1g0d Citations

Crystal structure of red sea bream transglutaminase.

J Biol Chem 276 12055-9 (2001)
Cited: 41 times
EuropePMC logo PMID: 11080504

Abstract

The crystal structure of the tissue-type transglutaminase from red sea bream liver (fish-derived transglutaminase, FTG) has been determined at 2.5-A resolution using the molecular replacement method, based on the crystal structure of human blood coagulation factor XIII, which is a transglutaminase zymogen. The model contains 666 residues of a total of 695 residues, 382 water molecules, and 1 sulfate ion. FTG consists of four domains, and its overall and active site structures are similar to those of human factor XIII. However, significant structural differences are observed in both the acyl donor and acyl acceptor binding sites, which account for the difference in substrate preferences. The active site of the enzyme is inaccessible to the solvent, because the catalytic Cys-272 hydrogen-bonds to Tyr-515, which is thought to be displaced upon acyl donor binding to FTG. It is postulated that the binding of an inappropriate substrate to FTG would lead to inactivation of the enzyme because of the formation of a new disulfide bridge between Cys-272 and the adjacent Cys-333 immediately after the displacement of Tyr-515. Considering the mutational studies previously reported on the tissue-type transglutaminases, we propose that Cys-333 and Tyr-515 are important in strictly controlling the enzymatic activity of FTG.

Reviews - 1g0d mentioned but not cited (2)

Articles - 1g0d mentioned but not cited (8)

  1. Conserved tryptophan in the core domain of transglutaminase is essential for catalytic activity. Murthy SN, Iismaa S, Begg G, Freymann DM, Graham RM, Lorand L. Proc Natl Acad Sci U S A 99 2738-2742 (2002)
  2. Structural characterization of a conserved, calcium-dependent periplasmic protease from Legionella pneumophila. Chatterjee D, Boyd CD, O'Toole GA, Sondermann H. J Bacteriol 194 4415-4425 (2012)
  3. Tissue transglutaminase acylation: Proposed role of conserved active site Tyr and Trp residues revealed by molecular modeling of peptide substrate binding. Chica RA, Gagnon P, Keillor JW, Pelletier JN. Protein Sci 13 979-991 (2004)
  4. Structure of the catalytic domain of the Salmonella virulence factor SseI. Bhaskaran SS, Stebbins CE. Acta Crystallogr D Biol Crystallogr 68 1613-1621 (2012)
  5. Functional and Structural Characterization of the Antiphagocytic Properties of a Novel Transglutaminase from Streptococcus suis. Yu J, Pian Y, Ge J, Guo J, Zheng Y, Jiang H, Hao H, Yuan Y, Jiang Y, Yang M. J Biol Chem 290 19081-19092 (2015)
  6. Insight into the Mechanism of Intramolecular Inhibition of the Catalytic Activity of Sirtuin 2 (SIRT2). Li J, Flick F, Verheugd P, Carloni P, Lüscher B, Rossetti G. PLoS One 10 e0139095 (2015)
  7. Post-assembly modification of Bordetella bronchiseptica O polysaccharide by a novel periplasmic enzyme encoded by wbmE. King JD, Vinogradov E, Preston A, Li J, Maskell DJ. J Biol Chem 284 1474-1483 (2009)
  8. Autoantibody binding and unique enzyme-substrate intermediate conformation of human transglutaminase 3. Heggelund JE, Das S, Stamnaes J, Iversen R, Sollid LM. Nat Commun 14 6216 (2023)


Reviews citing this publication (6)

  1. Transglutaminases: crosslinking enzymes with pleiotropic functions. Lorand L, Graham RM. Nat Rev Mol Cell Biol 4 140-156 (2003)
  2. Transglutaminases: nature's biological glues. Griffin M, Casadio R, Bergamini CM. Biochem J 368 377-396 (2002)
  3. Transglutaminase 2: an enigmatic enzyme with diverse functions. Fesus L, Piacentini M. Trends Biochem Sci 27 534-539 (2002)
  4. Physiological, pathological, and structural implications of non-enzymatic protein-protein interactions of the multifunctional human transglutaminase 2. Kanchan K, Fuxreiter M, Fésüs L. Cell Mol Life Sci 72 3009-3035 (2015)
  5. The emerging structural understanding of transglutaminase 3. Ahvazi B, Boeshans KM, Rastinejad F. J Struct Biol 147 200-207 (2004)
  6. New Insights into Development of Transglutaminase 2 Inhibitors as Pharmaceutical Lead Compounds. Kim SY. Med Sci (Basel) 6 E87 (2018)

Articles citing this publication (25)

  1. Transglutaminase 2 undergoes a large conformational change upon activation. Pinkas DM, Strop P, Brunger AT, Khosla C. PLoS Biol 5 e327 (2007)
  2. Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. Brunner F, Rosahl S, Lee J, Rudd JJ, Geiler C, Kauppinen S, Rasmussen G, Scheel D, Nürnberger T. EMBO J 21 6681-6688 (2002)
  3. A novel function of tissue-type transglutaminase: protein disulphide isomerase. Hasegawa G, Suwa M, Ichikawa Y, Ohtsuka T, Kumagai S, Kikuchi M, Sato Y, Saito Y. Biochem J 373 793-803 (2003)
  4. Mechanism of allosteric regulation of transglutaminase 2 by GTP. Begg GE, Carrington L, Stokes PH, Matthews JM, Wouters MA, Husain A, Lorand L, Iismaa SE, Graham RM. Proc Natl Acad Sci U S A 103 19683-19688 (2006)
  5. Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense. Kashiwagi T, Yokoyama K, Ishikawa K, Ono K, Ejima D, Matsui H, Suzuki E. J Biol Chem 277 44252-44260 (2002)
  6. Secretion of active-form Streptoverticillium mobaraense transglutaminase by Corynebacterium glutamicum: processing of the pro-transglutaminase by a cosecreted subtilisin-Like protease from Streptomyces albogriseolus. Kikuchi Y, Date M, Yokoyama K, Umezawa Y, Matsui H. Appl Environ Microbiol 69 358-366 (2003)
  7. Functional sites in protein families uncovered via an objective and automated graph theoretic approach. Wangikar PP, Tendulkar AV, Ramya S, Mali DN, Sarawagi S. J Mol Biol 326 955-978 (2003)
  8. Three-dimensional structure of the human transglutaminase 3 enzyme: binding of calcium ions changes structure for activation. Ahvazi B, Kim HC, Kee SH, Nemes Z, Steinert PM. EMBO J 21 2055-2067 (2002)
  9. AtPng1p. The first plant transglutaminase. Della Mea M, Caparrós-Ruiz D, Claparols I, Serafini-Fracassini D, Rigau J. Plant Physiol 135 2046-2054 (2004)
  10. High level expression of Streptomyces mobaraensis transglutaminase in Corynebacterium glutamicum using a chimeric pro-region from Streptomyces cinnamoneus transglutaminase. Date M, Yokoyama K, Umezawa Y, Matsui H, Kikuchi Y. J Biotechnol 110 219-226 (2004)
  11. Investigation of the catalytic triad of arylamine N-acetyltransferases: essential residues required for acetyl transfer to arylamines. Sandy J, Mushtaq A, Holton SJ, Schartau P, Noble ME, Sim E. Biochem J 390 115-123 (2005)
  12. Production of native-type Streptoverticillium mobaraense transglutaminase in Corynebacterium glutamicum. Date M, Yokoyama K, Umezawa Y, Matsui H, Kikuchi Y. Appl Environ Microbiol 69 3011-3014 (2003)
  13. Evolutionary specialization of a tryptophan indole group for transition-state stabilization by eukaryotic transglutaminases. Iismaa SE, Holman S, Wouters MA, Lorand L, Graham RM, Husain A. Proc Natl Acad Sci U S A 100 12636-12641 (2003)
  14. Co-overexpression of folding modulators improves the solubility of the recombinant guinea pig liver transglutaminase expressed in Escherichia coli. Ikura K, Kokubu T, Natsuka S, Ichikawa A, Adachi M, Nishihara K, Yanagi H, Utsumi S. Prep Biochem Biotechnol 32 189-205 (2002)
  15. Substrate specificity of microbial transglutaminase as revealed by three-dimensional docking simulation and mutagenesis. Tagami U, Shimba N, Nakamura M, Yokoyama K, Suzuki E, Hirokawa T. Protein Eng Des Sel 22 747-752 (2009)
  16. Structural and phylogenetic analyses of the GP42 transglutaminase from Phytophthora sojae reveal an evolutionary relationship between oomycetes and marine Vibrio bacteria. Reiss K, Kirchner E, Gijzen M, Zocher G, Löffelhardt B, Nürnberger T, Stehle T, Brunner F. J Biol Chem 286 42585-42593 (2011)
  17. Characterization of Anopheles gambiae transglutaminase 3 (AgTG3) and its native substrate Plugin. Le BV, Nguyen JB, Logarajah S, Wang B, Marcus J, Williams HP, Catteruccia F, Baxter RH. J Biol Chem 288 4844-4853 (2013)
  18. Crystal structures of protein glutaminase and its pro forms converted into enzyme-substrate complex. Hashizume R, Maki Y, Mizutani K, Takahashi N, Matsubara H, Sugita A, Sato K, Yamaguchi S, Mikami B. J Biol Chem 286 38691-38702 (2011)
  19. Inter-molecular crosslinking activity is engendered by the dimeric form of transglutaminase 2. Kim N, Lee WK, Lee SH, Jin KS, Kim KH, Lee Y, Song M, Kim SY. Amino Acids 49 461-471 (2017)
  20. TgpA, a protein with a eukaryotic-like transglutaminase domain, plays a critical role in the viability of Pseudomonas aeruginosa. Milani A, Vecchietti D, Rusmini R, Bertoni G. PLoS One 7 e50323 (2012)
  21. Allosteric inhibition site of transglutaminase 2 is unveiled in the N terminus. Kim N, Kang JH, Lee WK, Kim SG, Lee JS, Lee SH, Park JB, Kim KH, Gong YD, Hwang KY, Kim SY. Amino Acids 50 1583-1594 (2018)
  22. The mechanism of transglutaminase 2 inhibition with glucosamine: implications of a possible anti-inflammatory effect through transglutaminase inhibition. Jeong KC, Ahn KO, Lee BI, Lee CH, Kim SY. J Cancer Res Clin Oncol 136 143-150 (2010)
  23. Tissue transglutaminase inhibition. Keillor JW. Chem Biol 12 410-412 (2005)
  24. Letter Novel transglutaminase 1 gene mutations (R348X/Y365D) in a Japanese family with lamellar ichthyosis. Kon A, Takeda H, Sasaki H, Yoneda K, Nomura K, Ahvazi B, Steinert PM, Hanada K, Hashimoto I. J Invest Dermatol 120 170-172 (2003)
  25. The NMR structure of protein-glutaminase from Chryseobacterium proteolyticum. Kumeta H, Miwa N, Ogura K, Kai Y, Mizukoshi T, Shimba N, Suzuki E, Inagaki F. J Biomol NMR 46 251-255 (2010)


Related citations provided by authors (2)

  1. Overproduction of DnaJ in Escherichia coli Improves in Vivo Solubility of the Recombinant Fish-derived Transglutaminase. Yokoyama K, Kikuchi Y, Yasueda H Biosci. Biotechnol. Biochem. 62 1205-1210 (1998)
  2. Tissue-type transglutaminase from red sea bream (Pagrus major). Yasueda H, Nakanishi K, Kumazawa Y, Nagase K, Motoki M, Matsui H Eur. J. Biochem. 232 411-419 (1995)