1fyn Citations

High-resolution crystal structures of tyrosine kinase SH3 domains complexed with proline-rich peptides.

Nat Struct Biol 1 546-51 (1994)
Related entries: 1abo, 1abq

Cited: 189 times
EuropePMC logo PMID: 7664083

Abstract

Src-homology 3 (SH3) domains bind to proline-rich motifs in target proteins. We have determined high-resolution crystal structures of the complexes between the SH3 domains of Abl and Fyn tyrosine kinases, and two ten-residue proline-rich peptides derived from the SH3-binding proteins 3BP-1 and 3BP-2. The X-ray data show that the basic mode of binding of both proline-rich peptides is the same. Peptides are bound over their entire length and interact with three major sites on the SH3 molecules by both hydrogen-bonding and van der Waals contacts. Residues 4-10 of the peptide adopt the conformation of a left-handed polyproline helix type II. Binding of the proline at position 2 requires a kink at the non-proline position 3.

Reviews - 1fyn mentioned but not cited (4)

  1. What lessons can be learned from studying the folding of homologous proteins? Nickson AA, Clarke J. Methods 52 38-50 (2010)
  2. The azaindole framework in the design of kinase inhibitors. Mérour JY, Buron F, Plé K, Bonnet P, Routier S. Molecules 19 19935-19979 (2014)
  3. Cardiovascular Functions of Ena/VASP Proteins: Past, Present and Beyond. Benz PM, Frömel T, Laban H, Zink J, Ulrich L, Groneberg D, Boon RA, Poley P, Renne T, de Wit C, Fleming I. Cells 12 1740 (2023)
  4. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. Cells 12 2054 (2023)

Articles - 1fyn mentioned but not cited (17)

  1. Discrete molecular dynamics: an efficient and versatile simulation method for fine protein characterization. Shirvanyants D, Ding F, Tsao D, Ramachandran S, Dokholyan NV. J Phys Chem B 116 8375-8382 (2012)
  2. Characterization of domain-peptide interaction interface: prediction of SH3 domain-mediated protein-protein interaction network in yeast by generic structure-based models. Hou T, Li N, Li Y, Wang W. J Proteome Res 11 2982-2995 (2012)
  3. Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway. Tatebayashi K, Yamamoto K, Tanaka K, Tomida T, Maruoka T, Kasukawa E, Saito H. EMBO J 25 3033-3044 (2006)
  4. Characterization of domain-peptide interaction interface: a generic structure-based model to decipher the binding specificity of SH3 domains. Hou T, Xu Z, Zhang W, McLaughlin WA, Case DA, Xu Y, Wang W. Mol Cell Proteomics 8 639-649 (2009)
  5. Dynamic interaction of CD2 with the GYF and the SH3 domain of compartmentalized effector molecules. Freund C, Kühne R, Yang H, Park S, Reinherz EL, Wagner G. EMBO J 21 5985-5995 (2002)
  6. Computational design of the Fyn SH3 domain with increased stability through optimization of surface charge charge interactions. Schweiker KL, Zarrine-Afsar A, Davidson AR, Makhatadze GI. Protein Sci 16 2694-2702 (2007)
  7. Biophysical prediction of protein-peptide interactions and signaling networks using machine learning. Cunningham JM, Koytiger G, Sorger PK, AlQuraishi M. Nat Methods 17 175-183 (2020)
  8. Generation, characterization and structural data of chymase binding proteins based on the human Fyn kinase SH3 domain. Schlatter D, Brack S, Banner DW, Batey S, Benz J, Bertschinger J, Huber W, Joseph C, Rufer A, van der Klooster A, Weber M, Grabulovski D, Hennig M. MAbs 4 497-508 (2012)
  9. A high-throughput predictive method for sequence-similar fold switchers. Kim AK, Looger LL, Porter LL. Biopolymers 112 e23416 (2021)
  10. Fast search algorithms for computational protein design. Traoré S, Roberts KE, Allouche D, Donald BR, André I, Schiex T, Barbe S. J Comput Chem 37 1048-1058 (2016)
  11. New approaches to high-throughput structure characterization of SH3 complexes: the example of Myosin-3 and Myosin-5 SH3 domains from S. cerevisiae. Musi V, Birdsall B, Fernandez-Ballester G, Guerrini R, Salvatori S, Serrano L, Pastore A. Protein Sci 15 795-807 (2006)
  12. Fold and flexibility: what can proteins' mechanical properties tell us about their folding nucleus? Sacquin-Mora S. J R Soc Interface 12 20150876 (2015)
  13. The role of water molecules in the binding of class I and II peptides to the SH3 domain of the Fyn tyrosine kinase. Camara-Artigas A, Ortiz-Salmeron E, Andujar-Sánchez M, Bacarizo J, Martin-Garcia JM. Acta Crystallogr F Struct Biol Commun 72 707-712 (2016)
  14. Assessing the effect of dynamics on the closed-loop protein-folding hypothesis. Chintapalli SV, Illingworth CJ, Upton GJ, Sacquin-Mora S, Reeves PJ, Mohammedali HS, Reynolds CA. J R Soc Interface 11 20130935 (2014)
  15. Characterization of protein folding by a Φ-value calculation with a statistical-mechanical model. Wako H, Abe H. Biophys Physicobiol 13 263-279 (2016)
  16. Tandem engagement of phosphotyrosines by the dual SH2 domains of p120RasGAP. Stiegler AL, Vish KJ, Boggon TJ. Structure 30 1603-1614.e5 (2022)
  17. o-Nitrotyrosine and p-iodophenylalanine as spectroscopic probes for structural characterization of SH3 complexes. De Filippis V, Draghi A, Frasson R, Grandi C, Musi V, Fontana A, Pastore A. Protein Sci 16 1257-1265 (2007)


Reviews citing this publication (26)

  1. Protein modules and signalling networks. Pawson T. Nature 373 573-580 (1995)
  2. Modular binding domains in signal transduction proteins. Cohen GB, Ren R, Baltimore D. Cell 80 237-248 (1995)
  3. 3D domain swapping: as domains continue to swap. Liu Y, Eisenberg D. Protein Sci 11 1285-1299 (2002)
  4. Modular peptide recognition domains in eukaryotic signaling. Kuriyan J, Cowburn D. Annu Rev Biophys Biomol Struct 26 259-288 (1997)
  5. WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. Macias MJ, Wiesner S, Sudol M. FEBS Lett 513 30-37 (2002)
  6. Feo--transport of ferrous iron into bacteria. Cartron ML, Maddocks S, Gillingham P, Craven CJ, Andrews SC. Biometals 19 143-157 (2006)
  7. Structure and function of the WW domain. Sudol M. Prog Biophys Mol Biol 65 113-132 (1996)
  8. Recognition of proline-rich motifs by protein-protein-interaction domains. Ball LJ, Kühne R, Schneider-Mergener J, Oschkinat H. Angew Chem Int Ed Engl 44 2852-2869 (2005)
  9. Polyproline II structure in proteins: identification by chiroptical spectroscopies, stability, and functions. Bochicchio B, Tamburro AM. Chirality 14 782-792 (2002)
  10. SH3 domains. Minding your p's and q's. Mayer BJ, Eck MJ. Curr Biol 5 364-367 (1995)
  11. Structure and dynamic regulation of Src-family kinases. Engen JR, Wales TE, Hochrein JM, Meyn MA, Banu Ozkan S, Bahar I, Smithgall TE. Cell Mol Life Sci 65 3058-3073 (2008)
  12. SH3 domains and drug design: ligands, structure, and biological function. Dalgarno DC, Botfield MC, Rickles RJ. Biopolymers 43 383-400 (1997)
  13. Structure-function relationships in Src family and related protein tyrosine kinases. Superti-Furga G, Courtneidge SA. Bioessays 17 321-330 (1995)
  14. SH2 and SH3 domains as molecular adhesives: the interactions of Crk and Abl. Feller SM, Ren R, Hanafusa H, Baltimore D. Trends Biochem Sci 19 453-458 (1994)
  15. A glimpse of structural biology through X-ray crystallography. Shi Y. Cell 159 995-1014 (2014)
  16. Protein-peptide interactions. Stanfield RL, Wilson IA. Curr Opin Struct Biol 5 103-113 (1995)
  17. Dynamic interactions of proteins in complex networks: a more structured view. Stein A, Pache RA, Bernadó P, Pons M, Aloy P. FEBS J 276 5390-5405 (2009)
  18. Designing bisubstrate analog inhibitors for protein kinases. Parang K, Cole PA. Pharmacol Ther 93 145-157 (2002)
  19. Structural insights into clathrin-mediated endocytosis. Owen DJ, Luzio JP. Curr Opin Cell Biol 12 467-474 (2000)
  20. Designing specific protein-protein interactions using computation, experimental library screening, or integrated methods. Chen TS, Keating AE. Protein Sci 21 949-963 (2012)
  21. Control of sarcomeric assembly: the flow of information on titin. Gautel M, Mues A, Young P. Rev Physiol Biochem Pharmacol 138 97-137 (1999)
  22. Reading between the lines: SH3 recognition of an intact protein. Lim WA. Structure 4 657-659 (1996)
  23. The mechanism of action of the SSB interactome reveals it is the first OB-fold family of genome guardians in prokaryotes. Bianco PR. Protein Sci 30 1757-1775 (2021)
  24. Domain repertoires as a tool to derive protein recognition rules. Zucconi A, Panni S, Paoluzi S, Castagnoli L, Dente L, Cesareni G. FEBS Lett 480 49-54 (2000)
  25. Structural aspects of adhesion to and invasion of host cells by the human pathogen Listeria monocytogenes. Schubert WD, Heinz DW. Chembiochem 4 1285-1291 (2003)
  26. OB-fold Families of Genome Guardians: A Universal Theme Constructed From the Small β-barrel Building Block. Bianco PR. Front Mol Biosci 9 784451 (2022)

Articles citing this publication (142)

  1. Three-dimensional structure of the tyrosine kinase c-Src. Xu W, Harrison SC, Eck MJ. Nature 385 595-602 (1997)
  2. Crystal structure of the Src family tyrosine kinase Hck. Sicheri F, Moarefi I, Kuriyan J. Nature 385 602-609 (1997)
  3. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Hubbard SR, Wei L, Ellis L, Hendrickson WA. Nature 372 746-754 (1994)
  4. Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains. Lim WA, Richards FM, Fox RO. Nature 372 375-379 (1994)
  5. Phosphorylation switches specific for the cardiac isoform of myosin binding protein-C: a modulator of cardiac contraction? Gautel M, Zuffardi O, Freiburg A, Labeit S. EMBO J 14 1952-1960 (1995)
  6. A myristoyl/phosphotyrosine switch regulates c-Abl. Hantschel O, Nagar B, Guettler S, Kretzschmar J, Dorey K, Kuriyan J, Superti-Furga G. Cell 112 845-857 (2003)
  7. Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Groemping Y, Lapouge K, Smerdon SJ, Rittinger K. Cell 113 343-355 (2003)
  8. Large-scale protein structure modeling of the Saccharomyces cerevisiae genome. Sánchez R, Sali A. Proc Natl Acad Sci U S A 95 13597-13602 (1998)
  9. A single amino acid in the SH3 domain of Hck determines its high affinity and specificity in binding to HIV-1 Nef protein. Lee CH, Leung B, Lemmon MA, Zheng J, Cowburn D, Kuriyan J, Saksela K. EMBO J 14 5006-5015 (1995)
  10. Structural basis for the specific interaction of lysine-containing proline-rich peptides with the N-terminal SH3 domain of c-Crk. Wu X, Knudsen B, Feller SM, Zheng J, Sali A, Cowburn D, Hanafusa H, Kuriyan J. Structure 3 215-226 (1995)
  11. Structure of the SH3-guanylate kinase module from PSD-95 suggests a mechanism for regulated assembly of MAGUK scaffolding proteins. McGee AW, Dakoji SR, Olsen O, Bredt DS, Lim WA, Prehoda KE. Mol Cell 8 1291-1301 (2001)
  12. Proline-rich sequences that bind to Src homology 3 domains with individual specificities. Alexandropoulos K, Cheng G, Baltimore D. Proc Natl Acad Sci U S A 92 3110-3114 (1995)
  13. Different folding transition states may result in the same native structure. Viguera AR, Serrano L, Wilmanns M. Nat Struct Biol 3 874-880 (1996)
  14. A novel peptide recognition mode revealed by the X-ray structure of a core U2AF35/U2AF65 heterodimer. Kielkopf CL, Rodionova NA, Green MR, Burley SK. Cell 106 595-605 (2001)
  15. Autoinhibition of c-Abl. Pluk H, Dorey K, Superti-Furga G. Cell 108 247-259 (2002)
  16. Specific interactions outside the proline-rich core of two classes of Src homology 3 ligands. Feng S, Kasahara C, Rickles RJ, Schreiber SL. Proc Natl Acad Sci U S A 92 12408-12415 (1995)
  17. The crystal structure of HIV-1 Nef protein bound to the Fyn kinase SH3 domain suggests a role for this complex in altered T cell receptor signaling. Arold S, Franken P, Strub MP, Hoh F, Benichou S, Benarous R, Dumas C. Structure 5 1361-1372 (1997)
  18. Aromatic-proline interactions: electronically tunable CH/π interactions. Zondlo NJ. Acc Chem Res 46 1039-1049 (2013)
  19. Crystal structure of the amphiphysin-2 SH3 domain and its role in the prevention of dynamin ring formation. Owen DJ, Wigge P, Vallis Y, Moore JD, Evans PR, McMahon HT. EMBO J 17 5273-5285 (1998)
  20. Structure of the Homer EVH1 domain-peptide complex reveals a new twist in polyproline recognition. Beneken J, Tu JC, Xiao B, Nuriya M, Yuan JP, Worley PF, Leahy DJ. Neuron 26 143-154 (2000)
  21. Characterization of the WW domain of human yes-associated protein and its polyproline-containing ligands. Chen HI, Einbond A, Kwak SJ, Linn H, Koepf E, Peterson S, Kelly JW, Sudol M. J Biol Chem 272 17070-17077 (1997)
  22. SH3 domain recognition of a proline-independent tyrosine-based RKxxYxxY motif in immune cell adaptor SKAP55. Kang H, Freund C, Duke-Cohan JS, Musacchio A, Wagner G, Rudd CE. EMBO J 19 2889-2899 (2000)
  23. Structural and functional insights into the B30.2/SPRY domain. Woo JS, Imm JH, Min CK, Kim KJ, Cha SS, Oh BH. EMBO J 25 1353-1363 (2006)
  24. Mutational analysis of the Src SH3 domain: the same residues of the ligand binding surface are important for intra- and intermolecular interactions. Erpel T, Superti-Furga G, Courtneidge SA. EMBO J 14 963-975 (1995)
  25. Mechanistic basis of 5'-3' translocation in SF1B helicases. Saikrishnan K, Powell B, Cook NJ, Webb MR, Wigley DB. Cell 137 849-859 (2009)
  26. Can we infer peptide recognition specificity mediated by SH3 domains? Cesareni G, Panni S, Nardelli G, Castagnoli L. FEBS Lett 513 38-44 (2002)
  27. Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck. Banjade S, Wu Q, Mittal A, Peeples WB, Pappu RV, Rosen MK. Proc Natl Acad Sci U S A 112 E6426-35 (2015)
  28. Structure-based mutational analysis of the C-terminal DNA-binding domain of human immunodeficiency virus type 1 integrase: critical residues for protein oligomerization and DNA binding. Lutzke RA, Plasterk RH. J Virol 72 4841-4848 (1998)
  29. Novel recognition mode between Vav and Grb2 SH3 domains. Nishida M, Nagata K, Hachimori Y, Horiuchi M, Ogura K, Mandiyan V, Schlessinger J, Inagaki F. EMBO J 20 2995-3007 (2001)
  30. GW domains of the Listeria monocytogenes invasion protein InlB are SH3-like and mediate binding to host ligands. Marino M, Banerjee M, Jonquières R, Cossart P, Ghosh P. EMBO J 21 5623-5634 (2002)
  31. A human mitochondrial GTP binding protein related to tRNA modification may modulate phenotypic expression of the deafness-associated mitochondrial 12S rRNA mutation. Li X, Guan MX. Mol Cell Biol 22 7701-7711 (2002)
  32. Structure-function analysis of SH3 domains: SH3 binding specificity altered by single amino acid substitutions. Weng Z, Rickles RJ, Feng S, Richard S, Shaw AS, Schreiber SL, Brugge JS. Mol Cell Biol 15 5627-5634 (1995)
  33. The SH3 domain of Eps8 exists as a novel intertwined dimer. Kishan KV, Scita G, Wong WT, Di Fiore PP, Newcomer ME. Nat Struct Biol 4 739-743 (1997)
  34. The synaptic acetylcholinesterase tetramer assembles around a polyproline II helix. Dvir H, Harel M, Bon S, Liu WQ, Vidal M, Garbay C, Sussman JL, Massoulié J, Silman I. EMBO J 23 4394-4405 (2004)
  35. Thoroughly sampling sequence space: large-scale protein design of structural ensembles. Larson SM, England JL, Desjarlais JR, Pande VS. Protein Sci 11 2804-2813 (2002)
  36. SH3-SPOT: an algorithm to predict preferred ligands to different members of the SH3 gene family. Brannetti B, Via A, Cestra G, Cesareni G, Helmer-Citterich M. J Mol Biol 298 313-328 (2000)
  37. SH3BP4 is a negative regulator of amino acid-Rag GTPase-mTORC1 signaling. Kim YM, Stone M, Hwang TH, Kim YG, Dunlevy JR, Griffin TJ, Kim DH. Mol Cell 46 833-846 (2012)
  38. Solution structure and peptide binding of the SH3 domain from human Fyn. Morton CJ, Pugh DJ, Brown EL, Kahmann JD, Renzoni DA, Campbell ID. Structure 4 705-714 (1996)
  39. Structure, regulation, signaling, and targeting of abl kinases in cancer. Hantschel O. Genes Cancer 3 436-446 (2012)
  40. The SH3 domain of the tight junction protein ZO-1 binds to a serine protein kinase that phosphorylates a region C-terminal to this domain. Balda MS, Anderson JM, Matter K. FEBS Lett 399 326-332 (1996)
  41. Crystal structure of the breakpoint cluster region-homology domain from phosphoinositide 3-kinase p85 alpha subunit. Musacchio A, Cantley LC, Harrison SC. Proc Natl Acad Sci U S A 93 14373-14378 (1996)
  42. Molecular cloning and functional characterization of inhibitor-sensitive (mENT1) and inhibitor-resistant (mENT2) equilibrative nucleoside transporters from mouse brain. Kiss A, Farah K, Kim J, Garriock RJ, Drysdale TA, Hammond JR. Biochem J 352 Pt 2 363-372 (2000)
  43. Affinity and specificity requirements for the first Src homology 3 domain of the Crk proteins. Knudsen BS, Zheng J, Feller SM, Mayer JP, Burrell SK, Cowburn D, Hanafusa H. EMBO J 14 2191-2198 (1995)
  44. BRO1, a novel gene that interacts with components of the Pkc1p-mitogen-activated protein kinase pathway in Saccharomyces cerevisiae. Nickas ME, Yaffe MP. Mol Cell Biol 16 2585-2593 (1996)
  45. NMR structure of the N-terminal SH3 domain of GRB2 and its complex with a proline-rich peptide from Sos. Goudreau N, Cornille F, Duchesne M, Parker F, Tocqué B, Garbay C, Roques BP. Nat Struct Biol 1 898-907 (1994)
  46. The extracellular human melanoma inhibitory activity (MIA) protein adopts an SH3 domain-like fold. Stoll R, Renner C, Zweckstetter M, Brüggert M, Ambrosius D, Palme S, Engh RA, Golob M, Breibach I, Buettner R, Voelter W, Holak TA, Bosserhoff AK. EMBO J 20 340-349 (2001)
  47. Protein folding kinetics beyond the phi value: using multiple amino acid substitutions to investigate the structure of the SH3 domain folding transition state. Northey JG, Maxwell KL, Davidson AR. J Mol Biol 320 389-402 (2002)
  48. Structure of the N-terminal SH3 domain of GRB2 complexed with a peptide from the guanine nucleotide releasing factor Sos. Terasawa H, Kohda D, Hatanaka H, Tsuchiya S, Ogura K, Nagata K, Ishii S, Mandiyan V, Ullrich A, Schlessinger J. Nat Struct Biol 1 891-897 (1994)
  49. Grb2 SH3 binding to peptides from Sos: evaluation of a general model for SH3-ligand interactions. Simon JA, Schreiber SL. Chem Biol 2 53-60 (1995)
  50. Protein-protein interaction affinity plays a crucial role in controlling the Sho1p-mediated signal transduction pathway in yeast. Marles JA, Dahesh S, Haynes J, Andrews BJ, Davidson AR. Mol Cell 14 813-823 (2004)
  51. Biochemical and structural studies of ASPP proteins reveal differential binding to p53, p63, and p73. Robinson RA, Lu X, Jones EY, Siebold C. Structure 16 259-268 (2008)
  52. Structure of a regulatory complex involving the Abl SH3 domain, the Crk SH2 domain, and a Crk-derived phosphopeptide. Donaldson LW, Gish G, Pawson T, Kay LE, Forman-Kay JD. Proc Natl Acad Sci U S A 99 14053-14058 (2002)
  53. Enteropathogenic Escherichia coli Tir is an SH2/3 ligand that recruits and activates tyrosine kinases required for pedestal formation. Bommarius B, Maxwell D, Swimm A, Leung S, Corbett A, Bornmann W, Kalman D. Mol Microbiol 63 1748-1768 (2007)
  54. Recognition of tandem PxxP motifs as a unique Src homology 3-binding mode triggers pathogen-driven actin assembly. Aitio O, Hellman M, Kazlauskas A, Vingadassalom DF, Leong JM, Saksela K, Permi P. Proc Natl Acad Sci U S A 107 21743-21748 (2010)
  55. Chemical ligation of unprotected peptides directly from a solid support. Camarero JA, Cotton GJ, Adeva A, Muir TW. J Pept Res 51 303-316 (1998)
  56. Effects of p47phox C terminus phosphorylations on binding interactions with p40phox and p67phox. Structural and functional comparison of p40phox and p67phox SH3 domains. Massenet C, Chenavas S, Cohen-Addad C, Dagher MC, Brandolin G, Pebay-Peyroula E, Fieschi F. J Biol Chem 280 13752-13761 (2005)
  57. Src kinase activity and SH2 domain regulate the dynamics of Src association with lipid and protein targets. Shvartsman DE, Donaldson JC, Diaz B, Gutman O, Martin GS, Henis YI. J Cell Biol 178 675-686 (2007)
  58. Partial unfolding of diverse SH3 domains on a wide timescale. Wales TE, Engen JR. J Mol Biol 357 1592-1604 (2006)
  59. Solution structure of the major DNA-binding domain of Arabidopsis thaliana ethylene-insensitive3-like3. Yamasaki K, Kigawa T, Inoue M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Terada T, Shirouzu M, Tanaka A, Seki M, Shinozaki K, Yokoyama S. J Mol Biol 348 253-264 (2005)
  60. NMR identification of left-handed polyproline type II helices. Lam SL, Hsu VL. Biopolymers 69 270-281 (2003)
  61. The 2.0 A structure of a cross-linked complex between snowdrop lectin and a branched mannopentaose: evidence for two unique binding modes. Wright CS, Hester G. Structure 4 1339-1352 (1996)
  62. Bcr-Abl with an SH3 deletion retains the ability To induce a myeloproliferative disease in mice, yet c-Abl activated by an SH3 deletion induces only lymphoid malignancy. Gross AW, Zhang X, Ren R. Mol Cell Biol 19 6918-6928 (1999)
  63. PEX13 is mutated in complementation group 13 of the peroxisome-biogenesis disorders. Liu Y, Björkman J, Urquhart A, Wanders RJ, Crane DI, Gould SJ. Am J Hum Genet 65 621-634 (1999)
  64. A plasmid-encoded dihydrofolate reductase from trimethoprim-resistant bacteria has a novel D2-symmetric active site. Narayana N, Matthews DA, Howell EE, Nguyen-huu X. Nat Struct Biol 2 1018-1025 (1995)
  65. The zinc-finger transcription factor INSM1 is expressed during embryo development and interacts with the Cbl-associated protein. Xie J, Cai T, Zhang H, Lan MS, Notkins AL. Genomics 80 54-61 (2002)
  66. Thermodynamic dissection of the binding energetics of proline-rich peptides to the Abl-SH3 domain: implications for rational ligand design. Palencia A, Cobos ES, Mateo PL, Martínez JC, Luque I. J Mol Biol 336 527-537 (2004)
  67. Specificity of p47phox SH3 domain interactions in NADPH oxidase assembly and activation. de Mendez I, Homayounpour N, Leto TL. Mol Cell Biol 17 2177-2185 (1997)
  68. An X chromosome-linked gene encoding a protein with characteristics of a rhoGAP predominantly expressed in hematopoietic cells. Tribioli C, Droetto S, Bione S, Cesareni G, Torrisi MR, Lotti LV, Lanfrancone L, Toniolo D, Pelicci P. Proc Natl Acad Sci U S A 93 695-699 (1996)
  69. The tryptophan switch: changing ligand-binding specificity from type I to type II in SH3 domains. Fernandez-Ballester G, Blanes-Mira C, Serrano L. J Mol Biol 335 619-629 (2004)
  70. Thermal unfolding of small proteins with SH3 domain folding pattern. Knapp S, Mattson PT, Christova P, Berndt KD, Karshikoff A, Vihinen M, Smith CI, Ladenstein R. Proteins 31 309-319 (1998)
  71. A comparison of structural and dynamic properties of different simulation methods applied to SH3. van Aalten DM, Amadei A, Bywater R, Findlay JB, Berendsen HJ, Sander C, Stouten PF. Biophys J 70 684-692 (1996)
  72. Paxillin and ponsin interact in nascent costameres of muscle cells. Gehmlich K, Pinotsis N, Hayess K, van der Ven PF, Milting H, El Banayosy A, Körfer R, Wilmanns M, Ehler E, Fürst DO. J Mol Biol 369 665-682 (2007)
  73. The helically extended SH3 domain of the T cell adaptor protein ADAP is a novel lipid interaction domain. Heuer K, Arbuzova A, Strauss H, Kofler M, Freund C. J Mol Biol 348 1025-1035 (2005)
  74. Intramolecular interactions of the regulatory domains of the Bcr-Abl kinase reveal a novel control mechanism. Nam HJ, Haser WG, Roberts TM, Frederick CA. Structure 4 1105-1114 (1996)
  75. Quantitative relation between intermolecular and intramolecular binding of pro-rich peptides to SH3 domains. Zhou HX. Biophys J 91 3170-3181 (2006)
  76. A tail of two sites: a bipartite mechanism for recognition of notch ligands by mind bomb E3 ligases. McMillan BJ, Schnute B, Ohlenhard N, Zimmerman B, Miles L, Beglova N, Klein T, Blacklow SC. Mol Cell 57 912-924 (2015)
  77. Lipid-binding hSH3 domains in immune cell adapter proteins. Heuer K, Sylvester M, Kliche S, Pusch R, Thiemke K, Schraven B, Freund C. J Mol Biol 361 94-104 (2006)
  78. Molecular basis for the binding of SH3 ligands with non-peptide elements identified by combinatorial synthesis. Feng S, Kapoor TM, Shirai F, Combs AP, Schreiber SL. Chem Biol 3 661-670 (1996)
  79. The solution structure of Abl SH3, and its relationship to SH2 in the SH(32) construct. Gosser YQ, Zheng J, Overduin M, Mayer BJ, Cowburn D. Structure 3 1075-1086 (1995)
  80. Titin as a giant scaffold for integrating stress and Src homology domain 3-mediated signaling pathways: the clustering of novel overlap ligand motifs in the elastic PEVK segment. Ma K, Forbes JG, Gutierrez-Cruz G, Wang K. J Biol Chem 281 27539-27556 (2006)
  81. Distinct functional domains of the Abelson tyrosine kinase control axon guidance responses to Netrin and Slit to regulate the assembly of neural circuits. O'Donnell MP, Bashaw GJ. Development 140 2724-2733 (2013)
  82. Identification of Two Novel Circular RNAs Deriving from BCL2L12 and Investigation of Their Potential Value as a Molecular Signature in Colorectal Cancer. Karousi P, Artemaki PI, Sotiropoulou CD, Christodoulou S, Scorilas A, Kontos CK. Int J Mol Sci 21 E8867 (2020)
  83. Recognition of non-canonical peptides by the yeast Fus1p SH3 domain: elucidation of a common mechanism for diverse SH3 domain specificities. Kim J, Lee CD, Rath A, Davidson AR. J Mol Biol 377 889-901 (2008)
  84. Novel mutations in the kinase domain of BCR-ABL gene causing imatinib resistance in chronic myeloid leukemia patients. Chandrasekhar C, Kumar PS, Sarma PVGK. Sci Rep 9 2412 (2019)
  85. Solution structure of a Hck SH3 domain ligand complex reveals novel interaction modes. Schmidt H, Hoffmann S, Tran T, Stoldt M, Stangler T, Wiesehan K, Willbold D. J Mol Biol 365 1517-1532 (2007)
  86. Role of interfacial water molecules in proline-rich ligand recognition by the Src homology 3 domain of Abl. Palencia A, Camara-Artigas A, Pisabarro MT, Martinez JC, Luque I. J Biol Chem 285 2823-2833 (2010)
  87. Structural investigations of a GYF domain covalently linked to a proline-rich peptide. Freund C, Kühne R, Park S, Thiemke K, Reinherz EL, Wagner G. J Biomol NMR 27 143-149 (2003)
  88. Structure of a helically extended SH3 domain of the T cell adapter protein ADAP. Heuer K, Kofler M, Langdon G, Thiemke K, Freund C. Structure 12 603-610 (2004)
  89. The SH3 domain of postsynaptic density 95 mediates inflammatory pain through phosphatidylinositol-3-kinase recruitment. Arbuckle MI, Komiyama NH, Delaney A, Coba M, Garry EM, Rosie R, Allchorne AJ, Forsyth LH, Bence M, Carlisle HJ, O'Dell TJ, Mitchell R, Fleetwood-Walker SM, Grant SG. EMBO Rep 11 473-478 (2010)
  90. A miniprotein scaffold used to assemble the polyproline II binding epitope recognized by SH3 domains. Cobos ES, Pisabarro MT, Vega MC, Lacroix E, Serrano L, Ruiz-Sanz J, Martinez JC. J Mol Biol 342 355-365 (2004)
  91. Crystallographic structure of the SH3 domain of the human c-Yes tyrosine kinase: loop flexibility and amyloid aggregation. Martín-García JM, Luque I, Mateo PL, Ruiz-Sanz J, Cámara-Artigas A. FEBS Lett 581 1701-1706 (2007)
  92. Structural basis of Robo proline-rich motif recognition by the srGAP1 Src homology 3 domain in the Slit-Robo signaling pathway. Li X, Chen Y, Liu Y, Gao J, Gao F, Bartlam M, Wu JY, Rao Z. J Biol Chem 281 28430-28437 (2006)
  93. The SH3 domain of nebulin binds selectively to type II peptides: theoretical prediction and experimental validation. Politou AS, Spadaccini R, Joseph C, Brannetti B, Guerrini R, Helmer-Citterich M, Salvadori S, Temussi PA, Pastore A. J Mol Biol 316 305-315 (2002)
  94. News Backwards and forwards binding. Saraste M, Musacchio A. Nat Struct Biol 1 835-837 (1994)
  95. Stimulation of hTAFII68 (NTD)-mediated transactivation by v-Src. Lee HJ, Kim S, Pelletier J, Kim J. FEBS Lett 564 188-198 (2004)
  96. Structural framework of c-Src activation by integrin β3. Xiao R, Xi XD, Chen Z, Chen SJ, Meng G. Blood 121 700-706 (2013)
  97. Structure of Stenotrophomonas maltophilia FeoA complexed with zinc: a unique prokaryotic SH3-domain protein that possibly acts as a bacterial ferrous iron-transport activating factor. Su YC, Chin KH, Hung HC, Shen GH, Wang AH, Chou SH. Acta Crystallogr Sect F Struct Biol Cryst Commun 66 636-642 (2010)
  98. Importance of CH/π hydrogen bonds in recognition of the core motif in proline-recognition domains: an ab initio fragment molecular orbital study. Ozawa T, Okazaki K, Kitaura K. J Comput Chem 32 2774-2782 (2011)
  99. Interactions between the Fyn SH3-domain and adaptor protein Cbp/PAG derived ligands, effects on kinase activity and affinity. Solheim SA, Petsalaki E, Stokka AJ, Russell RB, Russell RB, Taskén K, Berge T. FEBS J 275 4863-4874 (2008)
  100. Stability and folding of the SH3 domain of Bruton's tyrosine kinase. Chen YJ, Lin SC, Tzeng SR, Patel HV, Lyu PC, Cheng JW. Proteins 26 465-471 (1996)
  101. Evidence for SH3 domain directed binding and phosphorylation of Sam68 by Src. Shen Z, Batzer A, Koehler JA, Polakis P, Schlessinger J, Lydon NB, Moran MF. Oncogene 18 4647-4653 (1999)
  102. Isolation of monobodies that bind specifically to the SH3 domain of the Fyn tyrosine protein kinase. Huang R, Fang P, Kay BK. N Biotechnol 29 526-533 (2012)
  103. Sequences surrounding the Src-homology 3 domain of phospholipase Cgamma-1 increase the domain's association with Cbl. Graham LJ, Stoica BA, Shapiro M, DeBell KE, Rellahan B, Laborda J, Bonvini E. Biochem Biophys Res Commun 249 537-541 (1998)
  104. The promiscuous binding of the Fyn SH3 domain to a peptide from the NS5A protein. Martin-Garcia JM, Luque I, Ruiz-Sanz J, Camara-Artigas A. Acta Crystallogr D Biol Crystallogr 68 1030-1040 (2012)
  105. Mapping the conformational space accessible to BACE2 using surface mutants and cocrystals with Fab fragments, Fynomers and Xaperones. Banner DW, Gsell B, Benz J, Bertschinger J, Burger D, Brack S, Cuppuleri S, Debulpaep M, Gast A, Grabulovski D, Hennig M, Hilpert H, Huber W, Kuglstatter A, Kusznir E, Laeremans T, Matile H, Miscenic C, Rufer AC, Schlatter D, Steyaert J, Stihle M, Thoma R, Weber M, Ruf A. Acta Crystallogr D Biol Crystallogr 69 1124-1137 (2013)
  106. Role of Src-family kinases in formation of the cortical actin cap at the dorsal cell surface. Kuga T, Hoshino M, Nakayama Y, Kasahara K, Ikeda K, Obata Y, Takahashi A, Higashiyama Y, Fukumoto Y, Yamaguchi N. Exp Cell Res 314 2040-2054 (2008)
  107. Determination of the solution structure of the SH3 domain of human p56 Lck tyrosine kinase. Hiroaki H, Klaus W, Senn H. J Biomol NMR 8 105-122 (1996)
  108. Structural basis of the interaction between P-element somatic inhibitor and U1-70k essential for the alternative splicing of P-element transposase. Ignjatovic T, Yang JC, Butler J, Neuhaus D, Nagai K. J Mol Biol 351 52-65 (2005)
  109. Two-dimensional electrophoretic analysis of mixed lineage kinase 2 N-terminal domain binding proteins. Rasmussen RK, Ji H, Eddes JS, Moritz RL, Reid GE, Simpson RJ, Dorow DS. Electrophoresis 19 809-817 (1998)
  110. Quantifying intramolecular binding in multivalent interactions: a structure-based synergistic study on Grb2-Sos1 complex. Sethi A, Goldstein B, Gnanakaran S. PLoS Comput Biol 7 e1002192 (2011)
  111. Recognition of lysine-rich peptide ligands by murine cortactin SH3 domain: CD, ITC, and NMR studies. Rubini C, Ruzza P, Spaller MR, Siligardi G, Hussain R, Udugamasooriya DG, Bellanda M, Mammi S, Borgogno A, Calderan A, Cesaro L, Brunati AM, Donella-Deana A. Biopolymers 94 298-306 (2010)
  112. Structure of an unconventional SH3 domain from the postsynaptic density protein Shank3 at ultrahigh resolution. Ponna SK, Myllykoski M, Boeckers TM, Kursula P. Biochem Biophys Res Commun 490 806-812 (2017)
  113. CR16, a novel proline-rich protein expressed in rat brain neurons, binds to SH3 domains and is a MAP kinase substrate. Weiler MC, Smith JL, Masters JN. J Mol Neurosci 7 203-215 (1996)
  114. Identification of specificity determining residues in peptide recognition domains using an information theoretic approach applied to large-scale binding maps. Yip KY, Utz L, Sitwell S, Hu X, Sidhu SS, Turk BE, Gerstein M, Kim PM. BMC Biol 9 53 (2011)
  115. SH3 domain of Bruton's tyrosine kinase can bind to proline-rich peptides of TH domain of the kinase and p120cbl. Patel HV, Tzeng SR, Liao CY, Chen SH, Cheng JW. Proteins 29 545-552 (1997)
  116. Target-assisted iterative screening reveals novel interactors for PSD95, Nedd4, Src, Abl and Crk proteins. Kurakin A, Bredesen D. J Biomol Struct Dyn 19 1015-1029 (2002)
  117. Cardiac Myosin-binding protein C and hypertrophic cardiomyopathy. Carrier L, Bonne G, Schwartz K. Trends Cardiovasc Med 8 151-157 (1998)
  118. Coevolution of the domains of cytoplasmic tyrosine kinases. Nars M, Vihinen M. Mol Biol Evol 18 312-321 (2001)
  119. Comparison of backbone dynamics of monomeric and domain-swapped stefin A. Japelj B, Waltho JP, Jerala R. Proteins 54 500-512 (2004)
  120. DrsG from Streptococcus dysgalactiae subsp. equisimilis inhibits the antimicrobial peptide LL-37. Smyth D, Cameron A, Davies MR, McNeilly C, Hafner L, Sriprakash KS, McMillan DJ. Infect Immun 82 2337-2344 (2014)
  121. Turbulent phenomena in protein folding. Kalgin IV, Chekmarev SF. Phys Rev E Stat Nonlin Soft Matter Phys 83 011920 (2011)
  122. A lack of peptide binding and decreased thermostability suggests that the CASKIN2 scaffolding protein SH3 domain may be vestigial. Kwan JJ, Donaldson LW. BMC Struct Biol 16 14 (2016)
  123. Detailed analysis of MIA protein by mutagenesis. Stoll R, Lodermeyer S, Bosserhoff AK. Biol Chem 387 1601-1606 (2006)
  124. Disruption of Fyn SH3 domain interaction with a proline-rich motif in liver kinase B1 results in activation of AMP-activated protein kinase. Yamada E, Bastie CC. PLoS One 9 e89604 (2014)
  125. Ligand screening by exoproteolysis and mass spectrometry in combination with computer modelling. Villanueva J, Fernández-Ballester G, Querol E, Aviles FX, Serrano L. J Mol Biol 330 1039-1048 (2003)
  126. SH3 domain regulation of RhoGAP activity: Crosstalk between p120RasGAP and DLC1 RhoGAP. Chau JE, Vish KJ, Boggon TJ, Stiegler AL. Nat Commun 13 4788 (2022)
  127. Structural insights into the tyrosine phosphorylation-mediated inhibition of SH3 domain-ligand interactions. Merő B, Radnai L, Gógl G, Tőke O, Leveles I, Koprivanacz K, Szeder B, Dülk M, Kudlik G, Vas V, Cserkaszky A, Sipeki S, Nyitray L, Vértessy BG, Buday L. J Biol Chem 294 4608-4620 (2019)
  128. Identification and characterization of mouse GTPBP3 gene encoding a mitochondrial GTP-binding protein involved in tRNA modification. Li X, Guan MX. Biochem Biophys Res Commun 312 747-754 (2003)
  129. Conformational change of Sos-derived proline-rich peptide upon binding Grb2 N-terminal SH3 domain probed by NMR. Ogura K, Okamura H. Sci Rep 3 2913 (2013)
  130. Interactions of phosphatidylinositol 3-kinase Src homology 3 domain with its ligand peptide studied by absorption, circular dichroism, and UV resonance raman spectroscopies. Okishio N, Nagai M, Fukuda R, Nagatomo S, Kitagawa T. Biopolymers 57 208-217 (2000)
  131. Structure, stability, and flexibility of ribosomal protein L14e from Sulfolobus solfataricus. Edmondson SP, Turri J, Smith K, Clark A, Shriver JW. Biochemistry 48 5553-5562 (2009)
  132. Comment Helical encounter. Cowburn D. Nat Struct Biol 1 489-491 (1994)
  133. Molecular and structural characterization of the SH3 domain of AHI-1 in regulation of cellular resistance of BCR-ABL(+) chronic myeloid leukemia cells to tyrosine kinase inhibitors. Liu X, Chen M, Lobo P, An J, Grace Cheng SW, Moradian A, Morin GB, Van Petegem F, Jiang X. Proteomics 12 2094-2106 (2012)
  134. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of the SH3 domain of human AHI1. Shi Z, Liang N, Xu W, Li K, Sheng G, Liu J, Xu A, Li XJ, Wu D. Acta Crystallogr Sect F Struct Biol Cryst Commun 65 361-363 (2009)
  135. Surface-based protein domains retrieval methods from a SHREC2021 challenge. Langenfeld F, Aderinwale T, Christoffer C, Shin WH, Terashi G, Wang X, Kihara D, Benhabiles H, Hammoudi K, Cabani A, Windal F, Melkemi M, Otu E, Zwiggelaar R, Hunter D, Liu Y, Sirugue L, Nguyen HH, Nguyen TH, Nguyen-Truong VT, Le D, Nguyen HD, Tran MT, Montès M. J Mol Graph Model 111 108103 (2022)
  136. Three-dimensional structure prediction of the interaction of CD34 with the SH3 domain of Crk-L. Gangenahalli GU, Singh VK, Verma YK, Gupta P, Sharma RK, Chandra R, Gulati S, Luthra PM. Stem Cells Dev 14 470-477 (2005)
  137. An allosteric switch between the activation loop and a c-terminal palindromic phospho-motif controls c-Src function. Cuesta-Hernández HN, Contreras J, Soriano-Maldonado P, Sánchez-Wandelmer J, Yeung W, Martín-Hurtado A, Muñoz IG, Kannan N, Llimargas M, Muñoz J, Plaza-Menacho I. Nat Commun 14 6548 (2023)
  138. Design, Synthesis, and Antileukemic Evaluation of a Novel Mikanolide Derivative Through the Ras/Raf/MEK/ERK Pathway. Rao Q, Xie K, Varier KM, Huang L, Song J, Yang J, Qiu J, Huang Y, Li Y, Gajendran B, Li Y, Liu S. Front Pharmacol 13 809551 (2022)
  139. Essential motions and energetic contributions of individual residues in a peptide bound to an SH3 domain. Kolafa J, Perram JW, Bywater RP. Biophys J 79 646-655 (2000)
  140. Interactions of the N- and C-Terminal SH3 Domains of Drosophila Drk with the Proline-Rich Peptides from Sos and Dos. Sayeesh PM, Iguchi M, Suemoto Y, Inoue J, Inomata K, Ikeya T, Ito Y. Int J Mol Sci 24 14135 (2023)
  141. Synthesis and evaluation of a (3R,6S,9S)-2-oxo-1-azabicyclo[4.3.0]nonane scaffold as a mimic of Xaa-trans-Pro in poly-L-proline type II helix conformation. Aillard B, Kilburn JD, Blaydes JP, Tizzard GJ, Findlow S, Werner JM, Bloodworth S. Org Biomol Chem 13 4562-4569 (2015)
  142. Thirty years of structural changes. Musacchio A. Nat Struct Mol Biol 31 4-5 (2024)