1gol Citations

Mutation of position 52 in ERK2 creates a nonproductive binding mode for adenosine 5'-triphosphate.

Biochemistry 35 5641-6 (1996)
Cited: 98 times
EuropePMC logo PMID: 8639522

Abstract

Among the protein kinases, an absolutely conserved lysine in subdomain II is required for high catalytic activity. This lysine is known to interact with the substrate ATP, but otherwise its role is not well understood. We have used biochemical and structural methods to investigate the function of this lysine (K52) in phosphoryl transfer reactions catalyzed by the MAP kinase ERK2. The kinetic properties of activated wild-type ERK2 and K52 mutants were examined using the oncoprotein TAL2, myelin basic protein, and a designed synthetic peptide as substrates. The catalytic activities of K52R and K52A ERK2 were lower than that of wild-type ERK2, primarily as a consequence of reductions in kcat. Further, there was little difference in Km for ATP, but the Km,app for peptide substrate was higher for the K52 mutants. The three-dimensional structure of unphosphorylated K52R ERK2 in the absence and presence of bound ATP was determined and compared with the structure of unphosphorylated wild-type ERK2. ATP adopted a well-defined but distinct binding mode in K52R ERK2 compared to the binding mode in the wild-type enzyme. The structural and kinetic data show that mutation of K52 created a nonproductive binding mode for ATP and suggest that K52 is essential for orienting ATP for catalysis.

Reviews - 1gol mentioned but not cited (1)

  1. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)

Articles - 1gol mentioned but not cited (6)

  1. Structural and functional diversity of the microbial kinome. Kannan N, Taylor SS, Zhai Y, Venter JC, Manning G. PLoS Biol 5 e17 (2007)
  2. From the similarity analysis of protein cavities to the functional classification of protein families using cavbase. Kuhn D, Weskamp N, Schmitt S, Hüllermeier E, Klebe G. J Mol Biol 359 1023-1044 (2006)
  3. Structural basis for activation of the autoinhibitory C-terminal kinase domain of p90 RSK2. Malakhova M, Tereshko V, Lee SY, Yao K, Cho YY, Bode A, Dong Z. Nat Struct Mol Biol 15 112-113 (2008)
  4. How mitogen-activated protein kinases recognize and phosphorylate their targets: A QM/MM study. Turjanski AG, Hummer G, Gutkind JS. J Am Chem Soc 131 6141-6148 (2009)
  5. Bioinformatic search of plant microtubule-and cell cycle related serine-threonine protein kinases. Karpov PA, Nadezhdina ES, Yemets AI, Matusov VG, Nyporko AY, Shashina NY, Blume YB. BMC Genomics 11 Suppl 1 S14 (2010)
  6. Assignment of backbone resonances in a eukaryotic protein kinase - ERK2 as a representative example. Piserchio A, Dalby KN, Ghose R. Methods Mol Biol 831 359-368 (2012)


Reviews citing this publication (11)

  1. Synthesis and function of 3-phosphorylated inositol lipids. Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD. Annu Rev Biochem 70 535-602 (2001)
  2. New insights into the control of MAP kinase pathways. English J, Pearson G, Wilsbacher J, Swantek J, Karandikar M, Xu S, Cobb MH. Exp Cell Res 253 255-270 (1999)
  3. Structures of Src-family tyrosine kinases. Sicheri F, Kuriyan J. Curr Opin Struct Biol 7 777-785 (1997)
  4. Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Jura N, Zhang X, Endres NF, Seeliger MA, Schindler T, Kuriyan J. Mol Cell 42 9-22 (2011)
  5. Ca(2+)/calmodulin-dependent protein kinases. Swulius MT, Waxham MN. Cell Mol Life Sci 65 2637-2657 (2008)
  6. The structure, regulation, and function of ZAP-70. Au-Yeung BB, Deindl S, Hsu LY, Palacios EH, Levin SE, Kuriyan J, Weiss A. Immunol Rev 228 41-57 (2009)
  7. KSR and CNK: two scaffolds regulating RAS-mediated RAF activation. Clapéron A, Therrien M. Oncogene 26 3143-3158 (2007)
  8. It takes two to tango--signalling by dimeric Raf kinases. Baljuls A, Kholodenko BN, Kolch W. Mol Biosyst 9 551-558 (2013)
  9. Nucleotide-binding mechanisms in pseudokinases. Hammarén HM, Virtanen AT, Silvennoinen O. Biosci Rep 36 e00282 (2015)
  10. Scaffolding and protein interactions in MAP kinase modules. Karandikar M, Cobb MH. Cell Calcium 26 219-226 (1999)
  11. A pickup in pseudokinase activity. Dar AC. Biochem Soc Trans 41 987-994 (2013)

Articles citing this publication (80)

  1. Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Canagarajah BJ, Khokhlatchev A, Cobb MH, Goldsmith EJ. Cell 90 859-869 (1997)
  2. Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Hu S, Xie Z, Onishi A, Yu X, Jiang L, Lin J, Rho HS, Woodard C, Wang H, Jeong JS, Long S, He X, Wade H, Blackshaw S, Qian J, Zhu H. Cell 139 610-622 (2009)
  3. A constitutively active and nuclear form of the MAP kinase ERK2 is sufficient for neurite outgrowth and cell transformation. Robinson MJ, Stippec SA, Goldsmith E, White MA, Cobb MH. Curr Biol 8 1141-1150 (1998)
  4. Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function. Samuels IS, Karlo JC, Faruzzi AN, Pickering K, Herrup K, Sweatt JD, Saitta SC, Landreth GE. J Neurosci 28 6983-6995 (2008)
  5. Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Yamaguchi H, Matsushita M, Nairn AC, Kuriyan J. Mol Cell 7 1047-1057 (2001)
  6. ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially. Vantaggiato C, Formentini I, Bondanza A, Bonini C, Naldini L, Brambilla R. J Biol 5 14 (2006)
  7. Structure of an enzyme required for aminoglycoside antibiotic resistance reveals homology to eukaryotic protein kinases. Hon WC, McKay GA, Thompson PR, Sweet RM, Yang DS, Wright GD, Berghuis AM. Cell 89 887-895 (1997)
  8. Crystal structure of the kinase domain of WNK1, a kinase that causes a hereditary form of hypertension. Min X, Lee BH, Cobb MH, Goldsmith EJ. Structure 12 1303-1311 (2004)
  9. A novel MAP kinase regulates flagellar length in Chlamydomonas. Berman SA, Wilson NF, Haas NA, Lefebvre PA. Curr Biol 13 1145-1149 (2003)
  10. An ERK2 docking site in the Pointed domain distinguishes a subset of ETS transcription factors. Seidel JJ, Graves BJ. Genes Dev 16 127-137 (2002)
  11. Neurotrophins elevate cAMP to reach a threshold required to overcome inhibition by MAG through extracellular signal-regulated kinase-dependent inhibition of phosphodiesterase. Gao Y, Nikulina E, Mellado W, Filbin MT. J Neurosci 23 11770-11777 (2003)
  12. The role of extracellular regulated kinases I/II in late-phase long-term potentiation. Rosenblum K, Futter M, Voss K, Erent M, Skehel PA, French P, Obosi L, Jones MW, Bliss TV. J Neurosci 22 5432-5441 (2002)
  13. Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. Samaj J, Ovecka M, Hlavacka A, Lecourieux F, Meskiene I, Lichtscheidl I, Lenart P, Salaj J, Volkmann D, Bögre L, Baluska F, Hirt H. EMBO J 21 3296-3306 (2002)
  14. Regulation of the inducible nuclear dual-specificity phosphatase DUSP5 by ERK MAPK. Kucharska A, Rushworth LK, Staples C, Morrice NA, Keyse SM. Cell Signal 21 1794-1805 (2009)
  15. Extracellular signal-regulated kinase-2 within the ventral tegmental area regulates responses to stress. Iñiguez SD, Vialou V, Warren BL, Cao JL, Alcantara LF, Davis LC, Manojlovic Z, Neve RL, Russo SJ, Han MH, Nestler EJ, Bolaños-Guzmán CA. J Neurosci 30 7652-7663 (2010)
  16. MEK/ERK signaling controls osmoregulation of nucleus pulposus cells of the intervertebral disc by transactivation of TonEBP/OREBP. Tsai TT, Guttapalli A, Agrawal A, Albert TJ, Shapiro IM, Risbud MV. J Bone Miner Res 22 965-974 (2007)
  17. The active conformation of the PAK1 kinase domain. Lei M, Robinson MA, Harrison SC. Structure 13 769-778 (2005)
  18. A CDK-related kinase regulates the length and assembly of flagella in Chlamydomonas. Tam LW, Wilson NF, Lefebvre PA. J Cell Biol 176 819-829 (2007)
  19. ERK mutations confer resistance to mitogen-activated protein kinase pathway inhibitors. Goetz EM, Ghandi M, Treacy DJ, Wagle N, Garraway LA. Cancer Res 74 7079-7089 (2014)
  20. Multiple signaling pathways regulate the transcriptional activity of the orphan nuclear receptor NURR1. Sacchetti P, Carpentier R, Ségard P, Olivé-Cren C, Lefebvre P. Nucleic Acids Res 34 5515-5527 (2006)
  21. Activation of the Ras/mitogen-activated protein kinase pathway by kinase-defective epidermal growth factor receptors results in cell survival but not proliferation. Walker F, Kato A, Gonez LJ, Hibbs ML, Pouliot N, Levitzki A, Burgess AW. Mol Cell Biol 18 7192-7204 (1998)
  22. Catalytic independent functions of a protein kinase as revealed by a kinase-dead mutant: study of the Lys72His mutant of cAMP-dependent kinase. Iyer GH, Garrod S, Woods VL, Taylor SS. J Mol Biol 351 1110-1122 (2005)
  23. When fold is not important: a common structural framework for adenine and AMP binding in 12 unrelated protein families. Denessiouk KA, Johnson MS. Proteins 38 310-326 (2000)
  24. BMP-2 and TGF-beta stimulate expression of beta1,3-glucuronosyl transferase 1 (GlcAT-1) in nucleus pulposus cells through AP1, TonEBP, and Sp1: role of MAPKs. Hiyama A, Gogate SS, Gajghate S, Mochida J, Shapiro IM, Risbud MV. J Bone Miner Res 25 1179-1190 (2010)
  25. Juvenile administration of concomitant methylphenidate and fluoxetine alters behavioral reactivity to reward- and mood-related stimuli and disrupts ventral tegmental area gene expression in adulthood. Warren BL, Iñiguez SD, Alcantara LF, Wright KN, Parise EM, Parise EM, Weakley SK, Bolaños-Guzmán CA. J Neurosci 31 10347-10358 (2011)
  26. Mitogen-activated protein kinase/extracellular signal-regulated kinase 2 regulates cytoskeletal organization and chemotaxis via catalytic and microtubule-specific interactions. Reszka AA, Bulinski JC, Krebs EG, Fischer EH. Mol Biol Cell 8 1219-1232 (1997)
  27. Mitogen-Activated Protein (MAP) Kinase Scaffolding Proteins: A Recount. Meister M, Tomasovic A, Banning A, Tikkanen R. Int J Mol Sci 14 4854-4884 (2013)
  28. Extracellular signal-regulated kinase 2 signaling in the hippocampal dentate gyrus mediates the antidepressant effects of testosterone. Carrier N, Kabbaj M. Biol Psychiatry 71 642-651 (2012)
  29. Fibroblast growth factors 2, 4, and 8 exert both negative and positive effects on limb, frontonasal, and mandibular chondrogenesis via MEK-ERK activation. Bobick BE, Thornhill TM, Kulyk WM. J Cell Physiol 211 233-243 (2007)
  30. Fluoxetine exposure during adolescence alters responses to aversive stimuli in adulthood. Iñiguez SD, Alcantara LF, Warren BL, Riggs LM, Parise EM, Parise EM, Vialou V, Wright KN, Dayrit G, Nieto SJ, Wilkinson MB, Lobo MK, Neve RL, Nestler EJ, Bolaños-Guzmán CA. J Neurosci 34 1007-1021 (2014)
  31. Conservation, variability and the modeling of active protein kinases. Knight JD, Qian B, Baker D, Kothary R. PLoS One 2 e982 (2007)
  32. Chi3l3 induces oligodendrogenesis in an experimental model of autoimmune neuroinflammation. Starossom SC, Campo Garcia J, Woelfle T, Romero-Suarez S, Olah M, Watanabe F, Cao L, Yeste A, Tukker JJ, Quintana FJ, Imitola J, Witzel F, Schmitz D, Morkel M, Paul F, Infante-Duarte C, Khoury SJ. Nat Commun 10 217 (2019)
  33. Functional classification of protein kinase binding sites using Cavbase. Kuhn D, Weskamp N, Hüllermeier E, Klebe G. ChemMedChem 2 1432-1447 (2007)
  34. Erk1 and Erk2 are required for maintenance of hematopoietic stem cells and adult hematopoiesis. Chan G, Gu S, Neel BG. Blood 121 3594-3598 (2013)
  35. Hydrogen exchange solvent protection by an ATP analogue reveals conformational changes in ERK2 upon activation. Lee T, Hoofnagle AN, Resing KA, Ahn NG. J Mol Biol 353 600-612 (2005)
  36. Mae inhibits Pointed-P2 transcriptional activity by blocking its MAPK docking site. Qiao F, Harada B, Song H, Whitelegge J, Courey AJ, Bowie JU. EMBO J 25 70-79 (2006)
  37. Structural characterization of protein kinase A as a function of nucleotide binding. Hydrogen-deuterium exchange studies using matrix-assisted laser desorption ionization-time of flight mass spectrometry detection. Andersen MD, Shaffer J, Jennings PA, Adams JA. J Biol Chem 276 14204-14211 (2001)
  38. Hypoxic regulation of β-1,3-glucuronyltransferase 1 expression in nucleus pulposus cells of the rat intervertebral disc: role of hypoxia-inducible factor proteins. Gogate SS, Nasser R, Shapiro IM, Risbud MV. Arthritis Rheum 63 1950-1960 (2011)
  39. Analysis of the protein kinome of Entamoeba histolytica. Anamika K, Bhattacharya A, Srinivasan N. Proteins 71 995-1006 (2008)
  40. Unactivated PKR exists in an open conformation capable of binding nucleotides. Lemaire PA, Tessmer I, Craig R, Erie DA, Cole JL. Biochemistry 45 9074-9084 (2006)
  41. Rab27 effector Slp2-a transports the apical signaling molecule podocalyxin to the apical surface of MDCK II cells and regulates claudin-2 expression. Yasuda T, Saegusa C, Kamakura S, Sumimoto H, Fukuda M. Mol Biol Cell 23 3229-3239 (2012)
  42. Molecular modeling and crystal structure of ERK2-hypothemycin complexes. Rastelli G, Rosenfeld R, Reid R, Santi DV. J Struct Biol 164 18-23 (2008)
  43. Identification of mitogen-activated protein kinase homologues from Leishmania mexicana. Wiese M, Wang Q, Görcke I. Int J Parasitol 33 1577-1587 (2003)
  44. Intrinsically active variants of Erk oncogenically transform cells and disclose unexpected autophosphorylation capability that is independent of TEY phosphorylation. Smorodinsky-Atias K, Goshen-Lago T, Goldberg-Carp A, Melamed D, Shir A, Mooshayef N, Beenstock J, Karamansha Y, Darlyuk-Saadon I, Livnah O, Ahn NG, Admon A, Engelberg D. Mol Biol Cell 27 1026-1039 (2016)
  45. MEK-ERK signaling plays diverse roles in the regulation of facial chondrogenesis. Bobick BE, Kulyk WM. Exp Cell Res 312 1079-1092 (2006)
  46. Probing druggability and biological function of essential proteins in Leishmania combining facilitated null mutant and plasmid shuffle analyses. Dacher M, Morales MA, Pescher P, Leclercq O, Rachidi N, Prina E, Cayla M, Descoteaux A, Späth GF. Mol Microbiol 93 146-166 (2014)
  47. In-plate protein crystallization, in situ ligand soaking and X-ray diffraction. le Maire A, Gelin M, Pochet S, Hoh F, Pirocchi M, Guichou JF, Ferrer JL, Labesse G. Acta Crystallogr D Biol Crystallogr 67 747-755 (2011)
  48. Structural and mechanistic insights into Mps1 kinase activation. Wang W, Yang Y, Gao Y, Xu Q, Wang F, Zhu S, Old W, Resing K, Ahn N, Lei M, Liu X. J Cell Mol Med 13 1679-1694 (2009)
  49. Biochemical characterization of mutant EGF receptors expressed in the hemopoietic cell line BaF/3. Walker F, Hibbs ML, Zhang HH, Gonez LJ, Burgess AW. Growth Factors 16 53-67 (1998)
  50. Molecular determinants of substrate recognition in hematopoietic protein-tyrosine phosphatase. Huang Z, Zhou B, Zhang ZY. J Biol Chem 279 52150-52159 (2004)
  51. Histone deacetylase 6 (HDAC6) deacetylates extracellular signal-regulated kinase 1 (ERK1) and thereby stimulates ERK1 activity. Wu JY, Xiang S, Zhang M, Fang B, Huang H, Kwon OK, Zhao Y, Yang Z, Bai W, Bepler G, Zhang XM. J Biol Chem 293 1976-1993 (2018)
  52. The transcriptional ETS2 repressor factor associates with active and inactive Erks through distinct FXF motifs. Polychronopoulos S, Verykokakis M, Yazicioglu MN, Sakarellos-Daitsiotis M, Cobb MH, Mavrothalassitis G. J Biol Chem 281 25601-25611 (2006)
  53. Use of docking peptides to design modular substrates with high efficiency for mitogen-activated protein kinase extracellular signal-regulated kinase. Fernandes N, Bailey DE, Vanvranken DL, Allbritton NL. ACS Chem Biol 2 665-673 (2007)
  54. Catalysis of proline-directed protein phosphorylation by peptidyl-prolyl cis/trans isomerases. Weiwad M, Werner A, Rücknagel P, Schierhorn A, Küllertz G, Fischer G. J Mol Biol 339 635-646 (2004)
  55. Dual specificity phosphatase DUSP6 promotes endothelial inflammation through inducible expression of ICAM-1. Hsu SF, Lee YB, Lee YC, Chung AL, Apaya MK, Shyur LF, Cheng CF, Ho FM, Meng TC. FEBS J 285 1593-1610 (2018)
  56. Peptide substrates for ERK1/2: structure-function studies of serine 31 in tyrosine hydroxylase. Haycock JW. J Neurosci Methods 116 29-34 (2002)
  57. Decoding the Interactions Regulating the Active State Mechanics of Eukaryotic Protein Kinases. Meharena HS, Fan X, Ahuja LG, Keshwani MM, McClendon CL, Chen AM, Adams JA, Taylor SS. PLoS Biol 14 e2000127 (2016)
  58. Small G proteins Rac1 and Ras regulate serine/threonine protein phosphatase 5 (PP5)·extracellular signal-regulated kinase (ERK) complexes involved in the feedback regulation of Raf1. Mazalouskas MD, Godoy-Ruiz R, Weber DJ, Zimmer DB, Honkanen RE, Wadzinski BE. J Biol Chem 289 4219-4232 (2014)
  59. The WW domain of the scaffolding protein IQGAP1 is neither necessary nor sufficient for binding to the MAPKs ERK1 and ERK2. Bardwell AJ, Lagunes L, Zebarjedi R, Bardwell L. J Biol Chem 292 8750-8761 (2017)
  60. Yet another "active" pseudokinase, Erb3. Taylor SS, Kornev AP. Proc Natl Acad Sci U S A 107 8047-8048 (2010)
  61. The CDK-activating kinase (Cak1p) from budding yeast has an unusual ATP-binding pocket. Enke DA, Kaldis P, Holmes JK, Solomon MJ. J Biol Chem 274 1949-1956 (1999)
  62. Activity prediction and structural insights of extracellular signal-regulated kinase 2 inhibitors with molecular dynamics simulations. Del Rio A, Baldi BF, Rastelli G. Chem Biol Drug Des 74 630-635 (2009)
  63. Structural basis of the effect of activating mutations on the EGF receptor. Galdadas I, Carlino L, Ward RA, Hughes SJ, Haider S, Gervasio FL. Elife 10 e65824 (2021)
  64. Stimulation of mitogenic pathways through kinase-impaired mutants of the epidermal growth factor receptor. Ewald JA, Coker KJ, Price JO, Staros JV, Guyer CA. Exp Cell Res 268 262-273 (2001)
  65. EphA2 up-regulation induced by deoxycholic acid in human colon carcinoma cells, an involvement of extracellular signal-regulated kinase and p53-independence. Li Z, Tanaka M, Kataoka H, Nakamura R, Sanjar R, Shinmura K, Sugimura H. J Cancer Res Clin Oncol 129 703-708 (2003)
  66. Mkp1 of Pneumocystis carinii associates with the yeast transcription factor Rlm1 via a mechanism independent of the activation state. Fox D, Smulian AG. Cell Signal 12 381-390 (2000)
  67. The pseudokinase domains of guanylyl cyclase-A and -B allosterically increase the affinity of their catalytic domains for substrate. Edmund AB, Walseth TF, Levinson NM, Potter LR. Sci Signal 12 eaau5378 (2019)
  68. Characterization of the Catalytic and Nucleotide Binding Properties of the α-Kinase Domain of Dictyostelium Myosin-II Heavy Chain Kinase A. Yang Y, Ye Q, Jia Z, Côté GP. J Biol Chem 290 23935-23946 (2015)
  69. Identification of allosteric ERK2 inhibitors through in silico biased screening and competitive binding assay. Kinoshita T, Sugiyama H, Mori Y, Takahashi N, Tomonaga A. Bioorg Med Chem Lett 26 955-958 (2016)
  70. Kinase Activation by Small Conformational Changes. Lopez ED, Burastero O, Arcon JP, Defelipe LA, Ahn NG, Marti MA, Turjanski AG. J Chem Inf Model 60 821-832 (2020)
  71. Nucleotide-binding properties of kinase-deficient epidermal-growth-factor-receptor mutants. Cheng K, Koland JG. Biochem J 330 ( Pt 1) 353-359 (1998)
  72. Upregulation of hippocampal extracellular signal-regulated kinase (ERK)-2 induces antidepressant-like behavior in the rat forced swim test. Iñiguez SD, Parise LF, Lobo MK, Flores-Ramirez FJ, Garcia-Carachure I, Warren BL, Robison AJ. Behav Neurosci 133 225-231 (2019)
  73. The Relationship between Effective Molarity and Affinity Governs Rate Enhancements in Tethered Kinase-Substrate Reactions. Speltz EB, Zalatan JG. Biochemistry 59 2182-2193 (2020)
  74. p38 MAP kinase regulates circadian rhythms in Drosophila. Vrailas-Mortimer AD, Ryan SM, Avey MJ, Mortimer NT, Dowse H, Sanyal S. J Biol Rhythms 29 411-426 (2014)
  75. A protein switch with tunable steepness reconstructed in Escherichia coli cells with eukaryotic signaling proteins. Takahashi M, Shibata T, Yanagida T, Sako Y. Biochem Biophys Res Commun 421 731-735 (2012)
  76. A single Glu(62)-to-Lys(62) mutation in the Mos residues of the R7Delta447Gag-tMos protein causes the mutant virus to induce brain lesions. Yuen PH, Ryan EA, Devroe E, Wong PK. Oncogene 20 692-703 (2001)
  77. Face-to-face, pak-to-pak. Malecka KA, Peterson JR. Structure 19 1723-1724 (2011)
  78. Enzyme-linked immunosorbent assay for the measurement of JNK activity in cell extracts. Tamaskovic R, Forrer P, Jaussi R. Biol Chem 380 569-578 (1999)
  79. Phosphorylation- and nucleotide-binding-induced changes to the stability and hydrogen exchange patterns of JNK1β1 provide insight into its mechanisms of activation. Owen GR, Stoychev S, Achilonu I, Dirr HW. J Mol Biol 426 3569-3589 (2014)
  80. Conformational control and regulation of the pseudokinase KSR via small molecule binding interactions. Chow A, Khan ZM, Marsiglia WM, Dar AC. Methods Enzymol 667 365-402 (2022)


Related citations provided by authors (3)

  1. Activity of the Map Kinase Erk2 is Controlled by a Flexible Surface Loop. Zhang J, Zhang F, Ebert D, Cobb MH, Goldsmith EJ Structure 3 299- (1995)
  2. Atomic Structure of the Map Kinase Erk2 at 2.3 A Resolution. Zhang F, Strand A, Robbins D, Cobb MH, Goldsmith EJ Nature 367 704- (1994)
  3. Crystallization and Preliminary X-Ray Studies of Extracellular Signal-Regulated Kinase-2/Map Kinase with an Incorporated His-Tag. Zhang F, Robbins DJ, Cobb MH, Goldsmith EJ J. Mol. Biol. 233 550- (1993)