1h07 Citations

Cyclin-dependent kinase 4 inhibitors as a treatment for cancer. Part 1: identification and optimisation of substituted 4,6-bis anilino pyrimidines.

Bioorg Med Chem Lett 13 2955-60 (2003)
Related entries: 1h00, 1h01, 1h08, 1hck, 1hcl, 1v1k

Cited: 34 times
EuropePMC logo PMID: 12941311

Abstract

Using a high-throughput screening campaign, we identified the 4,6-bis anilino pyrimidines as inhibitors of the cyclin-dependent kinase, CDK4. Herein we describe the further chemical modification and use of X-ray crystallography to develop potent and selective in vitro inhibitors of CDK4.

Articles - 1h07 mentioned but not cited (4)

  1. In Silico Identification and In Vitro and In Vivo Validation of Anti-Psychotic Drug Fluspirilene as a Potential CDK2 Inhibitor and a Candidate Anti-Cancer Drug. Shi XN, Li H, Yao H, Liu X, Li L, Leung KS, Kung HF, Lu D, Wong MH, Lin MC. PLoS One 10 e0132072 (2015)
  2. A structure-guided approach for protein pocket modeling and affinity prediction. Varela R, Cleves AE, Spitzer R, Jain AN. J. Comput. Aided Mol. Des. 27 917-934 (2013)
  3. Rab11-FIP1C Is Dispensable for HIV-1 Replication in Primary CD4+ T Cells, but Its Role Is Cell Type Dependent in Immortalized Human T-Cell Lines. Fernandez-de Céspedes MV, Hoffman HK, Carter H, Simons LM, Naing L, Ablan SD, Scheiblin DA, Hultquist JF, van Engelenburg SB, Freed EO. J Virol 96 e0087622 (2022)
  4. Rapid Identification of Inhibitors and Prediction of Ligand Selectivity for Multiple Proteins: Application to Protein Kinases. Ma Z, Huang SY, Cheng F, Zou X. J Phys Chem B 125 2288-2298 (2021)


Reviews citing this publication (4)

  1. Selectivity and potency of cyclin-dependent kinase inhibitors. Sridhar J, Akula N, Pattabiraman N. AAPS J 8 E204-21 (2006)
  2. Current status of PTMs structural databases: applications, limitations and prospects. de Brevern AG, Rebehmed J. Amino Acids 54 575-590 (2022)
  3. Microtubule Depolymerization by Kinase Inhibitors: Unexpected Findings of Dual Inhibitors. Tanabe K. Int J Mol Sci 18 (2017)
  4. Recent Progress in CDK4/6 Inhibitors and PROTACs. Wang H, Ba J, Kang Y, Gong Z, Liang T, Zhang Y, Qi J, Wang J. Molecules 28 8060 (2023)

Articles citing this publication (26)

  1. Novel small molecule inhibitors of 3-phosphoinositide-dependent kinase-1. Feldman RI, Wu JM, Polokoff MA, Kochanny MJ, Dinter H, Zhu D, Biroc SL, Alicke B, Bryant J, Yuan S, Buckman BO, Lentz D, Ferrer M, Whitlow M, Adler M, Finster S, Chang Z, Arnaiz DO. J. Biol. Chem. 280 19867-19874 (2005)
  2. The crystal structure of human CDK7 and its protein recognition properties. Lolli G, Lowe ED, Brown NR, Johnson LN. Structure 12 2067-2079 (2004)
  3. Crystal structures of the FAK kinase in complex with TAE226 and related bis-anilino pyrimidine inhibitors reveal a helical DFG conformation. Lietha D, Eck MJ. PLoS ONE 3 e3800 (2008)
  4. Inhibitors of the tyrosine kinase EphB4. Part 1: Structure-based design and optimization of a series of 2,4-bis-anilinopyrimidines. Bardelle C, Cross D, Davenport S, Kettle JG, Ko EJ, Leach AG, Mortlock A, Read J, Roberts NJ, Robins P, Williams EJ. Bioorg. Med. Chem. Lett. 18 2776-2780 (2008)
  5. Structural determinants of CDK4 inhibition and design of selective ATP competitive inhibitors. McInnes C, Wang S, Anderson S, O'Boyle J, Jackson W, Kontopidis G, Meades C, Mezna M, Thomas M, Wood G, Lane DP, Fischer PM. Chem. Biol. 11 525-534 (2004)
  6. Development of o-chlorophenyl substituted pyrimidines as exceptionally potent aurora kinase inhibitors. Lawrence HR, Martin MP, Luo Y, Pireddu R, Yang H, Gevariya H, Ozcan S, Zhu JY, Kendig R, Rodriguez M, Elias R, Cheng JQ, Sebti SM, Schonbrunn E, Lawrence NJ. J. Med. Chem. 55 7392-7416 (2012)
  7. Is it possible to increase hit rates in structure-based virtual screening by pharmacophore filtering? An investigation of the advantages and pitfalls of post-filtering. Muthas D, Sabnis YA, Lundborg M, Karlén A. J. Mol. Graph. Model. 26 1237-1251 (2008)
  8. Loop flexibility and solvent dynamics as determinants for the selective inhibition of cyclin-dependent kinase 4: comparative molecular dynamics simulation studies of CDK2 and CDK4. Park H, Yeom MS, Lee S. Chembiochem 5 1662-1672 (2004)
  9. Expanding the diversity of allosteric bcr-abl inhibitors. Deng X, Okram B, Ding Q, Zhang J, Choi Y, Adrián FJ, Wojciechowski A, Zhang G, Che J, Bursulaya B, Cowan-Jacob SW, Rummel G, Sim T, Gray NS. J. Med. Chem. 53 6934-6946 (2010)
  10. Global, local and novel consensus quantitative structure-activity relationship studies of 4-(Phenylaminomethylene) isoquinoline-1, 3 (2H, 4H)-diones as potent inhibitors of the cyclin-dependent kinase 4. Lei B, Xi L, Li J, Liu H, Yao X. Anal. Chim. Acta 644 17-24 (2009)
  11. N-4-Pyrimidinyl-1H-indazol-4-amine inhibitors of Lck: indazoles as phenol isosteres with improved pharmacokinetics. Bamborough P, Angell RM, Bhamra I, Brown D, Bull J, Christopher JA, Cooper AW, Fazal LH, Giordano I, Hind L, Patel VK, Ranshaw LE, Sims MJ, Skone PA, Smith KJ, Vickerstaff E, Washington M. Bioorg. Med. Chem. Lett. 17 4363-4368 (2007)
  12. Synthesis of 1,7-annulated indoles and their applications in the studies of cyclin dependent kinase inhibitors. Zhu G, Conner SE, Zhou X, Chan HK, Shih C, Engler TA, Al-Awar RS, Brooks HB, Watkins SA, Spencer CD, Schultz RM, Dempsey JA, Considine EL, Patel BR, Ogg CA, Vasudevan V, Lytle ML. Bioorg. Med. Chem. Lett. 14 3057-3061 (2004)
  13. The effect of a tightly bound water molecule on scaffold diversity in the computer-aided de novo ligand design of CDK2 inhibitors. García-Sosa AT, Mancera RL. J Mol Model 12 422-431 (2006)
  14. Analysing the Effect of Mutation on Protein Function and Discovering Potential Inhibitors of CDK4: Molecular Modelling and Dynamics Studies. N N, Zhu H, Liu J, V K, C GP, Chakraborty C, Chen L. PLoS ONE 10 e0133969 (2015)
  15. Antitumour potential of BPT: a dual inhibitor of cdk4 and tubulin polymerization. Mahale S, Bharate SB, Manda S, Joshi P, Jenkins PR, Vishwakarma RA, Chaudhuri B. Cell Death Dis 6 e1743 (2015)
  16. Syntheses of novel heterocycles as anticancer agents. Chauhan PM, Martins CJ, Horwell DC. Bioorg. Med. Chem. 13 3513-3518 (2005)
  17. Identification of SRC as a potent drug target for asthma, using an integrative approach of protein interactome analysis and in silico drug discovery. Randhawa V, Bagler G. OMICS 16 513-526 (2012)
  18. Exploration of the in vitro antiviral activity of a series of new pyrimidine analogues on the replication of HIV and HCV. Jafar NN, Al-Masoudi NA, Baqir SJ, Leyssen P, Pannecouque C. Antivir. Chem. Chemother. 23 103-112 (2013)
  19. Practical applications of matched series analysis: SAR transfer, binding mode suggestion and data point validation. Hunt P, Segall M, O'Boyle N, Sayle R. Future Med Chem 9 153-168 (2017)
  20. Targeting kinases with anilinopyrimidines: discovery of N-phenyl-N'-[4-(pyrimidin-4-ylamino)phenyl]urea derivatives as selective inhibitors of class III receptor tyrosine kinase subfamily. Gandin V, Ferrarese A, Dalla Via M, Marzano C, Chilin A, Marzaro G. Sci Rep 5 16750 (2015)
  21. 5-Substituted 2-amino-4,6-dihydroxypyrimidines and 2-amino-4,6-dichloropyrimidines: synthesis and inhibitory effects on immune-activated nitric oxide production. Jansa P, Holý A, Dračínský M, Kolman V, Janeba Z, Kostecká P, Kmoníčková E, Zídek Z. Med Chem Res 23 4482-4490 (2014)
  22. Collaborative Approach between Explainable Artificial Intelligence and Simplified Chemical Interactions to Explore Active Ligands for Cyclin-Dependent Kinase 2. Shimazaki T, Tachikawa M. ACS Omega 7 10372-10381 (2022)
  23. Feature-map vectors: a new class of informative descriptors for computational drug discovery. Landrum GA, Penzotti JE, Putta S. J. Comput. Aided Mol. Des. 20 751-762 (2006)
  24. Protein structure prediction with in-cell photo-crosslinking mass spectrometry and deep learning. Stahl K, Graziadei A, Dau T, Brock O, Rappsilber J. Nat Biotechnol (2023)
  25. Specific non-local interactions are not necessary for recovering native protein dynamics. Dasgupta B, Kasahara K, Kamiya N, Nakamura H, Kinjo AR. PLoS ONE 9 e91347 (2014)
  26. Synthesis of potential pyrimidine derivatives via Suzuki cross-coupling reaction as HIV and kinesin Eg5 inhibitors. Al-Masoudi NA, Kassim AG, Abdul-Reda NA. Nucleosides Nucleotides Nucleic Acids 33 141-161 (2014)


Related citations provided by authors (1)