1fva Citations

Structure and mechanism of peptide methionine sulfoxide reductase, an "anti-oxidation" enzyme.

Biochemistry 39 13307-12 (2000)
Cited: 78 times
EuropePMC logo PMID: 11063566

Abstract

Peptide methionine sulfoxide reductase (MsrA) reverses oxidative damage to both free methionine and methionine within proteins. As such, it helps protect the host organism against stochastic damage that can contribute to cell death. The structure of bovine MsrA has been determined in two different modifications, both of which provide different insights into the biology of the protein. There are three cysteine residues located in the vicinity of the active site. Conformational changes in a glycine-rich C-terminal tail appear to allow all three thiols to come together and to participate in catalysis. The structures support a unique, thiol-disulfide exchange mechanism that relies upon an essential cysteine as a nucleophile and additional conserved residues that interact with the oxygen atom of the sulfoxide moiety.

Reviews - 1fva mentioned but not cited (1)

Articles - 1fva mentioned but not cited (4)

  1. Redox proteomics of protein-bound methionine oxidation. Ghesquière B, Jonckheere V, Colaert N, Van Durme J, Timmerman E, Goethals M, Schymkowitz J, Rousseau F, Vandekerckhove J, Gevaert K. Mol Cell Proteomics 10 M110.006866 (2011)
  2. Structure of Mycobacterium tuberculosis methionine sulfoxide reductase A in complex with protein-bound methionine. Taylor AB, Benglis DM, Dhandayuthapani S, Hart PJ. J Bacteriol 185 4119-4126 (2003)
  3. Structural and kinetic analysis of an MsrA-MsrB fusion protein from Streptococcus pneumoniae. Kim YK, Shin YJ, Lee WH, Kim HY, Hwang KY. Mol Microbiol 72 699-709 (2009)
  4. Electrostatics of cysteine residues in proteins: parameterization and validation of a simple model. Salsbury FR, Poole LB, Fetrow JS. Proteins 80 2583-2591 (2012)


Reviews citing this publication (18)

  1. Oxidative stress and protein aggregation during biological aging. Squier TC. Exp Gerontol 36 1539-1550 (2001)
  2. Roles of thiol-redox pathways in bacteria. Ritz D, Beckwith J. Annu Rev Microbiol 55 21-48 (2001)
  3. Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function. Weissbach H, Etienne F, Hoshi T, Heinemann SH, Lowther WT, Matthews B, St John G, Nathan C, Brot N. Arch Biochem Biophys 397 172-178 (2002)
  4. Regulation of cell function by methionine oxidation and reduction. Hoshi T, Heinemann S. J Physiol 531 1-11 (2001)
  5. Glutathione homeostasis and redox-regulation by sulfhydryl groups. Meyer AJ, Hell R. Photosynth Res 86 435-457 (2005)
  6. The methionine sulfoxide reductases: Catalysis and substrate specificities. Boschi-Muller S, Gand A, Branlant G. Arch Biochem Biophys 474 266-273 (2008)
  7. The physiological role of reversible methionine oxidation. Drazic A, Winter J. Biochim Biophys Acta 1844 1367-1382 (2014)
  8. Enzymatic reactions involved in the repair of oxidized proteins. Mary J, Vougier S, Picot CR, Perichon M, Petropoulos I, Friguet B. Exp Gerontol 39 1117-1123 (2004)
  9. Origin and evolution of the protein-repairing enzymes methionine sulphoxide reductases. Zhang XH, Weissbach H. Biol Rev Camb Philos Soc 83 249-257 (2008)
  10. Methionine sulfoxide reductase: chemistry, substrate binding, recycling process and oxidase activity. Boschi-Muller S, Branlant G. Bioorg Chem 57 222-230 (2014)
  11. Plant proteins under oxidative attack. Jacques S, Ghesquière B, Van Breusegem F, Gevaert K. Proteomics 13 932-940 (2013)
  12. Functions of thiol-disulfide oxidoreductases in E. coli: redox myths, realities, and practicalities. Ortenberg R, Beckwith J. Antioxid Redox Signal 5 403-411 (2003)
  13. Recharging oxidative protein repair: catalysis by methionine sulfoxide reductases towards their amino acid, protein, and model substrates. Tarrago L, Gladyshev VN. Biochemistry (Mosc) 77 1097-1107 (2012)
  14. The Oxidized Protein Repair Enzymes Methionine Sulfoxide Reductases and Their Roles in Protecting against Oxidative Stress, in Ageing and in Regulating Protein Function. Lourenço Dos Santos S, Petropoulos I, Friguet B. Antioxidants (Basel) 7 E191 (2018)
  15. Advances in Activity-Based Sensing Probes for Isoform-Selective Imaging of Enzymatic Activity. Gardner SH, Reinhardt CJ, Chan J. Angew Chem Int Ed Engl 60 5000-5009 (2021)
  16. Mycobacterium tuberculosis: a model system for structural genomics. Smith CV, Sacchettini JC. Curr Opin Struct Biol 13 658-664 (2003)
  17. From chemical metabolism to life: the origin of the genetic coding process. Danchin A. Beilstein J Org Chem 13 1119-1135 (2017)
  18. Reappraisal of oxidized HMGB1 as a mediator and biomarker. Pirnie R, P Gillespie K, Mesaros C, Blair IA. Future Sci OA 8 FSO828 (2022)

Articles citing this publication (55)

  1. High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Ruan H, Tang XD, Chen ML, Joiner ML, Sun G, Brot N, Weissbach H, Heinemann SH, Iverson L, Wu CF, Hoshi T. Proc Natl Acad Sci U S A 99 2748-2753 (2002)
  2. The 1.1-A resolution crystal structure of DJ-1, the protein mutated in autosomal recessive early onset Parkinson's disease. Wilson MA, Collins JL, Hod Y, Ringe D, Petsko GA. Proc Natl Acad Sci U S A 100 9256-9261 (2003)
  3. Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J, Gurjal M, Hong A, Huizar L, Hyman RW, Kahn D, Kahn ML, Kalman S, Keating DH, Palm C, Peck MC, Surzycki R, Wells DH, Yeh KC, Davis RW, Federspiel NA, Long SR. Proc Natl Acad Sci U S A 98 9883-9888 (2001)
  4. Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase. Kryukov GV, Kumar RA, Koc A, Sun Z, Gladyshev VN. Proc Natl Acad Sci U S A 99 4245-4250 (2002)
  5. Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. Hu P, Brodie EL, Suzuki Y, McAdams HH, Andersen GL. J Bacteriol 187 8437-8449 (2005)
  6. Peptide methionine sulfoxide reductase from Escherichia coli and Mycobacterium tuberculosis protects bacteria against oxidative damage from reactive nitrogen intermediates. St John G, Brot N, Ruan J, Erdjument-Bromage H, Tempst P, Weissbach H, Nathan C. Proc Natl Acad Sci U S A 98 9901-9906 (2001)
  7. Reaction mechanism, evolutionary analysis, and role of zinc in Drosophila methionine-R-sulfoxide reductase. Kumar RA, Koc A, Cerny RL, Gladyshev VN. J Biol Chem 277 37527-37535 (2002)
  8. Different catalytic mechanisms in mammalian selenocysteine- and cysteine-containing methionine-R-sulfoxide reductases. Kim HY, Gladyshev VN. PLoS Biol 3 e375 (2005)
  9. Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function. Lin Z, Johnson LC, Weissbach H, Brot N, Lively MO, Lowther WT. Proc Natl Acad Sci U S A 104 9597-9602 (2007)
  10. Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid. Salsbury FR, Knutson ST, Poole LB, Fetrow JS. Protein Sci 17 299-312 (2008)
  11. Characterization of the methionine sulfoxide reductase activities of PILB, a probable virulence factor from Neisseria meningitidis. Olry A, Boschi-Muller S, Marraud M, Sanglier-Cianferani S, Van Dorsselear A, Branlant G. J Biol Chem 277 12016-12022 (2002)
  12. Rat peptide methionine sulphoxide reductase: cloning of the cDNA, and down-regulation of gene expression and enzyme activity during aging. Petropoulos I, Mary J, Perichon M, Friguet B. Biochem J 355 819-825 (2001)
  13. Arabidopsis peptide methionine sulfoxide reductase2 prevents cellular oxidative damage in long nights. Bechtold U, Murphy DJ, Mullineaux PM. Plant Cell 16 908-919 (2004)
  14. Methionine sulfoxide reductase A is a stereospecific methionine oxidase. Lim JC, You Z, Kim G, Levine RL. Proc Natl Acad Sci U S A 108 10472-10477 (2011)
  15. Catalytic advantages provided by selenocysteine in methionine-S-sulfoxide reductases. Kim HY, Fomenko DE, Yoon YE, Gladyshev VN. Biochemistry 45 13697-13704 (2006)
  16. Thionein can serve as a reducing agent for the methionine sulfoxide reductases. Sagher D, Brunell D, Hejtmancik JF, Kantorow M, Brot N, Weissbach H. Proc Natl Acad Sci U S A 103 8656-8661 (2006)
  17. Activity, tissue distribution and site-directed mutagenesis of a human peptide methionine sulfoxide reductase of type B: hCBS1. Jung S, Hansel A, Kasperczyk H, Hoshi T, Heinemann SH. FEBS Lett 527 91-94 (2002)
  18. Characterization of mouse endoplasmic reticulum methionine-R-sulfoxide reductase. Kim HY, Gladyshev VN. Biochem Biophys Res Commun 320 1277-1283 (2004)
  19. Gene expression and physiological role of Pseudomonas aeruginosa methionine sulfoxide reductases during oxidative stress. Romsang A, Atichartpongkul S, Trinachartvanit W, Vattanaviboon P, Mongkolsuk S. J Bacteriol 195 3299-3308 (2013)
  20. Methionine oxidation in the calmodulin-binding domain of calcineurin disrupts calmodulin binding and calcineurin activation. Carruthers NJ, Stemmer PM. Biochemistry 47 3085-3095 (2008)
  21. Methionine sulfoxide reductases A and B are deactivated by hydrogen peroxide (H2O2) in the epidermis of patients with vitiligo. Schallreuter KU, Rübsam K, Gibbons NC, Maitland DJ, Chavan B, Zothner C, Rokos H, Wood JM. J Invest Dermatol 128 808-815 (2008)
  22. Reduction of Sulindac to its active metabolite, sulindac sulfide: assay and role of the methionine sulfoxide reductase system. Etienne F, Resnick L, Sagher D, Brot N, Weissbach H. Biochem Biophys Res Commun 312 1005-1010 (2003)
  23. A methionine sulfoxide reductase in Escherichia coli that reduces the R enantiomer of methionine sulfoxide. Etienne F, Spector D, Brot N, Weissbach H. Biochem Biophys Res Commun 300 378-382 (2003)
  24. E. coli methionine sulfoxide reductase with a truncated N terminus or C terminus, or both, retains the ability to reduce methionine sulfoxide. Boschi-Muller S, Azza S, Branlant G. Protein Sci 10 2272-2279 (2001)
  25. The thioredoxin domain of Neisseria gonorrhoeae PilB can use electrons from DsbD to reduce downstream methionine sulfoxide reductases. Brot N, Collet JF, Johnson LC, Jönsson TJ, Weissbach H, Lowther WT. J Biol Chem 281 32668-32675 (2006)
  26. Thioredoxin-dependent redox regulation of cellular signaling and stress response through reversible oxidation of methionines. Bigelow DJ, Squier TC. Mol Biosyst 7 2101-2109 (2011)
  27. Oxidative stress and acclimation mechanisms in plants. Grene R. Arabidopsis Book 1 e0036 (2002)
  28. The N-terminal Acetyltransferase Naa10/ARD1 Does Not Acetylate Lysine Residues. Magin RS, March ZM, Marmorstein R. J Biol Chem 291 5270-5277 (2016)
  29. A structural analysis of the catalytic mechanism of methionine sulfoxide reductase A from Neisseria meningitidis. Ranaivoson FM, Antoine M, Kauffmann B, Boschi-Muller S, Aubry A, Branlant G, Favier F. J Mol Biol 377 268-280 (2008)
  30. Studies on the reducing systems for plant and animal thioredoxin-independent methionine sulfoxide reductases B. Ding D, Sagher D, Laugier E, Rey P, Weissbach H, Zhang XH. Biochem Biophys Res Commun 361 629-633 (2007)
  31. The selenoproteome of Clostridium sp. OhILAs: characterization of anaerobic bacterial selenoprotein methionine sulfoxide reductase A. Kim HY, Zhang Y, Lee BC, Kim JR, Gladyshev VN. Proteins 74 1008-1017 (2009)
  32. A low pKa cysteine at the active site of mouse methionine sulfoxide reductase A. Lim JC, Gruschus JM, Kim G, Berlett BS, Tjandra N, Levine RL. J Biol Chem 287 25596-25601 (2012)
  33. Structural plasticity of the thioredoxin recognition site of yeast methionine S-sulfoxide reductase Mxr1. Ma XX, Guo PC, Shi WW, Luo M, Tan XF, Chen Y, Zhou CZ. J Biol Chem 286 13430-13437 (2011)
  34. Impact of hydrogen peroxide on the activity, structure, and conformational stability of the oxidized protein repair enzyme methionine sulfoxide reductase A. Le HT, Chaffotte AF, Demey-Thomas E, Vinh J, Friguet B, Mary J. J Mol Biol 393 58-66 (2009)
  35. Corynebacterium diphtheriae methionine sulfoxide reductase a exploits a unique mycothiol redox relay mechanism. Tossounian MA, Pedre B, Wahni K, Erdogan H, Vertommen D, Van Molle I, Messens J. J Biol Chem 290 11365-11375 (2015)
  36. Solution structure and backbone dynamics of the reduced form and an oxidized form of E. coli methionine sulfoxide reductase A (MsrA): structural insight of the MsrA catalytic cycle. Coudevylle N, Antoine M, Bouguet-Bonnet S, Mutzenhardt P, Boschi-Muller S, Branlant G, Cung MT. J Mol Biol 366 193-206 (2007)
  37. Characterization and solution structure of mouse myristoylated methionine sulfoxide reductase A. Lim JC, Gruschus JM, Ghesquière B, Kim G, Piszczek G, Tjandra N, Levine RL. J Biol Chem 287 25589-25595 (2012)
  38. Tandem use of selenocysteine: adaptation of a selenoprotein glutaredoxin for reduction of selenoprotein methionine sulfoxide reductase. Kim MJ, Lee BC, Jeong J, Lee KJ, Hwang KY, Gladyshev VN, Kim HY. Mol Microbiol 79 1194-1203 (2011)
  39. Characterization of the amino acids involved in substrate specificity of methionine sulfoxide reductase A. Gand A, Antoine M, Boschi-Muller S, Branlant G. J Biol Chem 282 20484-20491 (2007)
  40. Designing antioxidant peptides. Berlett BS, Levine RL. Redox Rep 19 80-86 (2014)
  41. Thioredoxin and peptide methionine sulfoxide reductase: convergence of similar structure and function in distinct structural folds. Gladyshev VN. Proteins 46 149-152 (2002)
  42. Light-Mediated Sulfenic Acid Generation from Photocaged Cysteine Sulfoxide. Pan J, Carroll KS. Org Lett 17 6014-6017 (2015)
  43. A Methionine Residue Promotes Hyperoxidation of the Catalytic Cysteine of Mouse Methionine Sulfoxide Reductase A. Kim G, Levine RL. Biochemistry 55 3586-3593 (2016)
  44. Structural analysis of 1-Cys type selenoprotein methionine sulfoxide reductase A. Lee EH, Kwak GH, Kim MJ, Kim HY, Hwang KY. Arch Biochem Biophys 545 1-8 (2014)
  45. Letter 1H, 13C and 15N resonance assignments for methionine sulfoxide reductase B from Bacillus subtilis. Zheng D, Cort JR, Chiang Y, Acton T, Kennedy MA, Montelione GT. J Biomol NMR 27 183-184 (2003)
  46. Peroxidase activity of selenoprotein GrdB of glycine reductase and stabilisation of its integrity by components of proprotein GrdE from Eubacterium acidaminophilum. Gröbe T, Reuter M, Gursinsky T, Söhling B, Andreesen JR. Arch Microbiol 187 29-43 (2007)
  47. Spectroscopic and Theoretical Study of Cu(I) Binding to His111 in the Human Prion Protein Fragment 106-115. Arcos-López T, Qayyum M, Rivillas-Acevedo L, Miotto MC, Grande-Aztatzi R, Fernández CO, Hedman B, Hodgson KO, Vela A, Solomon EI, Quintanar L. Inorg Chem 55 2909-2922 (2016)
  48. Mechanism of 1-Cys type methionine sulfoxide reductase A regeneration by glutaredoxin. Kim MJ, Jeong J, Jeong J, Hwang KY, Lee KJ, Kim HY. Biochem Biophys Res Commun 457 567-571 (2015)
  49. Evidence for the dimerization-mediated catalysis of methionine sulfoxide reductase A from Clostridium oremlandii. Lee EH, Lee K, Kwak GH, Park YS, Lee KJ, Hwang KY, Kim HY. PLoS One 10 e0131523 (2015)
  50. Letter (1)H, (13)C and (15)N resonance assignment of the reduced form of methionine sulfoxide reductase A from Escherichia coli. Coudevylle N, Thureau A, Azza S, Boshi-Muller S, Branlant G, Cung MT. J Biomol NMR 30 363-364 (2004)
  51. Essential role of the C-terminal helical domain in active site formation of selenoprotein MsrA from Clostridium oremlandii. Lee EH, Lee K, Hwang KY, Kim HY. PLoS One 10 e0117836 (2015)
  52. Structural Insights into a Bifunctional Peptide Methionine Sulfoxide Reductase MsrA/B Fusion Protein from Helicobacter pylori. Kim S, Lee K, Park SH, Kwak GH, Kim MS, Kim HY, Hwang KY. Antioxidants (Basel) 10 389 (2021)
  53. Discovery and Rational Mutagenesis of Methionine Sulfoxide Reductase Biocatalysts To Expand the Substrate Scope of the Kinetic Resolution of Chiral Sulfoxides. Anselmi S, Carvalho ATP, Serrano-Sanchez A, Ortega-Roldan JL, Caswell J, Omar I, Perez-Ortiz G, Barry SM, Moody TS, Castagnolo D. ACS Catal 13 4742-4751 (2023)
  54. The Key Role of Chalcogenurane Intermediates in the Reduction Mechanism of Sulfoxides and Selenoxides by Thiols Explored In Silico. Madabeni A, Orian L. Int J Mol Sci 24 7754 (2023)
  55. Theoretical Evaluation of Sulfur-Based Reactions as a Model for Biological Antioxidant Defense. De Sciscio ML, D'Annibale V, D'Abramo M. Int J Mol Sci 23 14515 (2022)


Related citations provided by authors (1)

  1. Thiol-disulfide Exchange is Involved in the Catalytic Mechanism of Peptide Methionine Sulfoxide Reductase. Lowther WT, Brot N, Weissbach H, Honek JF, Matthews BW Proc. Natl. Acad. Sci. U.S.A. 97 6463-6468 (2000)