1gwp Citations

Structure of the N-terminal 283-residue fragment of the immature HIV-1 Gag polyprotein.

Nat Struct Biol 9 537-43 (2002)
Cited: 154 times
EuropePMC logo PMID: 12032547

Abstract

The capsid protein (CA) of the mature human immunodeficiency virus (HIV) contains an N-terminal beta-hairpin that is essential for formation of the capsid core particle. CA is generated by proteolytic cleavage of the Gag precursor polyprotein during viral maturation. We have determined the NMR structure of a 283-residue N-terminal fragment of immature HIV-1 Gag (Gag(283)), which includes the intact matrix (MA) and N-terminal capsid (CA(N)) domains. The beta-hairpin is unfolded in Gag(283), consistent with the proposal that hairpin formation occurs subsequent to proteolytic cleavage of Gag, triggering capsid assembly. Comparison of the immature and mature CA(N) structures reveals that beta-hairpin formation induces a approximately 2 A displacement of helix 6 and a concomitant displacement of the cyclophylin-A (CypA)-binding loop, suggesting a possible allosteric mechanism for CypA-mediated destabilization of the capsid particle during infectivity.

Reviews - 1gwp mentioned but not cited (6)

  1. TRIM5 structure, HIV-1 capsid recognition, and innate immune signaling. Grütter MG, Luban J. Curr Opin Virol 2 142-150 (2012)
  2. Molecular Architecture of the Retroviral Capsid. Perilla JR, Gronenborn AM. Trends Biochem. Sci. 41 410-420 (2016)
  3. Viral precursor polyproteins: keys of regulation from replication to maturation. Yost SA, Marcotrigiano J. Curr Opin Virol 3 137-142 (2013)
  4. HIV-1 gag: an emerging target for antiretroviral therapy. Tedbury PR, Freed EO. Curr. Top. Microbiol. Immunol. 389 171-201 (2015)
  5. Computational Methods in Immunology and Vaccinology: Design and Development of Antibodies and Immunogens. Guarra F, Colombo G. J Chem Theory Comput 19 5315-5333 (2023)
  6. Inhibitors of peptidyl proline isomerases as antivirals in hepatitis C and other viruses. Striker R, Mehle A. PLoS Pathog. 10 e1004428 (2014)

Articles - 1gwp mentioned but not cited (19)

  1. Active site remodeling switches HIV specificity of antiretroviral TRIMCyp. Price AJ, Marzetta F, Lammers M, Ylinen LM, Schaller T, Wilson SJ, Towers GJ, James LC. Nat. Struct. Mol. Biol. 16 1036-1042 (2009)
  2. Visualization of a missing link in retrovirus capsid assembly. Cardone G, Purdy JG, Cheng N, Craven RC, Steven AC. Nature 457 694-698 (2009)
  3. HIV-1 matrix organizes as a hexamer of trimers on membranes containing phosphatidylinositol-(4,5)-bisphosphate. Alfadhli A, Barklis RL, Barklis E. Virology 387 466-472 (2009)
  4. Discovery of novel small-molecule HIV-1 replication inhibitors that stabilize capsid complexes. Lamorte L, Titolo S, Lemke CT, Goudreau N, Mercier JF, Wardrop E, Shah VB, von Schwedler UK, Langelier C, Banik SS, Aiken C, Sundquist WI, Mason SW. Antimicrob. Agents Chemother. 57 4622-4631 (2013)
  5. Virus particle core defects caused by mutations in the human immunodeficiency virus capsid N-terminal domain. Scholz I, Arvidson B, Huseby D, Barklis E. J. Virol. 79 1470-1479 (2005)
  6. Impact of HLA-B*81-associated mutations in HIV-1 Gag on viral replication capacity. Wright JK, Naidoo VL, Brumme ZL, Prince JL, Claiborne DT, Goulder PJ, Brockman MA, Hunter E, Ndung'u T. J. Virol. 86 3193-3199 (2012)
  7. Structure of the HIV-1 full-length capsid protein in a conformationally trapped unassembled state induced by small-molecule binding. Du S, Betts L, Yang R, Shi H, Concel J, Ahn J, Aiken C, Zhang P, Yeh JI. J Mol Biol 406 371-386 (2011)
  8. Site-specific structural variations accompanying tubular assembly of the HIV-1 capsid protein. Bayro MJ, Chen B, Yau WM, Tycko R. J. Mol. Biol. 426 1109-1127 (2014)
  9. A single amino acid substitution of the human immunodeficiency virus type 1 capsid protein affects viral sensitivity to TRIM5 alpha. Kuroishi A, Bozek K, Shioda T, Nakayama EE. Retrovirology 7 58 (2010)
  10. The maturational refolding of the β-hairpin motif of equine infectious anemia virus capsid protein extends its helix α1 at capsid assembly locus. Chen K, Piszczek G, Carter C, Tjandra N. J. Biol. Chem. 288 1511-1520 (2013)
  11. A second-site suppressor significantly improves the defective phenotype imposed by mutation of an aromatic residue in the N-terminal domain of the HIV-1 capsid protein. Tang S, Ablan S, Dueck M, Ayala-López W, Soto B, Caplan M, Nagashima K, Hewlett IK, Freed EO, Levin JG. Virology 359 105-115 (2007)
  12. Tubular crystals and helical arrays: structural determination of HIV-1 capsid assemblies using iterative helical real-space reconstruction. Zhang P, Meng X, Zhao G. Methods Mol. Biol. 955 381-399 (2013)
  13. Paediatric non-progression following grandmother-to-child HIV transmission. Tsai MH, Muenchhoff M, Adland E, Carlqvist A, Roider J, Cole DK, Sewell AK, Carlson J, Ndung'u T, Goulder PJ. Retrovirology 13 65 (2016)
  14. Sampling Enrichment toward Target Structures Using Hybrid Molecular Dynamics-Monte Carlo Simulations. Yang K, Różycki B, Cui F, Shi C, Chen W, Li Y. PLoS ONE 11 e0156043 (2016)
  15. A triclinic crystal structure of the carboxy-terminal domain of HIV-1 capsid protein with four molecules in the asymmetric unit reveals a novel packing interface. Lampel A, Yaniv O, Berger O, Bacharach E, Gazit E, Frolow F. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 69 602-606 (2013)
  16. Changes in dynamic and static structures of the HIV-1 p24 capsid protein N-domain caused by amino-acid substitution are associated with its viral viability. Sato Y, Matsugami A, Watanabe S, Hayashi F, Arai M, Kigawa T, Nishimura C. Protein Sci 30 2233-2245 (2021)
  17. CryoEM analysis of capsid assembly and structural changes upon interactions with a host restriction factor, TRIM5α. Zhao G, Zhang P. Methods Mol. Biol. 1087 13-28 (2014)
  18. Electrostatic potential of human immunodeficiency virus type 2 and rhesus macaque simian immunodeficiency virus capsid proteins. Bozek K, Nakayama EE, Kono K, Shioda T. Front Microbiol 3 206 (2012)
  19. HIV-1 Virus Interactions With Host Proteins: Interaction of the N-terminal Domain of the HIV-1 Capsid Protein With Human Calmodulin. Tzou YM, Shin R, Krishna NR. Nat Prod Commun 14 (2019)


Reviews citing this publication (16)

  1. The structural biology of HIV assembly. Ganser-Pornillos BK, Yeager M, Sundquist WI. Curr. Opin. Struct. Biol. 18 203-217 (2008)
  2. HIV-1 assembly, budding, and maturation. Sundquist WI, Kräusslich HG. Cold Spring Harb Perspect Med 2 a006924 (2012)
  3. HIV-1 assembly, release and maturation. Freed EO. Nat. Rev. Microbiol. 13 484-496 (2015)
  4. HIV Gag polyprotein: processing and early viral particle assembly. Bell NM, Lever AM. Trends Microbiol. 21 136-144 (2013)
  5. Assembly and architecture of HIV. Ganser-Pornillos BK, Yeager M, Pornillos O. Adv. Exp. Med. Biol. 726 441-465 (2012)
  6. Cell entry by enveloped viruses: redox considerations for HIV and SARS-coronavirus. Fenouillet E, Barbouche R, Jones IM. Antioxid. Redox Signal. 9 1009-1034 (2007)
  7. HIV-1 Maturation: Lessons Learned from Inhibitors. Kleinpeter AB, Freed EO. Viruses 12 E940 (2020)
  8. New insights into HTLV-1 particle structure, assembly, and Gag-Gag interactions in living cells. Fogarty KH, Zhang W, Grigsby IF, Johnson JL, Chen Y, Mueller JD, Mansky LM. Viruses 3 770-793 (2011)
  9. HIV-1 Capsid Core: A Bullet to the Heart of the Target Cell. Toccafondi E, Lener D, Negroni M. Front Microbiol 12 652486 (2021)
  10. Understanding the process of envelope glycoprotein incorporation into virions in simian and feline immunodeficiency viruses. Affranchino JL, González SA. Viruses 6 264-283 (2014)
  11. Interplay between Host tRNAs and HIV-1: A Structural Perspective. Zhang J. Viruses 13 1819 (2021)
  12. Stephan Oroszlan and the Proteolytic Processing of Retroviral Proteins: Following A Pro. Swanstrom R, Sundquist WI. Viruses 13 2218 (2021)
  13. Condensation Goes Viral: A Polymer Physics Perspective. Alston JJ, Soranno A. J Mol Biol 435 167988 (2023)
  14. NMR Studies of Retroviral Genome Packaging. Boyd PS, Brown JB, Brown JD, Catazaro J, Chaudry I, Ding P, Dong X, Marchant J, O'Hern CT, Singh K, Swanson C, Summers MF, Yasin S. Viruses 12 (2020)
  15. Structural Analysis of Retrovirus Assembly and Maturation. Krebs AS, Mendonça LM, Zhang P. Viruses 14 54 (2021)
  16. The Interplay between HIV-1 Gag Binding to the Plasma Membrane and Env Incorporation. Murphy RE, Saad JS. Viruses 12 (2020)

Articles citing this publication (113)

  1. Fitness cost of escape mutations in p24 Gag in association with control of human immunodeficiency virus type 1. Martinez-Picado J, Prado JG, Fry EE, Pfafferott K, Leslie A, Chetty S, Thobakgale C, Honeyborne I, Crawford H, Matthews P, Pillay T, Rousseau C, Mullins JI, Brander C, Walker BD, Stuart DI, Kiepiela P, Goulder P. J. Virol. 80 3617-3623 (2006)
  2. Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution. Schur FK, Hagen WJ, Rumlová M, Ruml T, Müller B, Kräusslich HG, Briggs JA. Nature 517 505-508 (2015)
  3. Electron cryotomography of immature HIV-1 virions reveals the structure of the CA and SP1 Gag shells. Wright ER, Schooler JB, Ding HJ, Kieffer C, Fillmore C, Sundquist WI, Jensen GJ. EMBO J. 26 2218-2226 (2007)
  4. Assembly properties of the human immunodeficiency virus type 1 CA protein. Ganser-Pornillos BK, von Schwedler UK, Stray KM, Aiken C, Sundquist WI. J. Virol. 78 2545-2552 (2004)
  5. Structure of full-length HIV-1 CA: a model for the mature capsid lattice. Ganser-Pornillos BK, Cheng A, Yeager M. Cell 131 70-79 (2007)
  6. Entropic switch regulates myristate exposure in the HIV-1 matrix protein. Tang C, Loeliger E, Luncsford P, Kinde I, Beckett D, Summers MF. Proc. Natl. Acad. Sci. U.S.A. 101 517-522 (2004)
  7. Structure and assembly of immature HIV. Briggs JA, Riches JD, Glass B, Bartonova V, Zanetti G, Kräusslich HG. Proc. Natl. Acad. Sci. U.S.A. 106 11090-11095 (2009)
  8. Structural convergence between Cryo-EM and NMR reveals intersubunit interactions critical for HIV-1 capsid function. Byeon IJ, Meng X, Jung J, Zhao G, Yang R, Ahn J, Shi J, Concel J, Aiken C, Zhang P, Gronenborn AM. Cell 139 780-790 (2009)
  9. Target cell cyclophilin A modulates human immunodeficiency virus type 1 infectivity. Sokolskaja E, Sayah DM, Luban J. J. Virol. 78 12800-12808 (2004)
  10. Construction and characterization of a fluorescently labeled infectious human immunodeficiency virus type 1 derivative. Müller B, Daecke J, Fackler OT, Dittmar MT, Zentgraf H, Kräusslich HG. J. Virol. 78 10803-10813 (2004)
  11. Antiviral inhibition of the HIV-1 capsid protein. Tang C, Loeliger E, Kinde I, Kyere S, Mayo K, Barklis E, Sun Y, Huang M, Summers MF. J. Mol. Biol. 327 1013-1020 (2003)
  12. The HIV-1 capsid protein C-terminal domain in complex with a virus assembly inhibitor. Ternois F, Sticht J, Duquerroy S, Kräusslich HG, Rey FA. Nat. Struct. Mol. Biol. 12 678-682 (2005)
  13. Species-specific tropism determinants in the human immunodeficiency virus type 1 capsid. Hatziioannou T, Cowan S, Von Schwedler UK, Sundquist WI, Bieniasz PD. J. Virol. 78 6005-6012 (2004)
  14. Conformation of the HIV-1 Gag protein in solution. Datta SA, Curtis JE, Ratcliff W, Clark PK, Crist RM, Lebowitz J, Krueger S, Rein A. J. Mol. Biol. 365 812-824 (2007)
  15. Interactions between HIV-1 Gag molecules in solution: an inositol phosphate-mediated switch. Datta SA, Zhao Z, Clark PK, Tarasov S, Alexandratos JN, Campbell SJ, Kvaratskhelia M, Lebowitz J, Rein A. J. Mol. Biol. 365 799-811 (2007)
  16. Identification of Staufen in the human immunodeficiency virus type 1 Gag ribonucleoprotein complex and a role in generating infectious viral particles. Chatel-Chaix L, Clément JF, Martel C, Bériault V, Gatignol A, DesGroseillers L, Mouland AJ. Mol. Cell. Biol. 24 2637-2648 (2004)
  17. An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Schur FK, Obr M, Hagen WJ, Wan W, Jakobi AJ, Kirkpatrick JM, Sachse C, Kräusslich HG, Briggs JA. Science 353 506-508 (2016)
  18. Structural analysis of HIV-1 maturation using cryo-electron tomography. de Marco A, Müller B, Glass B, Riches JD, Kräusslich HG, Briggs JA. PLoS Pathog. 6 e1001215 (2010)
  19. HIV-1 Gag extension: conformational changes require simultaneous interaction with membrane and nucleic acid. Datta SA, Heinrich F, Raghunandan S, Krueger S, Curtis JE, Rein A, Nanda H. J. Mol. Biol. 406 205-214 (2011)
  20. Solid-state NMR studies of HIV-1 capsid protein assemblies. Han Y, Ahn J, Concel J, Byeon IJ, Gronenborn AM, Yang J, Polenova T. J. Am. Chem. Soc. 132 1976-1987 (2010)
  21. On the role of the SP1 domain in HIV-1 particle assembly: a molecular switch? Datta SA, Temeselew LG, Crist RM, Soheilian F, Kamata A, Mirro J, Harvin D, Nagashima K, Cachau RE, Rein A. J. Virol. 85 4111-4121 (2011)
  22. Flexibility in the P2 domain of the HIV-1 Gag polyprotein. Newman JL, Butcher EW, Patel DT, Mikhaylenko Y, Summers MF. Protein Sci. 13 2101-2107 (2004)
  23. Disulfide bond stabilization of the hexameric capsomer of human immunodeficiency virus. Pornillos O, Ganser-Pornillos BK, Banumathi S, Hua Y, Yeager M. J. Mol. Biol. 401 985-995 (2010)
  24. A strongly transdominant mutation in the human immunodeficiency virus type 1 gag gene defines an Achilles heel in the virus life cycle. Lee SK, Harris J, Swanstrom R. J. Virol. 83 8536-8543 (2009)
  25. Human immunodeficiency virus type 1 N-terminal capsid mutants containing cores with abnormally high levels of capsid protein and virtually no reverse transcriptase. Tang S, Murakami T, Cheng N, Steven AC, Freed EO, Levin JG. J. Virol. 77 12592-12602 (2003)
  26. Motions on the millisecond time scale and multiple conformations of HIV-1 capsid protein: implications for structural polymorphism of CA assemblies. Byeon IJ, Hou G, Han Y, Suiter CL, Ahn J, Jung J, Byeon CH, Gronenborn AM, Polenova T. J. Am. Chem. Soc. 134 6455-6466 (2012)
  27. Conserved and variable features of Gag structure and arrangement in immature retrovirus particles. de Marco A, Davey NE, Ulbrich P, Phillips JM, Lux V, Riches JD, Fuzik T, Ruml T, Kräusslich HG, Vogt VM, Briggs JA. J. Virol. 84 11729-11736 (2010)
  28. Hepatitis C virus-like particle budding: role of the core protein and importance of its Asp111. Blanchard E, Hourioux C, Brand D, Ait-Goughoulte M, Moreau A, Trassard S, Sizaret PY, Dubois F, Roingeard P. J. Virol. 77 10131-10138 (2003)
  29. VSV-G pseudotyping rescues HIV-1 CA mutations that impair core assembly or stability. Brun S, Solignat M, Gay B, Bernard E, Chaloin L, Fenard D, Devaux C, Chazal N, Briant L. Retrovirology 5 57 (2008)
  30. Crystal structure of an HIV assembly and maturation switch. Wagner JM, Zadrozny KK, Chrustowicz J, Purdy MD, Yeager M, Ganser-Pornillos BK, Pornillos O. Elife 5 (2016)
  31. Critical role of conserved hydrophobic residues within the major homology region in mature retroviral capsid assembly. Purdy JG, Flanagan JM, Ropson IJ, Rennoll-Bankert KE, Craven RC. J. Virol. 82 5951-5961 (2008)
  32. Maturation of the HIV-1 core by a non-diffusional phase transition. Frank GA, Narayan K, Bess JW, Del Prete GQ, Wu X, Moran A, Hartnell LM, Earl LA, Lifson JD, Subramaniam S. Nat Commun 6 5854 (2015)
  33. Total chemical synthesis of N-myristoylated HIV-1 matrix protein p17: structural and mechanistic implications of p17 myristoylation. Wu Z, Alexandratos J, Ericksen B, Lubkowski J, Gallo RC, Lu W. Proc. Natl. Acad. Sci. U.S.A. 101 11587-11592 (2004)
  34. Effects of blocking individual maturation cleavages in murine leukemia virus gag. Oshima M, Muriaux D, Mirro J, Nagashima K, Dryden K, Yeager M, Rein A. J. Virol. 78 1411-1420 (2004)
  35. Hydrogen/deuterium exchange analysis of HIV-1 capsid assembly and maturation. Monroe EB, Kang S, Kyere SK, Li R, Prevelige PE. Structure 18 1483-1491 (2010)
  36. eEF2 and Ras-GAP SH3 domain-binding protein (G3BP1) modulate stress granule assembly during HIV-1 infection. Valiente-Echeverría F, Melnychuk L, Vyboh K, Ajamian L, Gallouzi IE, Bernard N, Mouland AJ. Nat Commun 5 4819 (2014)
  37. Determinants of cyclophilin A-dependent TRIM5 alpha restriction against HIV-1. Lin TY, Emerman M. Virology 379 335-341 (2008)
  38. Compensatory substitutions restore normal core assembly in simian immunodeficiency virus isolates with Gag epitope cytotoxic T-lymphocyte escape mutations. Yeh WW, Cale EM, Jaru-Ampornpan P, Lord CI, Peyerl FW, Letvin NL. J. Virol. 80 8168-8177 (2006)
  39. Protease cleavage leads to formation of mature trimer interface in HIV-1 capsid. Meng X, Zhao G, Yufenyuy E, Ke D, Ning J, Delucia M, Ahn J, Gronenborn AM, Aiken C, Zhang P. PLoS Pathog. 8 e1002886 (2012)
  40. Mutant murine leukemia virus Gag proteins lacking proline at the N-terminus of the capsid domain block infectivity in virions containing wild-type Gag. Rulli SJ, Muriaux D, Nagashima K, Mirro J, Oshima M, Baumann JG, Rein A. Virology 347 364-371 (2006)
  41. NMR structure of the N-terminal domain of capsid protein from the mason-pfizer monkey virus. Macek P, Chmelík J, Krízová I, Kaderávek P, Padrta P, Zídek L, Wildová M, Hadravová R, Chaloupková R, Pichová I, Ruml T, Rumlová M, Sklenár V. J. Mol. Biol. 392 100-114 (2009)
  42. Structural similarity-based predictions of protein interactions between HIV-1 and Homo sapiens. Doolittle JM, Gomez SM. Virol. J. 7 82 (2010)
  43. The interdomain linker region of HIV-1 capsid protein is a critical determinant of proper core assembly and stability. Jiang J, Ablan SD, Derebail S, Hercík K, Soheilian F, Thomas JA, Tang S, Hewlett I, Nagashima K, Gorelick RJ, Freed EO, Levin JG. Virology 421 253-265 (2011)
  44. Three residues in HIV-1 matrix contribute to protease inhibitor susceptibility and replication capacity. Parry CM, Kolli M, Myers RE, Cane PA, Schiffer C, Pillay D. Antimicrob. Agents Chemother. 55 1106-1113 (2011)
  45. Structural and dynamical characterization of tubular HIV-1 capsid protein assemblies by solid state nuclear magnetic resonance and electron microscopy. Chen B, Tycko R. Protein Sci. 19 716-730 (2010)
  46. Positive and negative modulation of virus infectivity and envelope glycoprotein incorporation into virions by amino acid substitutions at the N terminus of the simian immunodeficiency virus matrix protein. Manrique JM, Celma CC, Hunter E, Affranchino JL, González SA. J. Virol. 77 10881-10888 (2003)
  47. The Structure of Immature Virus-Like Rous Sarcoma Virus Gag Particles Reveals a Structural Role for the p10 Domain in Assembly. Schur FK, Dick RA, Hagen WJ, Vogt VM, Briggs JA. J. Virol. 89 10294-10302 (2015)
  48. Gain-of-sensitivity mutations in a Trim5-resistant primary isolate of pathogenic SIV identify two independent conserved determinants of Trim5α specificity. McCarthy KR, Schmidt AG, Kirmaier A, Wyand AL, Newman RM, Johnson WE. PLoS Pathog. 9 e1003352 (2013)
  49. A conformational transition observed in single HIV-1 Gag molecules during in vitro assembly of virus-like particles. Munro JB, Nath A, Färber M, Datta SA, Rein A, Rhoades E, Mothes W. J. Virol. 88 3577-3585 (2014)
  50. Characterization of the invariable residue 51 mutations of human immunodeficiency virus type 1 capsid protein on in vitro CA assembly and infectivity. Abdurahman S, Youssefi M, Höglund S, Vahlne A. Retrovirology 4 69 (2007)
  51. Conformation and dynamics of the Gag polyprotein of the human immunodeficiency virus 1 studied by NMR spectroscopy. Deshmukh L, Ghirlando R, Clore GM. Proc. Natl. Acad. Sci. U.S.A. 112 3374-3379 (2015)
  52. Solution conformation and dynamics of the HIV-1 integrase core domain. Fitzkee NC, Masse JE, Shen Y, Davies DR, Bax A. J. Biol. Chem. 285 18072-18084 (2010)
  53. The hypervariable HIV-1 capsid protein residues comprise HLA-driven CD8+ T-cell escape mutations and covarying HLA-independent polymorphisms. Crawford H, Matthews PC, Schaefer M, Carlson JM, Leslie A, Kilembe W, Allen S, Ndung'u T, Heckerman D, Hunter E, Goulder PJ. J. Virol. 85 1384-1390 (2011)
  54. Solution properties of murine leukemia virus gag protein: differences from HIV-1 gag. Datta SA, Zuo X, Clark PK, Campbell SJ, Wang YX, Rein A. J. Virol. 85 12733-12741 (2011)
  55. Structural and Molecular Determinants of Membrane Binding by the HIV-1 Matrix Protein. Mercredi PY, Bucca N, Loeliger B, Gaines CR, Mehta M, Bhargava P, Tedbury PR, Charlier L, Floquet N, Muriaux D, Favard C, Sanders CR, Freed EO, Marchant J, Summers MF. J. Mol. Biol. 428 1637-1655 (2016)
  56. The effect of HIV-1 Gag myristoylation on membrane binding. Provitera P, El-Maghrabi R, Scarlata S. Biophys. Chem. 119 23-32 (2006)
  57. A retroviral chimeric capsid protein reveals the role of the N-terminal β-hairpin in mature core assembly. Cortines JR, Monroe EB, Kang S, Prevelige PE. J. Mol. Biol. 410 641-652 (2011)
  58. Gag-CA Q110D mutation elicits TRIM5-independent enhancement of HIV-1mt replication in macaque cells. Nomaguchi M, Yokoyama M, Kono K, Nakayama EE, Shioda T, Saito A, Akari H, Yasutomi Y, Matano T, Sato H, Adachi A. Microbes Infect. 15 56-65 (2013)
  59. Highly conserved serine residue 40 in HIV-1 p6 regulates capsid processing and virus core assembly. Votteler J, Neumann L, Hahn S, Hahn F, Rauch P, Schmidt K, Studtrucker N, Solbak SM, Fossen T, Henklein P, Ott DE, Holland G, Bannert N, Schubert U. Retrovirology 8 11 (2011)
  60. Morphology and ultrastructure of retrovirus particles. Zhang W, Cao S, Martin JL, Mueller JD, Mansky LM. AIMS Biophys 2 343-369 (2015)
  61. A highly conserved residue in the C-terminal helix of HIV-1 matrix is required for envelope incorporation into virus particles. Brandano L, Stevenson M. J. Virol. 86 2347-2359 (2012)
  62. Design of in vitro symmetric complexes and analysis by hybrid methods reveal mechanisms of HIV capsid assembly. Yeager M. J. Mol. Biol. 410 534-552 (2011)
  63. Hydrogen bonding at a conserved threonine in lentivirus capsid is required for virus replication. Rue SM, Roos JW, Amzel LM, Clements JE, Barber SA. J. Virol. 77 8009-8018 (2003)
  64. STRUCTURAL VIROLOGY. Conformational plasticity of a native retroviral capsid revealed by x-ray crystallography. Obal G, Trajtenberg F, Carrión F, Tomé L, Larrieux N, Zhang X, Pritsch O, Buschiazzo A. Science 349 95-98 (2015)
  65. Temporal association of HLA-B*81:01- and HLA-B*39:10-mediated HIV-1 p24 sequence evolution with disease progression. Ntale RS, Chopera DR, Ngandu NK, Assis de Rosa D, Zembe L, Gamieldien H, Mlotshwa M, Werner L, Woodman Z, Mlisana K, Abdool Karim S, Gray CM, Williamson C, CAPRISA 002 Study Team. J. Virol. 86 12013-12024 (2012)
  66. Cooperative role of the MHR and the CA dimerization helix in the maturation of the functional retrovirus capsid. Lokhandwala PM, Nguyen TL, Bowzard JB, Craven RC. Virology 376 191-198 (2008)
  67. Evolutionary and Functional Analysis of Old World Primate TRIM5 Reveals the Ancient Emergence of Primate Lentiviruses and Convergent Evolution Targeting a Conserved Capsid Interface. McCarthy KR, Kirmaier A, Autissier P, Johnson WE. PLoS Pathog. 11 e1005085 (2015)
  68. Investigation of the structure and dynamics of the capsid-spacer peptide 1-nucleocapsid fragment of the HIV-1 gag polyprotein by solution NMR spectroscopy. Deshmukh L, Ghirlando R, Clore GM. Angew. Chem. Int. Ed. Engl. 53 1025-1028 (2014)
  69. Structure and stoichiometry of template-directed recombinant HIV-1 Gag particles. Goicochea NL, Datta SA, Ayaluru M, Kao C, Rein A, Dragnea B. J. Mol. Biol. 410 667-680 (2011)
  70. Determinants of the HIV-1 core assembly pathway. López CS, Eccles JD, Still A, Sloan RE, Barklis RL, Tsagli SM, Barklis E. Virology 417 137-146 (2011)
  71. Recognition of the HIV capsid by the TRIM5α restriction factor is mediated by a subset of pre-existing conformations of the TRIM5α SPRY domain. Kovalskyy DB, Ivanov DN. Biochemistry 53 1466-1476 (2014)
  72. Correlation of naturally occurring HIV-1 resistance to DEB025 with capsid amino acid polymorphisms. Gallay PA, Ptak RG, Bobardt MD, Dumont JM, Vuagniaux G, Rosenwirth B. Viruses 5 981-997 (2013)
  73. Intersubtype differences in the effect of a rare p24 gag mutation on HIV-1 replicative fitness. Chopera DR, Cotton LA, Zawaira A, Mann JK, Ngandu NK, Ntale R, Carlson JM, Mlisana K, Woodman Z, de Assis Rosa D, Martin E, Miura T, Pereyra F, Walker BD, Gray CM, Martin DP, Ndung'u T, Brockman MA, Karim SA, Brumme ZL, Williamson C, CAPRISA 002 Study Team. J. Virol. 86 13423-13433 (2012)
  74. Biophysical characterization and crystal structure of the Feline Immunodeficiency Virus p15 matrix protein. Serrière J, Robert X, Perez M, Gouet P, Guillon C. Retrovirology 10 64 (2013)
  75. Conservation of HIV-1 T cell epitopes across time and clades: validation of immunogenic HLA-A2 epitopes selected for the GAIA HIV vaccine. Levitz L, Koita OA, Sangare K, Ardito MT, Boyle CM, Rozehnal J, Tounkara K, Dao SM, Koné Y, Koty Z, Buus S, Moise L, Martin WD, De Groot AS. Vaccine 30 7547-7560 (2012)
  76. Contributions of Charged Residues in Structurally Dynamic Capsid Surface Loops to Rous Sarcoma Virus Assembly. Heyrana KJ, Goh BC, Perilla JR, Nguyen TN, England MR, Bewley MC, Schulten K, Craven RC. J. Virol. 90 5700-5714 (2016)
  77. Genetic Studies of the beta-hairpin loop of Rous sarcoma virus capsid protein. Spidel JL, Wilson CB, Craven RC, Wills JW. J. Virol. 81 1288-1296 (2007)
  78. NMR spectroscopy as a tool for the rapid assessment of the conformation of GST-fusion proteins. Liew CK, Gamsjaeger R, Mansfield RE, Mackay JP. Protein Sci. 17 1630-1635 (2008)
  79. Quenching protein dynamics interferes with HIV capsid maturation. Wang M, Quinn CM, Perilla JR, Zhang H, Shirra R, Hou G, Byeon IJ, Suiter CL, Ablan S, Urano E, Nitz TJ, Aiken C, Freed EO, Zhang P, Schulten K, Gronenborn AM, Polenova T. Nat Commun 8 1779 (2017)
  80. Second site reversion of a mutation near the amino terminus of the HIV-1 capsid protein. López CS, Tsagli SM, Sloan R, Eccles J, Barklis E. Virology 447 95-103 (2013)
  81. The p12 domain is unstructured in a murine leukemia virus p12-CA(N) Gag construct. Kyere SK, Joseph PR, Summers MF. PLoS ONE 3 e1902 (2008)
  82. Evolution of feline immunodeficiency virus Gag proteins. Burkala E, Poss M. Virus Genes 35 251-264 (2007)
  83. HIV-1 matrix-tRNA complex structure reveals basis for host control of Gag localization. Bou-Nader C, Muecksch F, Brown JB, Gordon JM, York A, Peng C, Ghirlando R, Summers MF, Bieniasz PD, Zhang J. Cell Host Microbe 29 1421-1436.e7 (2021)
  84. NMR structure of the myristylated feline immunodeficiency virus matrix protein. Brown LA, Cox C, Baptiste J, Summers H, Button R, Bahlow K, Spurrier V, Kyser J, Luttge BG, Kuo L, Freed EO, Summers MF. Viruses 7 2210-2229 (2015)
  85. Structure of the Dimerization Interface in the Mature HIV-1 Capsid Protein Lattice from Solid State NMR of Tubular Assemblies. Bayro MJ, Tycko R. J. Am. Chem. Soc. 138 8538-8546 (2016)
  86. Chimeric HIV-1 containing SIV matrix exhibit enhanced assembly in murine cells and replicate in a cell-type-dependent manner in human T cells. Chen P, Hübner W, Riviere K, Liu YX, Chen BK. Virology 349 1-12 (2006)
  87. Comment Crosscurrents in HIV-1 evolution. Blankson JN, Bailey JR, Siliciano RF. Nat. Immunol. 7 121-122 (2006)
  88. Lentiviral Gag assembly analyzed through the functional characterization of chimeric simian immunodeficiency viruses expressing different domains of the feline immunodeficiency virus capsid protein. Esteva MJ, Affranchino JL, González SA. PLoS ONE 9 e114299 (2014)
  89. The pH dependence of HIV-1 capsid assembly and its interaction with cyclophilin A. Bon Homme M, Wong S, Carter C, Scarlata S. Biophys. Chem. 105 67-77 (2003)
  90. A sensitive assay using a native protein substrate for screening HIV-1 maturation inhibitors targeting the protease cleavage site between the matrix and capsid. Lee SK, Cheng N, Hull-Ryde E, Potempa M, Schiffer CA, Janzen W, Swanstrom R. Biochemistry 52 4929-4940 (2013)
  91. Backbone (15)N relaxation analysis of the N-terminal domain of the HTLV-I capsid protein and comparison with the capsid protein of HIV-1. Cornilescu CC, Bouamr F, Carter C, Tjandra N. Protein Sci. 12 973-981 (2003)
  92. Flexible and rigid structures in HIV-1 p17 matrix protein monitored by relaxation and amide proton exchange with NMR. Ohori Y, Okazaki H, Watanabe S, Tochio N, Arai M, Kigawa T, Nishimura C. Biochim. Biophys. Acta 1844 520-526 (2014)
  93. Major Variations in HIV-1 Capsid Assembly Morphologies Involve Minor Variations in Molecular Structures of Structurally Ordered Protein Segments. Lu JX, Bayro MJ, Tycko R. J. Biol. Chem. 291 13098-13112 (2016)
  94. Coarse-grained protein-protein stiffnesses and dynamics from all-atom simulations. Hicks SD, Henley CL. Phys Rev E Stat Nonlin Soft Matter Phys 81 030903 (2010)
  95. Crystal Structure of the Full-Length Feline Immunodeficiency Virus Capsid Protein Shows an N-Terminal β-Hairpin in the Absence of N-Terminal Proline. Folio C, Sierra N, Dujardin M, Alvarez G, Guillon C. Viruses 9 (2017)
  96. Targeting human immunodeficiency virus type 1 assembly, maturation and budding. Wapling J, Srivastava S, Shehu-Xhilaga M, Tachedjian G. Drug Target Insights 2 159-182 (2007)
  97. Gag-protease coevolution analyses define novel structural surfaces in the HIV-1 matrix and capsid involved in resistance to Protease Inhibitors. Codoñer FM, Peña R, Blanch-Lombarte O, Jimenez-Moyano E, Pino M, Vollbrecht T, Clotet B, Martinez-Picado J, Draenert R, Prado JG. Sci Rep 7 3717 (2017)
  98. Genetic footprinting of a retroviral Gag gene suggests an important role in virus replication. Rein A. Proc. Natl. Acad. Sci. U.S.A. 100 11929-11930 (2003)
  99. Modeling the full length HIV-1 Gag polyprotein reveals the role of its p6 subunit in viral maturation and the effect of non-cleavage site mutations in protease drug resistance. Su CT, Kwoh CK, Verma CS, Gan SK. J. Biomol. Struct. Dyn. 36 4366-4377 (2018)
  100. Protein dynamics elucidated by NMR technique. Li C, Tang C, Liu M. Protein Cell 4 726-730 (2013)
  101. Stabilization of the β-hairpin in Mason-Pfizer monkey virus capsid protein- a critical step for infectivity. Obr M, Hadravová R, DoleŽal M, KříŽová I, Papoušková V, Zídek L, Hrabal R, Ruml T, Rumlová M. Retrovirology 11 94 (2014)
  102. Circuit assemblages derived from net dinucleotide values provide a succinct identity for the HIV-1 genome and each of its genes. Lang DM. Virus Genes 36 11-26 (2008)
  103. HIV-1 Protease Uses Bi-Specific S2/S2' Subsites to Optimize Cleavage of Two Classes of Target Sites. Potempa M, Lee SK, Kurt Yilmaz N, Nalivaika EA, Rogers A, Spielvogel E, Carter CW, Schiffer CA, Swanstrom R. J. Mol. Biol. 430 5182-5195 (2018)
  104. Modeling global changes induced by local perturbations to the HIV-1 capsid. Bergman S, Lezon TR. J. Mol. Graph. Model. 71 218-226 (2017)
  105. Repression of the Chromatin-Tethering Domain of Murine Leukemia Virus p12. Brzezinski JD, Modi A, Liu M, Roth MJ. J. Virol. 90 11197-11207 (2016)
  106. 1H, 15N, and 13C resonance assignments for a monomeric mutant of the HIV-1 capsid protein. Shin R, Tzou YM, Wong HC, Krishna NR. Biomol NMR Assign 6 131-134 (2012)
  107. Effect of Glu12-His89 Interaction on Dynamic Structures in HIV-1 p17 Matrix Protein Elucidated by NMR. Konagaya Y, Miyakawa R, Sato M, Matsugami A, Watanabe S, Hayashi F, Kigawa T, Nishimura C. PLoS ONE 11 e0167176 (2016)
  108. Imperfect DNA mirror repeats in the gag gene of HIV-1 (HXB2) identify key functional domains and coincide with protein structural elements in each of the mature proteins. Lang DM. Virol. J. 4 113 (2007)
  109. Long-range effects of tag sequence on marginally stabilized structure in HIV-1 p24 capsid protein monitored using NMR. Okazaki H, Kaneko C, Hirahara M, Watanabe S, Tochio N, Kigawa T, Nishimura C. Biochim. Biophys. Acta 1844 1638-1647 (2014)
  110. Nucleic acid-induced dimerization of HIV-1 Gag protein. Zhao H, Datta SAK, Kim SH, To SC, Chaturvedi SK, Rein A, Schuck P. J. Biol. Chem. 294 16480-16493 (2019)
  111. Structural Determinants of Virion Assembly and Release in the C Terminus of the Mason-Pfizer Monkey Virus Capsid Protein. Buckmaster MV, Zadrozny KK, Ganser-Pornillos BK, Pornillos O, Goff SP. J Virol 95 e0061521 (2021)
  112. The cyclophilin A-binding loop of the capsid regulates the human TRIM5α sensitivity of nonpandemic HIV-1. Twizerimana AP, Becker D, Zhu S, Luedde T, Gohlke H, Münk C. Proc Natl Acad Sci U S A 120 e2306374120 (2023)
  113. The impact of Gag non-cleavage site mutations on HIV-1 viral fitness from integrative modelling and simulations. Samsudin F, Gan SK, Bond PJ. Comput Struct Biotechnol J 19 330-342 (2021)


Related citations provided by authors (1)

  1. Structure of the amino-terminal core domain of the HIV-1 capsid protein.. Gitti RK, Lee BM, Walker J, Summers MF, Yoo S, Sundquist WI Science 273 231-5 (1996)