1gra Citations

Substrate binding and catalysis by glutathione reductase as derived from refined enzyme: substrate crystal structures at 2 A resolution.

J Mol Biol 210 163-80 (1989)
Related entries: 1grb, 1gre, 1grf, 1grg

Cited: 144 times
EuropePMC logo PMID: 2585516

Abstract

The X-ray structure analyses of four glutathione reductase complexes and derivatives have been extended to 2 A resolution and refined. The results are discussed in conjunction with the structure of the oxidized native enzyme known at 1.54 A resolution. While the residual co-ordinate errors are around 0.2 A, some significant shifts even in this range could be established. Points of particular interest are the 3.2 A approach of C4N of nicotinamide to N5F of flavin in hydride transfer geometry, the hydrogen bond geometries of the 2'-phosphate of NADPH as compared to inferior geometries for an inorganic phosphate binding together with NADH, the differential mobilities of parts of the substrates as derived from refined atomic temperature factors, and the stabilization of the thiolate of the proximal Cys63 by conformational changes of neighboring residues as well as by flavin. In addition, catalytically competent His467' is seen to interact more optimally with the sulfur of glutathione-I than with the distal sulfur of Cys58. The observed participation of water molecules for both NADPH and glutathione binding is so extensive that a prediction of the binding mode merely from the polypeptide structure would be very difficult. The accurately known geometries allowed us to draw some conclusions on the enzyme mechanism and suggest a possible scenario of the catalysis.

Reviews - 1gra mentioned but not cited (1)

Articles - 1gra mentioned but not cited (6)

  1. Three-dimensional structure of a mammalian thioredoxin reductase: implications for mechanism and evolution of a selenocysteine-dependent enzyme. Sandalova T, Zhong L, Lindqvist Y, Holmgren A, Schneider G. Proc. Natl. Acad. Sci. U.S.A. 98 9533-9538 (2001)
  2. Side-chain flexibility in protein-ligand binding: the minimal rotation hypothesis. Zavodszky MI, Kuhn LA. Protein Sci 14 1104-1114 (2005)
  3. Crystal structure of dihydropyrimidine dehydrogenase, a major determinant of the pharmacokinetics of the anti-cancer drug 5-fluorouracil. Dobritzsch D, Schneider G, Schnackerz KD, Lindqvist Y. EMBO J. 20 650-660 (2001)
  4. Amino acid substitution of arginine 80 in 17beta-hydroxysteroid dehydrogenase type 3 and its effect on NADPH cofactor binding and oxidation/reduction kinetics. McKeever BM, Hawkins BK, Geissler WM, Wu L, Sheridan RP, Mosley RT, Andersson S. Biochim Biophys Acta 1601 29-37 (2002)
  5. Structural and biochemical studies reveal differences in the catalytic mechanisms of mammalian and Drosophila melanogaster thioredoxin reductases. Eckenroth BE, Rould MA, Hondal RJ, Everse SJ. Biochemistry 46 4694-4705 (2007)
  6. The structure and activity of the glutathione reductase from Streptococcus pneumoniae. Sikanyika M, Aragão D, McDevitt CA, Maher MJ. Acta Crystallogr F Struct Biol Commun 75 54-61 (2019)


Reviews citing this publication (18)

  1. Protein sulfenic acids in redox signaling. Poole LB, Karplus PA, Claiborne A. Annu. Rev. Pharmacol. Toxicol. 44 325-347 (2004)
  2. The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Rouhier N, Lemaire SD, Jacquot JP. Annu Rev Plant Biol 59 143-166 (2008)
  3. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Deponte M. Biochim. Biophys. Acta 1830 3217-3266 (2013)
  4. Glutathione and trypanothione in parasitic hydroperoxide metabolism. Flohé L, Hecht HJ, Steinert P. Free Radic. Biol. Med. 27 966-984 (1999)
  5. Mechanisms of oxidative protein folding in the bacterial cell envelope. Kadokura H, Beckwith J. Antioxid. Redox Signal. 13 1231-1246 (2010)
  6. Cation-pi bonding and amino-aromatic interactions in the biomolecular recognition of substituted ammonium ligands. Scrutton NS, Raine AR. Biochem. J. 319 ( Pt 1) 1-8 (1996)
  7. Glutathione--functions and metabolism in the malarial parasite Plasmodium falciparum. Becker K, Rahlfs S, Nickel C, Schirmer RH. Biol. Chem. 384 551-566 (2003)
  8. Structure-function relations for ferredoxin reductase. Karplus PA, Bruns CM. J. Bioenerg. Biomembr. 26 89-99 (1994)
  9. Aliphatic epoxide carboxylation. Ensign SA, Allen JR. Annu. Rev. Biochem. 72 55-76 (2003)
  10. 1,4-naphthoquinones and other NADPH-dependent glutathione reductase-catalyzed redox cyclers as antimalarial agents. Belorgey D, Lanfranchi DA, Davioud-Charvet E. Curr. Pharm. Des. 19 2512-2528 (2013)
  11. Current and potential applications of bismuth-based drugs. Keogan DM, Griffith DM. Molecules 19 15258-15297 (2014)
  12. Structural insights into the enzymes of the trypanothione pathway: targets for antileishmaniasis drugs. Colotti G, Baiocco P, Fiorillo A, Boffi A, Poser E, Chiaro FD, Ilari A. Future Med Chem 5 1861-1875 (2013)
  13. Molecular studies on trypanothione reductase, a target for antiparasitic drugs. Walsh C, Bradley M, Nadeau K. Trends Biochem. Sci. 16 305-309 (1991)
  14. Structure of D-amino acid oxidase: new insights from an old enzyme. Mattevi A, Vanoni MA, Curti B. Curr. Opin. Struct. Biol. 7 804-810 (1997)
  15. Determination of enzyme mechanisms by molecular dynamics: studies on quinoproteins, methanol dehydrogenase, and soluble glucose dehydrogenase. Reddy SY, Bruice TC. Protein Sci. 13 1965-1978 (2004)
  16. Molecular views of redox regulation: three-dimensional structures of redox regulatory proteins and protein complexes. Qin J, Yang Y, Velyvis A, Gronenborn A. Antioxid. Redox Signal. 2 827-840 (2000)
  17. The Architecture of Thiol Antioxidant Systems among Invertebrate Parasites. Guevara-Flores A, Martínez-González JJ, Rendón JL, Del Arenal IP. Molecules 22 (2017)
  18. Molecular insights into trypanothione reductase-inhibitor interaction: A structure-based review. Tiwari N, Tanwar N, Munde M. Arch. Pharm. (Weinheim) 351 e1700373 (2018)

Articles citing this publication (119)

  1. Analysis of catalytic residues in enzyme active sites. Bartlett GJ, Porter CT, Borkakoti N, Thornton JM. J. Mol. Biol. 324 105-121 (2002)
  2. Structure of the complex between adenylate kinase from Escherichia coli and the inhibitor Ap5A refined at 1.9 A resolution. A model for a catalytic transition state. Müller CW, Schulz GE. J. Mol. Biol. 224 159-177 (1992)
  3. Crystal structure of a Baeyer-Villiger monooxygenase. Malito E, Alfieri A, Fraaije MW, Mattevi A. Proc. Natl. Acad. Sci. U.S.A. 101 13157-13162 (2004)
  4. Cloning and sequencing of a human thioredoxin reductase. Gasdaska PY, Gasdaska JR, Cochran S, Powis G. FEBS Lett. 373 5-9 (1995)
  5. Old yellow enzyme at 2 A resolution: overall structure, ligand binding, and comparison with related flavoproteins. Fox KM, Karplus PA. Structure 2 1089-1105 (1994)
  6. Structural consequences of sequence patterns in the fingerprint region of the nucleotide binding fold. Implications for nucleotide specificity. Baker PJ, Britton KL, Rice DW, Rob A, Stillman TJ. J. Mol. Biol. 228 662-671 (1992)
  7. Consistent structure between bacterial and mitochondrial NADH:ubiquinone oxidoreductase (complex I). Guénebaut V, Schlitt A, Weiss H, Leonard K, Friedrich T. J. Mol. Biol. 276 105-112 (1998)
  8. Induced-fit movements in adenylate kinases. Schulz GE, Müller CW, Diederichs K. J. Mol. Biol. 213 627-630 (1990)
  9. Convergent evolution of similar function in two structurally divergent enzymes. Kuriyan J, Krishna TS, Wong L, Guenther B, Pahler A, Williams CH, Model P. Nature 352 172-174 (1991)
  10. Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors. Bond CS, Zhang Y, Berriman M, Cunningham ML, Fairlamb AH, Hunter WN. Structure 7 81-89 (1999)
  11. Crystal structure of rat liver dihydropteridine reductase. Varughese KI, Skinner MM, Whiteley JM, Matthews DA, Xuong NH. Proc. Natl. Acad. Sci. U.S.A. 89 6080-6084 (1992)
  12. Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607. Schiering N, Kabsch W, Moore MJ, Distefano MD, Walsh CT, Pai EF. Nature 352 168-172 (1991)
  13. Refined crystal structure of lipoamide dehydrogenase from Azotobacter vinelandii at 2.2 A resolution. A comparison with the structure of glutathione reductase. Mattevi A, Schierbeek AJ, Hol WG. J. Mol. Biol. 220 975-994 (1991)
  14. Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool. Zhang J, Frerman FE, Kim JJ. Proc. Natl. Acad. Sci. U.S.A. 103 16212-16217 (2006)
  15. Crystallographic study of coenzyme, coenzyme analogue and substrate binding in 6-phosphogluconate dehydrogenase: implications for NADP specificity and the enzyme mechanism. Adams MJ, Ellis GH, Gover S, Naylor CE, Phillips C. Structure 2 651-668 (1994)
  16. Structural prototypes for an extended family of flavoprotein reductases: comparison of phthalate dioxygenase reductase with ferredoxin reductase and ferredoxin. Correll CC, Ludwig ML, Bruns CM, Karplus PA. Protein Sci. 2 2112-2133 (1993)
  17. A structurally conserved water molecule in Rossmann dinucleotide-binding domains. Bottoms CA, Smith PE, Tanner JJ. Protein Sci. 11 2125-2137 (2002)
  18. Glutathione reductase of the malarial parasite Plasmodium falciparum: crystal structure and inhibitor development. Sarma GN, Savvides SN, Becker K, Schirmer M, Schirmer RH, Karplus PA. J. Mol. Biol. 328 893-907 (2003)
  19. Crystal structure of human dihydrolipoamide dehydrogenase: NAD+/NADH binding and the structural basis of disease-causing mutations. Brautigam CA, Chuang JL, Tomchick DR, Machius M, Chuang DT. J. Mol. Biol. 350 543-552 (2005)
  20. Active site of trypanothione reductase. A target for rational drug design. Hunter WN, Bailey S, Habash J, Harrop SJ, Helliwell JR, Aboagye-Kwarteng T, Smith K, Fairlamb AH. J. Mol. Biol. 227 322-333 (1992)
  21. Crystal structure of reduced thioredoxin reductase from Escherichia coli: structural flexibility in the isoalloxazine ring of the flavin adenine dinucleotide cofactor. Lennon BW, Williams CH, Ludwig ML. Protein Sci. 8 2366-2379 (1999)
  22. Substrate interactions between trypanothione reductase and N1-glutathionylspermidine disulphide at 0.28-nm resolution. Bailey S, Smith K, Fairlamb AH, Hunter WN. Eur. J. Biochem. 213 67-75 (1993)
  23. Negative electrostatic surface potential of protein sites specific for anionic ligands. Ledvina PS, Yao N, Choudhary A, Quiocho FA. Proc. Natl. Acad. Sci. U.S.A. 93 6786-6791 (1996)
  24. Trypanothione reductase from Leishmania donovani. Purification, characterisation and inhibition by trivalent antimonials. Cunningham ML, Fairlamb AH. Eur. J. Biochem. 230 460-468 (1995)
  25. Crystal structures of oxidized and reduced mitochondrial thioredoxin reductase provide molecular details of the reaction mechanism. Biterova EI, Turanov AA, Gladyshev VN, Barycki JJ. Proc. Natl. Acad. Sci. U.S.A. 102 15018-15023 (2005)
  26. The refined crystal structure of Pseudomonas putida lipoamide dehydrogenase complexed with NAD+ at 2.45 A resolution. Mattevi A, Obmolova G, Sokatch JR, Betzel C, Hol WG. Proteins 13 336-351 (1992)
  27. Crystal structure of a novel Plasmodium falciparum 1-Cys peroxiredoxin. Sarma GN, Nickel C, Rahlfs S, Fischer M, Becker K, Karplus PA. J. Mol. Biol. 346 1021-1034 (2005)
  28. Protein and ligand dynamics in 4-hydroxybenzoate hydroxylase. Wang J, Ortiz-Maldonado M, Entsch B, Massey V, Ballou D, Gatti DL. Proc. Natl. Acad. Sci. U.S.A. 99 608-613 (2002)
  29. Mechanism of inhibition of trypanothione reductase and glutathione reductase by trivalent organic arsenicals. Cunningham ML, Zvelebil MJ, Fairlamb AH. Eur. J. Biochem. 221 285-295 (1994)
  30. The crystal structure of trypanothione reductase from the human pathogen Trypanosoma cruzi at 2.3 A resolution. Zhang Y, Bond CS, Bailey S, Cunningham ML, Fairlamb AH, Hunter WN. Protein Sci. 5 52-61 (1996)
  31. X-ray structure of trypanothione reductase from Crithidia fasciculata at 2.4-A resolution. Kuriyan J, Kong XP, Krishna TS, Sweet RM, Murgolo NJ, Field H, Cerami A, Henderson GB. Proc. Natl. Acad. Sci. U.S.A. 88 8764-8768 (1991)
  32. Crystal structure of NADH-dependent ferredoxin reductase component in biphenyl dioxygenase. Senda T, Yamada T, Sakurai N, Kubota M, Nishizaki T, Masai E, Fukuda M, Mitsuidagger Y. J. Mol. Biol. 304 397-410 (2000)
  33. A gold-containing drug against parasitic polyamine metabolism: the X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition. Ilari A, Baiocco P, Messori L, Fiorillo A, Boffi A, Gramiccia M, Di Muccio T, Colotti G. Amino Acids 42 803-811 (2012)
  34. Structure of glutathione reductase from Escherichia coli at 1.86 A resolution: comparison with the enzyme from human erythrocytes. Mittl PR, Schulz GE. Protein Sci. 3 799-809 (1994)
  35. Crystal structure of S-glutathiolated carbonic anhydrase III. Mallis RJ, Poland BW, Chatterjee TK, Fisher RA, Darmawan S, Honzatko RB, Thomas JA. FEBS Lett. 482 237-241 (2000)
  36. The structure of glucose-fructose oxidoreductase from Zymomonas mobilis: an osmoprotective periplasmic enzyme containing non-dissociable NADP. Kingston RL, Scopes RK, Baker EN. Structure 4 1413-1428 (1996)
  37. Charge is the major discriminating factor for glutathione reductase versus trypanothione reductase inhibitors. Faerman CH, Savvides SN, Strickland C, Breidenbach MA, Ponasik JA, Ganem B, Ripoll D, Krauth-Siegel RL, Karplus PA. Bioorg. Med. Chem. 4 1247-1253 (1996)
  38. Kukoamine A and other hydrophobic acylpolyamines: potent and selective inhibitors of Crithidia fasciculata trypanothione reductase. Ponasik JA, Strickland C, Faerman C, Savvides S, Karplus PA, Ganem B. Biochem. J. 311 ( Pt 2) 371-375 (1995)
  39. Redox-induced changes in flavin structure and roles of flavin N(5) and the ribityl 2'-OH group in regulating PutA--membrane binding. Zhang W, Zhang M, Zhu W, Zhou Y, Wanduragala S, Rewinkel D, Tanner JJ, Becker DF. Biochemistry 46 483-491 (2007)
  40. Catalytic cycle of human glutathione reductase near 1 A resolution. Berkholz DS, Faber HR, Savvides SN, Karplus PA. J. Mol. Biol. 382 371-384 (2008)
  41. Crystal structure of putidaredoxin reductase from Pseudomonas putida, the final structural component of the cytochrome P450cam monooxygenase. Sevrioukova IF, Li H, Poulos TL. J. Mol. Biol. 336 889-902 (2004)
  42. Hydration in drug design. 3. Conserved water molecules at the ligand-binding sites of homologous proteins. Poornima CS, Dean PM. J. Comput. Aided Mol. Des. 9 521-531 (1995)
  43. Structure of NADH peroxidase from Streptococcus faecalis 10C1 refined at 2.16 A resolution. Stehle T, Ahmed SA, Claiborne A, Schulz GE. J. Mol. Biol. 221 1325-1344 (1991)
  44. Bioinorganic and medicinal chemistry: aspects of gold(I)-protein complexes. Bhabak KP, Bhuyan BJ, Mugesh G. Dalton Trans 40 2099-2111 (2011)
  45. Kinetics and crystallographic analysis of human glutathione reductase in complex with a xanthene inhibitor. Savvides SN, Karplus PA. J. Biol. Chem. 271 8101-8107 (1996)
  46. Mechanism of coenzyme recognition and binding revealed by crystal structure analysis of ferredoxin-NADP+ reductase complexed with NADP+. Hermoso JA, Mayoral T, Faro M, Gómez-Moreno C, Sanz-Aparicio J, Medina M. J. Mol. Biol. 319 1133-1142 (2002)
  47. Structure of coenzyme F(420) dependent methylenetetrahydromethanopterin reductase from two methanogenic archaea. Shima S, Warkentin E, Grabarse W, Sordel M, Wicke M, Thauer RK, Ermler U. J. Mol. Biol. 300 935-950 (2000)
  48. Structures of F420H2:NADP+ oxidoreductase with and without its substrates bound. Warkentin E, Mamat B, Sordel-Klippert M, Wicke M, Thauer RK, Iwata M, Iwata S, Ermler U, Shima S. EMBO J. 20 6561-6569 (2001)
  49. Unusual conformation of nicotinamide adenine dinucleotide (NAD) bound to diphtheria toxin: a comparison with NAD bound to the oxidoreductase enzymes. Bell CE, Yeates TO, Eisenberg D. Protein Sci. 6 2084-2096 (1997)
  50. Structures of tryparedoxins revealing interaction with trypanothione. Hofmann B, Budde H, Bruns K, Guerrero SA, Kalisz HM, Menge U, Montemartini M, Nogoceke E, Steinert P, Wissing JB, Flohé L, Hecht HJ. Biol. Chem. 382 459-471 (2001)
  51. Design, synthesis and biological evaluation of new potent 5-nitrofuryl derivatives as anti-Trypanosoma cruzi agents. Studies of trypanothione binding site of trypanothione reductase as target for rational design. Aguirre G, Cabrera E, Cerecetto H, Di Maio R, González M, Seoane G, Duffaut A, Denicola A, Gil MJ, Martínez-Merino V. Eur J Med Chem 39 421-431 (2004)
  52. Glutathione reductase and thioredoxin reductase at the crossroad: the structure of Schistosoma mansoni thioredoxin glutathione reductase. Angelucci F, Miele AE, Boumis G, Dimastrogiovanni D, Brunori M, Bellelli A. Proteins 72 936-945 (2008)
  53. Anatomy of an engineered NAD-binding site. Mittl PR, Berry A, Scrutton NS, Perham RN, Schulz GE. Protein Sci. 3 1504-1514 (1994)
  54. Conserved cysteine residues of GidA are essential for biogenesis of 5-carboxymethylaminomethyluridine at tRNA anticodon. Osawa T, Ito K, Inanaga H, Nureki O, Tomita K, Numata T. Structure 17 713-724 (2009)
  55. Molecular characterization of the trypanothione reductase gene from Crithidia fasciculata and Trypanosoma brucei: comparison with other flavoprotein disulphide oxidoreductases with respect to substrate specificity and catalytic mechanism. Aboagye-Kwarteng T, Smith K, Fairlamb AH. Mol. Microbiol. 6 3089-3099 (1992)
  56. Flavin fluorescence dynamics and photoinduced electron transfer in Escherichia coli glutathione reductase. van den Berg PA, van Hoek A, Walentas CD, Perham RN, Visser AJ. Biophys. J. 74 2046-2058 (1998)
  57. Redox-linked conformational dynamics in apoptosis-inducing factor. Sevrioukova IF. J. Mol. Biol. 390 924-938 (2009)
  58. The prevalence of metal-based drugs as therapeutic or diagnostic agents: beyond platinum. Gaynor D, Griffith DM. Dalton Trans 41 13239-13257 (2012)
  59. The structure of Trypanosoma cruzi trypanothione reductase in the oxidized and NADPH reduced state. Lantwin CB, Schlichting I, Kabsch W, Pai EF, Krauth-Siegel RL. Proteins 18 161-173 (1994)
  60. Molecular structure of the lipoamide dehydrogenase domain of a surface antigen from Neisseria meningitidis. Li de la Sierra I, Pernot L, Prangé T, Saludjian P, Schiltz M, Fourme R, Padrón G. J. Mol. Biol. 269 129-141 (1997)
  61. Preparation and structure of the charge-transfer intermediate of the transmembrane redox catalyst DsbB. Malojcić G, Owen RL, Grimshaw JP, Glockshuber R. FEBS Lett. 582 3301-3307 (2008)
  62. In vitro inhibition of human erythrocyte glutathione reductase by some new organic nitrates. Sentürk M, Talaz O, Ekinci D, Cavdar H, Küfrevioğlu OI. Bioorg. Med. Chem. Lett. 19 3661-3663 (2009)
  63. NADH binding site and catalysis of NADH peroxidase. Stehle T, Claiborne A, Schulz GE. Eur. J. Biochem. 211 221-226 (1993)
  64. Structure of coenzyme A-disulfide reductase from Staphylococcus aureus at 1.54 A resolution. Mallett TC, Wallen JR, Karplus PA, Sakai H, Tsukihara T, Claiborne A. Biochemistry 45 11278-11289 (2006)
  65. Crystal structure and functional analysis of lipoamide dehydrogenase from Mycobacterium tuberculosis. Rajashankar KR, Bryk R, Kniewel R, Buglino JA, Nathan CF, Lima CD. J Biol Chem 280 33977-33983 (2005)
  66. Secondary structure of NADPH: protochlorophyllide oxidoreductase examined by circular dichroism and prediction methods. Birve SJ, Selstam E, Johansson LB. Biochem. J. 317 ( Pt 2) 549-555 (1996)
  67. Identification of the NAD(P)H binding site of eukaryotic UDP-galactopyranose mutase. Dhatwalia R, Singh H, Solano LM, Oppenheimer M, Robinson RM, Ellerbrock JF, Sobrado P, Tanner JJ. J. Am. Chem. Soc. 134 18132-18138 (2012)
  68. Structural Aspects of Plant Ferredoxin : NADP(+) Oxidoreductases. Karplus PA, Faber HR. Photosyn. Res. 81 303-315 (2004)
  69. Investigations of the catalytic mechanism of thioredoxin glutathione reductase from Schistosoma mansoni. Huang HH, Day L, Cass CL, Ballou DP, Williams CH, Williams DL. Biochemistry 50 5870-5882 (2011)
  70. Synthesis and cytotoxic activity of lipophilic sulphonamide derivatives of the benzo[b]thiophene 1,1-dioxide. Villar R, Encio I, Migliaccio M, Gil MJ, Martinez-Merino V. Bioorg. Med. Chem. 12 963-968 (2004)
  71. The coenzyme A disulphide reductase of Borrelia burgdorferi is important for rapid growth throughout the enzootic cycle and essential for infection of the mammalian host. Eggers CH, Caimano MJ, Malizia RA, Kariu T, Cusack B, Desrosiers DC, Hazlett KR, Claiborne A, Pal U, Radolf JD. Mol. Microbiol. 82 679-697 (2011)
  72. Thioredoxin-1 redox signaling regulates cell survival in response to hyperoxia. Floen MJ, Forred BJ, Bloom EJ, Vitiello PF. Free Radic. Biol. Med. 75 167-177 (2014)
  73. Pyridine nucleotide complexes with Bacillus anthracis coenzyme A-disulfide reductase: a structural analysis of dual NAD(P)H specificity. Wallen JR, Paige C, Mallett TC, Karplus PA, Claiborne A. Biochemistry 47 5182-5193 (2008)
  74. Plasmodium falciparum glutathione reductase exhibits sequence similarities with the human host enzyme in the core structure but differs at the ligand-binding sites. Müller S, Becker K, Bergmann B, Schirmer RH, Walter RD. Mol. Biochem. Parasitol. 74 11-18 (1995)
  75. Active site water molecules revealed in the 2.1 A resolution structure of a site-directed mutant of isocitrate dehydrogenase. Cherbavaz DB, Lee ME, Stroud RM, Koshland DE. J. Mol. Biol. 295 377-385 (2000)
  76. Benzo[b]thiophenesulphonamide 1,1-dioxide derivatives inhibit tNOX activity in a redox state-dependent manner. Encío I, Morré DJ, Villar R, Gil MJ, Martínez-Merino V. Br. J. Cancer 92 690-695 (2005)
  77. Cloning, sequencing, and demonstration of polymorphism in trypanothione reductase from Crithidia fasciculata. Field H, Cerami A, Henderson GB. Mol. Biochem. Parasitol. 50 47-56 (1992)
  78. Structures of the multicomponent Rieske non-heme iron toluene 2,3-dioxygenase enzyme system. Friemann R, Lee K, Brown EN, Gibson DT, Eklund H, Ramaswamy S. Acta Crystallogr. D Biol. Crystallogr. 65 24-33 (2009)
  79. Crystallization and preliminary crystallographic analysis of trypanothione reductase from Trypanosoma cruzi, the causative agent of Chagas' disease. Krauth-Siegel RL, Sticherling C, Jöst I, Walsh CT, Pai EF, Kabsch W, Lantwin CB. FEBS Lett. 317 105-108 (1993)
  80. A biophysically based mathematical model for the catalytic mechanism of glutathione reductase. Pannala VR, Bazil JN, Camara AKS, Dash RK. Free Radic. Biol. Med. 65 1385-1397 (2013)
  81. Comparative modeling of thioredoxin glutathione reductase from Schistosoma mansoni: a multifunctional target for antischistosomal therapy. Sharma M, Khanna S, Bulusu G, Mitra A. J. Mol. Graph. Model. 27 665-675 (2009)
  82. A novel type of pyridine nucleotide-disulfide oxidoreductase is essential for NAD+- and NADPH-dependent degradation of epoxyalkanes by Xanthobacter strain Py2. Swaving J, de Bont JA, Westphal A, de Kok A. J. Bacteriol. 178 6644-6646 (1996)
  83. Initiating a crystallographic study of trypanothione reductase. Hunter WN, Smith K, Derewenda Z, Harrop SJ, Habash J, Islam MS, Helliwell JR, Fairlamb AH. J. Mol. Biol. 216 235-237 (1990)
  84. Regulation of horse-liver glutathione reductase. García-Alfonso C, Martínez-Galisteo E, Llobell A, Bárcena JA, López-Barea J. Int. J. Biochem. 25 513-520 (1993)
  85. Microinjected glutathione reductase crystals as indicators of the redox status in living cells. Keese MA, Saffrich R, Dandekar T, Becker K, Schirmer RH. FEBS Lett. 447 135-138 (1999)
  86. Crystal structure and catalytic properties of Bacillus anthracis CoADR-RHD: implications for flavin-linked sulfur trafficking. Wallen JR, Mallett TC, Boles W, Parsonage D, Furdui CM, Karplus PA, Claiborne A. Biochemistry 48 9650-9667 (2009)
  87. Evidence for a novel mechanism of time-resolved flavin fluorescence depolarization in glutathione reductase. van den Berg PA, van Hoek A, Visser AJ. Biophys. J. 87 2577-2586 (2004)
  88. The three-dimensional structure of glutathione reductase from Escherichia coli at 3.0 A resolution. Ermler U, Schulz GE. Proteins 9 174-179 (1991)
  89. X-ray crystallographic and solution state nuclear magnetic resonance spectroscopic investigations of NADP+ binding to ferredoxin NADP reductase from Pseudomonas aeruginosa. Wang A, Rodríguez JC, Han H, Schönbrunn E, Rivera M. Biochemistry 47 8080-8093 (2008)
  90. Inhibitors of glutathione reductase as potential antimalarial drugs. Kinetic cooperativity and effect of dimethyl sulphoxide on inhibition kinetics. Lüönd RM, McKie JH, Douglas KT, Dascombe MJ, Vale J. J. Enzym. Inhib. 13 327-345 (1998)
  91. Involvement of conserved glycine residues, 229 and 234, of Vibrio harveyi aldehyde dehydrogenase in activity and nucleotide binding. Vedadi M, Vrielink A, Meighen E. Biochem. Biophys. Res. Commun. 238 448-451 (1997)
  92. Modulation of the enzymatic efficiency of ferredoxin-NADP(H) reductase by the amino acid volume around the catalytic site. Musumeci MA, Arakaki AK, Rial DV, Catalano-Dupuy DL, Ceccarelli EA. FEBS J. 275 1350-1366 (2008)
  93. A mobile tryptophan is the intrinsic charge transfer donor in a flavoenzyme essential for nikkomycin antibiotic biosynthesis. Bruckner RC, Zhao G, Ferreira P, Jorns MS. Biochemistry 46 819-827 (2007)
  94. Interaction of positively charged amino acid residues of recombinant, cyanobacterial ferredoxin:NADP+ reductase with ferredoxin probed by site directed mutagenesis. Schmitz S, Martínez-Júlvez M, Gómez-Moreno C, Böhme H. Biochim. Biophys. Acta 1363 85-93 (1998)
  95. Metals are directly involved in the redox interconversion of Saccharomyces cerevisiae glutathione reductase. Peinado J, Florindo J, García-Alfonso C, Martínez-Galisteo E, Llobell A, López-Barea J. Mol. Cell. Biochem. 101 175-187 (1991)
  96. Assaying phenothiazine derivatives as trypanothione reductase and glutathione reductase inhibitors by theoretical docking and molecular dynamics studies. Iribarne F, Paulino M, Aguilera S, Tapia O. J. Mol. Graph. Model. 28 371-381 (2009)
  97. Covalent structure of the flavoprotein subunit of the flavocytochrome c: sulfide dehydrogenase from the purple phototrophic bacterium Chromatium vinosum. Van Driessche G, Koh M, Chen ZW, Mathews FS, Meyer TE, Bartsch RG, Cusanovich MA, Van Beeumen JJ. Protein Sci. 5 1753-1764 (1996)
  98. Glutathione reductase from Saccharomyces cerevisiae undergoes redox interconversion in situ and in vivo. Peinado J, Florindo J, López-Barea J. Mol. Cell. Biochem. 110 135-143 (1992)
  99. Inhibition of purified bovine liver glutathione reductase with some metal ions. Tandogan B, Ulusu NN. J Enzyme Inhib Med Chem 25 68-73 (2010)
  100. Protein-protein interactions at an enzyme-substrate interface: characterization of transient reaction intermediates throughout a full catalytic cycle of Escherichia coli thioredoxin reductase. Negri A, Rodríguez-Larrea D, Marco E, Jiménez-Ruiz A, Sánchez-Ruiz JM, Gago F. Proteins 78 36-51 (2010)
  101. Receptor site and stereospecifity of dihydrolipoamide dehydrogenase for R- and S-lipoamide: a molecular modeling study. Raddatz G, Bisswanger H. J. Biotechnol. 58 89-100 (1997)
  102. Suppression of electron transfer to dioxygen by charge transfer and electron transfer complexes in the FAD-dependent reductase component of toluene dioxygenase. Lin TY, Werther T, Jeoung JH, Dobbek H. J. Biol. Chem. 287 38338-38346 (2012)
  103. TRAIL-Based High Throughput Screening Reveals a Link between TRAIL-Mediated Apoptosis and Glutathione Reductase, a Key Component of Oxidative Stress Response. Rozanov D, Cheltsov A, Sergienko E, Vasile S, Golubkov V, Aleshin AE, Levin T, Traer E, Hann B, Freimuth J, Alexeev N, Alekseyev MA, Budko SP, Bächinger HP, Spellman P. PLoS ONE 10 e0129566 (2015)
  104. A genetically encoded tool for manipulation of NADP+/NADPH in living cells. Cracan V, Titov DV, Shen H, Grabarek Z, Mootha VK. Nat. Chem. Biol. 13 1088-1095 (2017)
  105. Amperometric sensor for glutathione reductase activity determination in erythrocyte hemolysate. Alves AA, Pereira da Silva L, Macedo DV, Kubota LT. Anal. Biochem. 323 33-38 (2003)
  106. An Examination by Site-Directed Mutagenesis of Putative Key Residues in the Determination of Coenzyme Specificity in Clostridial NAD-Dependent Glutamate Dehydrogenase. Griffin J, Engel PC. Enzyme Res 2011 595793 (2011)
  107. Understanding nicotinamide dinucleotide cofactor and substrate specificity in class I flavoprotein disulfide oxidoreductases: crystallographic analysis of a glutathione amide reductase. Van Petegem F, De Vos D, Savvides S, Vergauwen B, Van Beeumen J. J. Mol. Biol. 374 883-889 (2007)
  108. Unfolding kinetics of glutathione reductase from cyanobacterium Spirulina maxima. Rendón JL, Mendoza-Hernández G. Arch. Biochem. Biophys. 387 265-272 (2001)
  109. Structural, spectroscopic and catalytic activity studies on glutathione reductase reconstituted with FAD analogues. Ermler U, Ghisla S, Massey V, Schulz GE. Eur. J. Biochem. 199 133-138 (1991)
  110. Letter Substitution of a conserved catalytic dyad into 2-KPCC causes loss of carboxylation activity. Prussia GA, Gauss GH, Mus F, Conner L, DuBois JL, Peters JW. FEBS Lett. 590 2991-2996 (2016)
  111. Turnover-dependent covalent inactivation of Staphylococcus aureus coenzyme A-disulfide reductase by coenzyme A-mimetics: mechanistic and structural insights. Wallace BD, Edwards JS, Wallen JR, Moolman WJ, van der Westhuyzen R, Strauss E, Redinbo MR, Claiborne A. Biochemistry 51 7699-7711 (2012)
  112. pH dependent kinetic studies of lipoamide dehydrogenase catalysis. Tsai CS, Wand AJ. Int. J. Biochem. 24 1801-1806 (1992)
  113. Synthesis of glutathione analogues with modified ionizable groups for the study of enzyme:ligand interactions. Janes W, Schulz GE. Int J Pept Protein Res 36 134-138 (1990)
  114. Target identification reveals protein arginine methyltransferase 1 is a potential target of phenyl vinyl sulfone and its derivatives. Yu CH, Chou CC, Lee DY, Khoo KH, Chang GD. Biosci. Rep. 38 (2018)
  115. The unique Phe-His dyad of 2-ketopropyl coenzyme M oxidoreductase/carboxylase selectively promotes carboxylation and S-C bond cleavage. Prussia GA, Shisler KA, Zadvornyy OA, Streit BR, DuBois JL, Peters JW. J Biol Chem 297 100961 (2021)
  116. In silico description of the adsorption of cell signaling pathway proteins ovalbumin, glutathione, LC3, TLR4, ASC PYCARD, PI3K and NF-Kβ on 7.0 nm gold nanoparticles: obtaining their Lennard-Jones-like potentials through docking and molecular mechanics. Coelho MM, Bezerra EM, da Costa RF, de Alvarenga ÉC, Freire VN, Carvalho CR, Pessoa C, Albuquerque EL, Costa RA. RSC Adv 13 35493-35499 (2023)
  117. Conformational analysis of oxidized peptide fragments of the C-terminal redox center in thioredoxin reductases by NMR spectroscopy. Ruggles EL, Deker PB, Hondal RJ. J. Pept. Sci. 20 349-360 (2014)
  118. Photochemical Mechanism of Light-Driven Fatty Acid Photodecarboxylase. Heyes DJ, Lakavath B, Hardman SJO, Sakuma M, Hedison TM, Scrutton NS. ACS Catal 10 6691-6696 (2020)
  119. Purification and characterization of glutathione reductase (E.C. 1.8.1.7) from bovine filarial worms Setaria cervi. Arora K, Ahmad R, Srivastava AK. J Parasit Dis 37 94-104 (2013)


Related citations provided by authors (13)

  1. Inhibition of Human Glutathione Reductase by the Nitrosourea Drugs 1,3-Bis(2-Chloroethyl)-1-Nitrosourea and 1-(2-Chloroethyl)-3-(2-Hydroxyethyl)-1-Nitrosourea. Karplus PA, Krauth-Siegel RL, Schirmer RH, Schulz GE Eur. J. Biochem. 171 193- (1988)
  2. Refined Structure of Glutathione Reductase at 1.54 Angstroms Resolution. Karplus PA, Schulz GE J. Mol. Biol. 195 701- (1987)
  3. Interaction of a glutathione S-conjugate with glutathione reductase. Kinetic and X-ray crystallographic studies.. Bilzer M, Krauth-Siegel RL, Schirmer RH, Akerboom TP, Sies H, Schulz GE Eur J Biochem 138 373-8 (1984)
  4. Comparison of the three-dimensional protein and nucleotide structure of the FAD-binding domain of p-hydroxybenzoate hydroxylase with the FAD- as well as NADPH-binding domains of glutathione reductase.. Wierenga RK, Drenth J, Schulz GE J Mol Biol 167 725-39 (1983)
  5. The catalytic mechanism of glutathione reductase as derived from x-ray diffraction analyses of reaction intermediates.. Pai EF, Schulz GE J Biol Chem 258 1752-7 (1983)
  6. Fad-Binding Site of Glutathione Reductase. Schulz GE, Schirmer RH, Pai EF J. Mol. Biol. 160 287- (1982)
  7. Glutathione reductase from human erythrocytes. The sequences of the NADPH domain and of the interface domain.. Krauth-Siegel RL, Blatterspiel R, Saleh M, Schiltz E, Schirmer RH, Untucht-Grau R Eur J Biochem 121 259-67 (1982)
  8. Three-Dimensional Structure of Glutathione Reductase at 2 Angstroms Resolution. Thieme R, Pai EF, Schirmer RH, Schulz GE J. Mol. Biol. 152 763- (1981)
  9. Gene Duplication in Glutathione Reductase. Schulz GE J. Mol. Biol. 138 335- (1980)
  10. The C-terminal fragment of human glutathione reductase contains the postulated catalytic histidine.. Untucht-Grau R, Schulz GE, Schirmer RH FEBS Lett 105 244-8 (1979)
  11. The structure of the flavoenzyme glutathione reductase.. Schulz GE, Schirmer RH, Sachsenheimer W, Pai EF Nature 273 120-4 (1978)
  12. Low resolution structure of human erythrocyte glutathione reductase.. Zappe HA, Krohne-Ehrich G, Schulz GE J Mol Biol 113 141-52 (1977)
  13. Crystals of Human Erythrocyte Glutathione Reductase. Schulz GE, Zappe H, Worthington DJ, Rosemeyer MA FEBS Lett. 54 86- (1975)