris L, Pascual-Guiral S, Yang S, Giménez-Llort L, Lope-Piedrafita S, Niemeyer C, Claro E, Lizcano JM, Bayascas JR. Mol Cell Biol 36 2967-2982 (2016)
  52. Regulation of protein kinase C-related protein kinase 2 (PRK2) by an intermolecular PRK2-PRK2 interaction mediated by Its N-terminal domain. Bauer AF, Sonzogni S, Meyer L, Zeuzem S, Piiper A, Biondi RM, Neimanis S. J Biol Chem 287 20590-20602 (2012)
  53. Crystal structures of S6K1 provide insights into the regulation mechanism of S6K1 by the hydrophobic motif. Wang J, Zhong C, Wang F, Qu F, Ding J. Biochem J 454 39-47 (2013)
  54. PDK1 recruitment to the SHPS-1 signaling complex enhances insulin-like growth factor-i-stimulated AKT activation and vascular smooth muscle cell survival. Shen X, Xi G, Radhakrishnan Y, Clemmons DR. J Biol Chem 285 29416-29424 (2010)
  55. Reducing the Levels of Akt Activation by PDK1 Knock-in Mutation Protects Neuronal Cultures against Synthetic Amyloid-Beta Peptides. Yang S, Pascual-Guiral S, Ponce R, Giménez-Llort L, Baltrons MA, Arancio O, Palacio JR, Clos VM, Yuste VJ, Bayascas JR. Front Aging Neurosci 9 435 (2017)
  56. Steady-state kinetic mechanism of PDK1. Gao X, Harris TK. J Biol Chem 281 21670-21681 (2006)
  57. Activation of the essential kinase PDK1 by phosphoinositide-driven trans-autophosphorylation. Levina A, Fleming KD, Burke JE, Leonard TA. Nat Commun 13 1874 (2022)
  58. The activation loop of PKA catalytic isoforms is differentially phosphorylated by Pkh protein kinases in Saccharomyces cerevisiae. Haesendonckx S, Tudisca V, Voordeckers K, Moreno S, Thevelein JM, Portela P. Biochem J 448 307-320 (2012)
  59. Crystal structures of PRK1 in complex with the clinical compounds lestaurtinib and tofacitinib reveal ligand induced conformational changes. Chamberlain P, Delker S, Pagarigan B, Mahmoudi A, Jackson P, Abbasian M, Muir J, Raheja N, Cathers B. PLoS One 9 e103638 (2014)
  60. Mechanism of PDK1-catalyzed Thr-229 phosphorylation of the S6K1 protein kinase. Keshwani MM, Gao X, Harris TK. J Biol Chem 284 22611-22624 (2009)
  61. Structure-function correlation of G6, a novel small molecule inhibitor of Jak2: indispensability of the stilbenoid core. Majumder A, Govindasamy L, Magis A, Kiss R, Polgár T, Baskin R, Allan RW, Agbandje-McKenna M, Reuther GW, Keseru GM, Bisht KS, Sayeski PP. J Biol Chem 285 31399-31407 (2010)
  62. Synergistic Allostery in Multiligand-Protein Interactions. Ghode A, Gross LZF, Tee WV, Guarnera E, Berezovsky IN, Biondi RM, Anand GS. Biophys J 119 1833-1848 (2020)
  63. The subcellular localization of 3-phosphoinositide-dependent protein kinase is controlled by caveolin-1 binding. Chun J, Kwon T, Lee EJ, Hyun S, Hong SK, Kang SS. Biochem Biophys Res Commun 326 136-146 (2005)
  64. Characterization of a PDK1 homologue from the moss Physcomitrella patens. Dittrich AC, Devarenne TP. Plant Physiol 158 1018-1033 (2012)
  65. Improved yields for baculovirus-mediated expression of human His(6)-PDK1 and His(6)-PKBbeta/Akt2 and characterization of phospho-specific isoforms for design of inhibitors that stabilize inactive conformations. Gao X, Yo P, Harris TK. Protein Expr Purif 43 44-56 (2005)
  66. Reconstitution of modular PDK1 functions on trans-splicing of the regulatory PH and catalytic kinase domains. Al-Ali H, Ragan TJ, Gao X, Harris TK. Bioconjug Chem 18 1294-1302 (2007)
  67. Characterization of fragmented 3-phosphoinsitide-dependent protein kinase-1 (PDK1) by phosphosite-specific antibodies. Park J, Li Y, Kim SH, Kong G, Shrestha R, Tran Q, Hong J, Hur GM, Hemmings BA, Koo BS, Park J. Life Sci 93 700-706 (2013)
  68. Discovery of novel 7-azaindoles as PDK1 inhibitors. Wucherer-Plietker M, Merkul E, Müller TJJ, Esdar C, Knöchel T, Heinrich T, Buchstaller HP, Greiner H, Dorsch D, Finsinger D, Calderini M, Bruge D, Grädler U. Bioorg Med Chem Lett 26 3073-3080 (2016)
  69. Structure-based optimization of potent PDK1 inhibitors. Angiolini M, Banfi P, Casale E, Casuscelli F, Fiorelli C, Saccardo MB, Silvagni M, Zuccotto F. Bioorg Med Chem Lett 20 4095-4099 (2010)
  70. Activation of RSK by phosphomimetic substitution in the activation loop is prevented by structural constraints. Somale D, Di Nardo G, di Blasio L, Puliafito A, Vara-Messler M, Chiaverina G, Palmiero M, Monica V, Gilardi G, Primo L, Gagliardi PA. Sci Rep 10 591 (2020)
  71. Improved expression of kinases in Baculovirus-infected insect cells upon addition of specific kinase inhibitors to the culture helpful for structural studies. Strauss A, Fendrich G, Horisberger MA, Liebetanz J, Meyhack B, Schlaeppi JM, Schmitz R. Protein Expr Purif 56 167-176 (2007)
  72. Phosphoinositide-dependent kinase-1 orthologues from five eukaryotes are activated by the hydrophobic motif in AGC kinases. Silber J, Antal TL, Gammeltoft S, Rasmussen TE. Biochem Biophys Res Commun 321 823-827 (2004)
  73. Analysis of the activating mutations within the activation loop of leukemia targets Flt-3 and c-Kit based on protein homology modeling. Torrent M, Rickert K, Pan BS, Sepp-Lorenzino L. J Mol Graph Model 23 153-165 (2004)
  74. A Drosophila genetic screen for suppressors of S6kinase-dependent growth identifies the F-box subunit Archipelago/FBXW7. Zahoor MK, Poidevin M, Lecerf C, Garrido D, Montagne J. Mol Genet Genomics 294 573-582 (2019)
  75. Fluorescence resonance energy transfer in quantum dot-protein kinase assemblies. Yildiz I, Gao X, Harris TK, Raymo FM. J Biomed Biotechnol 2007 18081 (2007)
  76. Pkh1 interacts with and phosphorylates components of the yeast Gcn2/eIF2α system. Kimpe M, Voordeckers K, Thevelein JM, Van Zeebroeck G. Biochem Biophys Res Commun 419 89-94 (2012)
  77. Structure-based CoMFA and CoMSIA study of indolinone inhibitors of PDK1. Kaur K, Talele TT. J Comput Aided Mol Des 23 25-36 (2009)
  78. A PDK-1 allosteric agonist neutralizes insulin signaling derangements and beta-amyloid toxicity in neuronal cells and in vitro. Querfurth H, Marshall J, Parang K, Rioult-Pedotti MS, Tiwari R, Kwon B, Reisinger S, Lee HK. PLoS One 17 e0261696 (2022)
  79. Specific inhibition of AGC protein kinases by antibodies against C-terminal epitopes. Traincard F, Giacomoni V, Veron M. FEBS Lett 572 276-280 (2004)
  80. Insilico design of an allosteric modulator targeting the protein-protein interaction site of 3 Phosphoinositide dependent Kinase-1: design, synthesis and biological activity. Kailasam Natesan V, Balaraman S, KuppannaGounder Pitchaimuthu E. In Silico Pharmacol 11 26 (2023)
  81. Modulation of the substrate specificity of the kinase PDK1 by distinct conformations of the full-length protein. Sacerdoti M, Gross LZF, Riley AM, Zehnder K, Ghode A, Klinke S, Anand GS, Paris K, Winkel A, Herbrand AK, Godage HY, Cozier GE, Süß E, Schulze JO, Pastor-Flores D, Bollini M, Cappellari MV, Svergun D, Gräwert MA, Aramendia PF, Leroux AE, Potter BVL, Camacho CJ, Biondi RM. Sci Signal 16 eadd3184 (2023)
  82. Productive induced metastability in allosteric modulation of kinase function. Montes de Oca J, Rodriguez Fris A, Appignanesi G, Fernández A. FEBS J 281 3079-3091 (2014)
  83. Structure and Function of a Class III Metal-Independent Lanthipeptide Synthetase. Hernandez Garcia A, Nair SK. ACS Cent Sci 9 1944-1956 (2023)