1gsa Citations

A pseudo-michaelis quaternary complex in the reverse reaction of a ligase: structure of Escherichia coli B glutathione synthetase complexed with ADP, glutathione, and sulfate at 2.0 A resolution.

Biochemistry 35 11967-74 (1996)
Cited: 45 times
EuropePMC logo PMID: 8810901

Abstract

The crystal structure of glutathione synthetase from Escherichia coli B complexed with ADP, glutathione, and sulfate has been determined at 2.0 A resolution. Concerning the chemical similarity of sulfate and phosphate, this quaternary complex structure represents a pseudo enzyme-substrate complex in the reverse reaction and consequently allows us to understand the active site architecture of the E. coli glutathione synthetase. Two Mg2+ ions are coordinated with oxygen atoms from the alpha- and beta-phosphate groups of ADP and from the sulfate ion. The flexible loops, invisible in the unliganded or the binary and ternary complex structures, are fixed in the quaternary complex. The larger flexible loop (Ile226-Arg241) includes one turn of a 310-helix that comprises the binding site of the glycine moiety of GSH. The small loop (Gly164-Gly167) is involved in nucleotide binding and acts as a phosphate gripper. The side chains of Arg210 and Arg225 interact with the sulfate ion and the beta-phosphate moiety of ADP. Arg 210 is likely to interact with the carboxylate of the C-terminal gamma-glutamylcysteine in the substrate-binding form of the forward reaction. Other positively charged residues in the active site (Lys125 and Lys160) are involved in nucleotide binding, directing the phosphate groups to the right position for catalysis. Functional aspects of the active site architecture in the substrate-binding form are discussed.

Articles - 1gsa mentioned but not cited (11)

  1. A normalized root-mean-square distance for comparing protein three-dimensional structures. Carugo O, Pongor S. Protein Sci 10 1470-1473 (2001)
  2. From the similarity analysis of protein cavities to the functional classification of protein families using cavbase. Kuhn D, Weskamp N, Schmitt S, Hüllermeier E, Klebe G. J Mol Biol 359 1023-1044 (2006)
  3. Glutathione synthetase homologs encode alpha-L-glutamate ligases for methanogenic coenzyme F420 and tetrahydrosarcinapterin biosyntheses. Li H, Xu H, Graham DE, White RH. Proc Natl Acad Sci U S A 100 9785-9790 (2003)
  4. The RAGNYA fold: a novel fold with multiple topological variants found in functionally diverse nucleic acid, nucleotide and peptide-binding proteins. Balaji S, Aravind L. Nucleic Acids Res 35 5658-5671 (2007)
  5. Comparative assessment of strategies to identify similar ligand-binding pockets in proteins. Govindaraj RG, Brylinski M. BMC Bioinformatics 19 91 (2018)
  6. An intra-bacterial activity for a T3SS effector. El Qaidi S, Scott NE, Hays MP, Geisbrecht BV, Watkins S, Hardwidge PR. Sci Rep 10 1073 (2020)
  7. Crystal structure and function of 5-formaminoimidazole-4-carboxamide ribonucleotide synthetase from Methanocaldococcus jannaschii. Zhang Y, White RH, Ealick SE. Biochemistry 47 205-217 (2008)
  8. Mirrors in the PDB: left-handed alpha-turns guide design with D-amino acids. Annavarapu S, Nanda V. BMC Struct Biol 9 61 (2009)
  9. Fast and automated functional classification with MED-SuMo: an application on purine-binding proteins. Doppelt-Azeroual O, Delfaud F, Moriaud F, de Brevern AG. Protein Sci 19 847-867 (2010)
  10. Improving protein crystal quality by the without-oil microbatch method: crystallization and preliminary X-ray diffraction analysis of glutathione synthetase from Pseudoalteromonas haloplanktis. Merlino A, Russo Krauss I, Albino A, Pica A, Vergara A, Masullo M, De Vendittis E, Sica F. Int J Mol Sci 12 6312-6319 (2011)
  11. Structure of Trypanosoma brucei glutathione synthetase: domain and loop alterations in the catalytic cycle of a highly conserved enzyme. Fyfe PK, Alphey MS, Hunter WN. Mol Biochem Parasitol 170 93-99 (2010)


Reviews citing this publication (2)

Articles citing this publication (32)

  1. Structural basis of tubulin tyrosination by tubulin tyrosine ligase. Prota AE, Magiera MM, Kuijpers M, Bargsten K, Frey D, Wieser M, Jaussi R, Hoogenraad CC, Kammerer RA, Janke C, Steinmetz MO. J Cell Biol 200 259-270 (2013)
  2. Tubulin tyrosine ligase structure reveals adaptation of an ancient fold to bind and modify tubulin. Szyk A, Deaconescu AM, Piszczek G, Roll-Mecak A. Nat Struct Mol Biol 18 1250-1258 (2011)
  3. A structure-based anatomy of the E.coli metabolome. Nobeli I, Ponstingl H, Krissinel EB, Thornton JM. J Mol Biol 334 697-719 (2003)
  4. Molecular determinants for ATP-binding in proteins: a data mining and quantum chemical analysis. Mao L, Wang Y, Liu Y, Hu X. J Mol Biol 336 787-807 (2004)
  5. Molecular basis of glutathione synthetase deficiency and a rare gene permutation event. Polekhina G, Board PG, Gali RR, Rossjohn J, Parker MW. EMBO J 18 3204-3213 (1999)
  6. A comprehensive survey of small-molecule binding pockets in proteins. Gao M, Skolnick J. PLoS Comput Biol 9 e1003302 (2013)
  7. Leishmania trypanothione synthetase-amidase structure reveals a basis for regulation of conflicting synthetic and hydrolytic activities. Fyfe PK, Oza SL, Fairlamb AH, Hunter WN. J Biol Chem 283 17672-17680 (2008)
  8. When fold is not important: a common structural framework for adenine and AMP binding in 12 unrelated protein families. Denessiouk KA, Johnson MS. Proteins 38 310-326 (2000)
  9. Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes. Copley SD, Dhillon JK. Genome Biol 3 research0025 (2002)
  10. Crystal structure of gamma-glutamylcysteine synthetase: insights into the mechanism of catalysis by a key enzyme for glutathione homeostasis. Hibi T, Nii H, Nakatsu T, Kimura A, Kato H, Hiratake J, Oda J. Proc Natl Acad Sci U S A 101 15052-15057 (2004)
  11. Structural evidence for substrate-induced synergism and half-sites reactivity in biotin carboxylase. Mochalkin I, Miller JR, Evdokimov A, Lightle S, Yan C, Stover CK, Waldrop GL. Protein Sci 17 1706-1718 (2008)
  12. Molecular identification of N-acetylaspartylglutamate synthase and beta-citrylglutamate synthase. Collard F, Stroobant V, Lamosa P, Kapanda CN, Lambert DM, Muccioli GG, Poupaert JH, Opperdoes F, Van Schaftingen E. J Biol Chem 285 29826-29833 (2010)
  13. Lysine and arginine biosyntheses mediated by a common carrier protein in Sulfolobus. Ouchi T, Tomita T, Horie A, Yoshida A, Takahashi K, Nishida H, Lassak K, Taka H, Mineki R, Fujimura T, Kosono S, Nishiyama C, Masui R, Kuramitsu S, Albers SV, Kuzuyama T, Nishiyama M. Nat Chem Biol 9 277-283 (2013)
  14. The catalytic cycle of beta -lactam synthetase observed by x-ray crystallographic snapshots. Miller MT, Bachmann BO, Townsend CA, Rosenzweig AC. Proc Natl Acad Sci U S A 99 14752-14757 (2002)
  15. Structure and function of Escherichia coli RimK, an ATP-grasp fold, L-glutamyl ligase enzyme. Zhao G, Jin Z, Wang Y, Allewell NM, Tuchman M, Shi D. Proteins 81 1847-1854 (2013)
  16. Large conformational changes in the catalytic cycle of glutathione synthase. Gogos A, Shapiro L. Structure 10 1669-1676 (2002)
  17. Lysine Biosynthesis of Thermococcus kodakarensis with the Capacity to Function as an Ornithine Biosynthetic System. Yoshida A, Tomita T, Atomi H, Kuzuyama T, Nishiyama M. J Biol Chem 291 21630-21643 (2016)
  18. Probing the origins of glutathione biosynthesis through biochemical analysis of glutamate-cysteine ligase and glutathione synthetase from a model photosynthetic prokaryote. Musgrave WB, Yi H, Kline D, Cameron JC, Wignes J, Dey S, Pakrasi HB, Jez JM. Biochem J 450 63-72 (2013)
  19. Structure-function relationships in glutathione and its analogues. Krezel A, Bal W. Org Biomol Chem 1 3885-3890 (2003)
  20. Crystal structure of a lysine biosynthesis enzyme, LysX, from Thermus thermophilus HB8. Sakai H, Vassylyeva MN, Matsuura T, Sekine Si, Gotoh K, Nishiyama M, Terada T, Shirouzu M, Kuramitsu S, Vassylyev DG, Yokoyama S. J Mol Biol 332 729-740 (2003)
  21. Biosynthesis of the 22nd genetically encoded amino acid pyrrolysine: structure and reaction mechanism of PylC at 1.5Ã… resolution. Quitterer F, List A, Beck P, Bacher A, Groll M. J Mol Biol 424 270-282 (2012)
  22. Structures and function of the amino acid polymerase cyanophycin synthetase. Sharon I, Haque AS, Grogg M, Lahiri I, Seebach D, Leschziner AE, Hilvert D, Schmeing TM. Nat Chem Biol 17 1101-1110 (2021)
  23. Catalytic loop motion in human glutathione synthetase: A molecular modeling approach. Dinescu A, Anderson ME, Cundari TR. Biochem Biophys Res Commun 353 450-456 (2007)
  24. Molecular dynamics simulations of biotin carboxylase. Nilsson Lill SO, Gao J, Waldrop GL. J Phys Chem B 112 3149-3156 (2008)
  25. Molecular mechanism underlying substrate recognition of the peptide macrocyclase PsnB. Song I, Kim Y, Yu J, Go SY, Lee HG, Song WJ, Kim S. Nat Chem Biol 17 1123-1131 (2021)
  26. Cdc123, a Cell Cycle Regulator Needed for eIF2 Assembly, Is an ATP-Grasp Protein with Unique Features. Panvert M, Dubiez E, Arnold L, Perez J, Mechulam Y, Seufert W, Schmitt E. Structure 23 1596-1608 (2015)
  27. The role of the glycine triad in human glutathione synthetase. Dinescu A, Brown TR, Barelier S, Cundari TR, Anderson ME. Biochem Biophys Res Commun 400 511-516 (2010)
  28. Towards optimal alignment of protein structure distance matrices. Wohlers I, Domingues FS, Klau GW. Bioinformatics 26 2273-2280 (2010)
  29. Characterization of a cold-adapted glutathione synthetase from the psychrophile Pseudoalteromonas haloplanktis. Albino A, Marco S, Di Maro A, Chambery A, Masullo M, De Vendittis E. Mol Biosyst 8 2405-2414 (2012)
  30. Mutational analysis of ATP-grasp residues in the two ATP sites of Saccharomyces cerevisiae carbamoyl phosphate synthetase. Eroglu B, Powers-Lee SG. Arch Biochem Biophys 407 1-9 (2002)
  31. Insights into molecular assembly of ACCase heteromeric complex in Chlorella variabilis--a homology modelling, docking and molecular dynamic simulation study. Misra N, Panda PK, Patra MC, Pradhan SK, Mishra BK. Appl Biochem Biotechnol 170 1437-1457 (2013)
  32. Structural bases for aspartate recognition and polymerization efficiency of cyanobacterial cyanophycin synthetase. Miyakawa T, Yang J, Kawasaki M, Adachi N, Fujii A, Miyauchi Y, Muramatsu T, Moriya T, Senda T, Tanokura M. Nat Commun 13 5097 (2022)


Related citations provided by authors (5)

  1. Flexible Loop that is Novel Catalytic Machinery in a Ligase. Atomic Structure and Function of the Loopless Glutathione Synthetase. Kato H, Tanaka T, Yamaguchi H, Hara T, Nishioka T, Katsube Y, Oda J Biochemistry 33 4995- (1994)
  2. Three-Dimensional Structure of the Glutathione Synthetase from Escherichia Coli B at 2.0 A Resolution. Yamaguchi H, Kato H, Hata Y, Nishioka T, Kimura A, Oda J, Katsube Y J. Mol. Biol. 229 1083- (1993)
  3. Overexpression of Glutathione Synthetase in Escherichia Coli. Kato H, Kobayashi M, Murata K, Nishioka T, Oda J Agric. Biol. Chem. 53 3071- (1989)
  4. Crystallization and Preliminary X-Ray Studies of Glutathione Synthetase from Escherichia Coli B. Kato H, Yamaguchi H, Hata Y, Nishioka T, Katsube Y, Oda J J. Mol. Biol. 209 503- (1989)
  5. Role of Cysteine Residues in Glutathione Synthetase from Escherichia Coli B. Chemical Modification and Oligonucleotide Site-Directed Mutagenesis. Kato H, Tanaka T, Nishioka T, Kimura A, Oda J J. Biol. Chem. 263 11646- (1988)