1fjl Citations

High resolution crystal structure of a paired (Pax) class cooperative homeodomain dimer on DNA.

Cell 82 709-19 (1995)
Cited: 224 times
EuropePMC logo PMID: 7671301

Abstract

The crystal structure of the paired homeodomain bound to DNA as a cooperative dimer has been determined to 2.0 A resolution. Direct contacts between each homeodomain and the DNA are similar to those described previously. In addition, an extensive network of water molecules mediates contacts between the recognition helix and the DNA major groove. Several symmetrical contacts between the two homeodomains underlie the cooperative interaction, and deformations in the DNA structure are necessary for the establishment of these contacts. Comparison with structures of homeodomains bound monomerically to DNA suggests that the binding of a single paired homeodomain can introduce these DNA distortions, thus preparing a template for the cooperative interaction with a second homeodomain. This study shows how the paired (Pax) class homeodomains have achieved cooperativity in DNA binding without the assistance of other domains, thereby enabling the recognition of target sequences that are long enough to ensure specificity.

Reviews - 1fjl mentioned but not cited (3)

  1. An overview of the structures of protein-DNA complexes. Luscombe NM, Austin SE, Berman HM, Thornton JM. Genome Biol 1 REVIEWS001 (2000)
  2. Homeodomain revisited: a lesson from disease-causing mutations. Chi YI. Hum Genet 116 433-444 (2005)
  3. The DNA-binding region of RAG 1 is not a homeodomain. Banerjee-Basu S, Baxevanis AD. Genome Biol 3 INTERACTIONS1004 (2002)

Articles - 1fjl mentioned but not cited (28)

  1. Protein-DNA binding specificity predictions with structural models. Morozov AV, Havranek JJ, Baker D, Siggia ED. Nucleic Acids Res 33 5781-5798 (2005)
  2. A Hoogsteen base pair embedded in undistorted B-DNA. Aishima J, Gitti RK, Noah JE, Gan HH, Schlick T, Wolberger C. Nucleic Acids Res 30 5244-5252 (2002)
  3. Quantitative evaluation of protein-DNA interactions using an optimized knowledge-based potential. Liu Z, Mao F, Guo JT, Yan B, Wang P, Qu Y, Xu Y. Nucleic Acids Res 33 546-558 (2005)
  4. Paired-type homeodomain transcription factors are imported into the nucleus by karyopherin 13. Ploski JE, Shamsher MK, Radu A. Mol Cell Biol 24 4824-4834 (2004)
  5. Two novel CRX mutant proteins causing autosomal dominant Leber congenital amaurosis interact differently with NRL. Nichols LL, Alur RP, Boobalan E, Sergeev YV, Caruso RC, Stone EM, Swaroop A, Johnson MA, Brooks BP. Hum Mutat 31 E1472-83 (2010)
  6. Cooperative DNA-binding and sequence-recognition mechanism of aristaless and clawless. Miyazono K, Zhi Y, Takamura Y, Nagata K, Saigo K, Kojima T, Tanokura M. EMBO J 29 1613-1623 (2010)
  7. The third helix of the homeodomain of paired class homeodomain proteins acts as a recognition helix both for DNA and protein interactions. Bruun JA, Thomassen EI, Kristiansen K, Tylden G, Holm T, Mikkola I, Bjørkøy G, Johansen T. Nucleic Acids Res 33 2661-2675 (2005)
  8. An all-atom knowledge-based energy function for protein-DNA threading, docking decoy discrimination, and prediction of transcription-factor binding profiles. Xu B, Yang Y, Liang H, Zhou Y. Proteins 76 718-730 (2009)
  9. Familial segregation of a VSX1 mutation adds a new dimension to its role in the causation of keratoconus. Paliwal P, Tandon R, Dube D, Kaur P, Sharma A. Mol Vis 17 481-485 (2011)
  10. MMDB: 3D structure data in Entrez. Wang Y, Addess KJ, Geer L, Madej T, Marchler-Bauer A, Zimmerman D, Bryant SH. Nucleic Acids Res 28 243-245 (2000)
  11. Contributions of PHOX2B in the pathogenesis of Hirschsprung disease. Fernández RM, Mathieu Y, Luzón-Toro B, Núñez-Torres R, González-Meneses A, Antiñolo G, Amiel J, Borrego S. PLoS One 8 e54043 (2013)
  12. Predicting target DNA sequences of DNA-binding proteins based on unbound structures. Chen CY, Chien TY, Lin CK, Lin CW, Weng YZ, Chang DT. PLoS One 7 e30446 (2012)
  13. Phylogenetic and mutational analyses of human LEUTX, a homeobox gene implicated in embryogenesis. Katayama S, Ranga V, Jouhilahti EM, Airenne TT, Johnson MS, Mukherjee K, Bürglin TR, Kere J. Sci Rep 8 17421 (2018)
  14. PiDNA: Predicting protein-DNA interactions with structural models. Lin CK, Chen CY. Nucleic Acids Res 41 W523-30 (2013)
  15. Automatic structure classification of small proteins using random forest. Jain P, Hirst JD. BMC Bioinformatics 11 364 (2010)
  16. Re-visiting protein-centric two-tier classification of existing DNA-protein complexes. Malhotra S, Sowdhamini R. BMC Bioinformatics 13 165 (2012)
  17. Structural changes in DNA-binding proteins on complexation. Poddar S, Chakravarty D, Chakrabarti P. Nucleic Acids Res 46 3298-3308 (2018)
  18. DNA-binding residues and binding mode prediction with binding-mechanism concerned models. Huang YF, Huang CC, Liu YC, Oyang YJ, Huang CK. BMC Genomics 10 Suppl 3 S23 (2009)
  19. Structural and functional analysis of the human cone-rod homeobox transcription factor. Clanor PB, Buchholz CN, Hayes JE, Friedman MA, White AM, Enke RA, Berndsen CE. Proteins 90 1584-1593 (2022)
  20. Three enhancements to the inference of statistical protein-DNA potentials. AlQuraishi M, McAdams HH. Proteins 81 426-442 (2013)
  21. DUX4HD2-DNAERG structure reveals new insight into DUX4-Responsive-Element. Dong X, Zhang H, Cheng N, Li K, Meng G. Leukemia 33 550-553 (2019)
  22. Role of salt bridges in homeodomains investigated by structural analyses and molecular dynamics simulations. Iurcu-Mustata G, Van Belle D, Wintjens R, Prévost M, Rooman M. Biopolymers 59 145-159 (2001)
  23. Building blocks for commodity augmented reality-based molecular visualization and modeling in web browsers. Abriata LA. PeerJ Comput Sci 6 e260 (2020)
  24. Site-directed mutagenesis indicates an important role of cysteines 76 and 181 in the catalysis of hydantoin racemase from Sinorhizobium meliloti. Martínez-Rodríguez S, Andújar-Sánchez M, Neira JL, Clemente-Jiménez JM, Jara-Pérez V, Rodríguez-Vico F, Las Heras-Vázquez FJ. Protein Sci 15 2729-2738 (2006)
  25. Transcription of follicle-stimulating hormone subunit genes is modulated by porcine LIM homeobox transcription factors, LHX2 and LHX3. Yoshida S, Kato T, Nishimura N, Kanno N, Chen M, Ueharu H, Nishihara H, Kato Y. J Reprod Dev 62 241-248 (2016)
  26. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system. AlQuraishi M, Tang S, Xia X. BMC Bioinformatics 16 390 (2015)
  27. Knowledge-based three-body potential for transcription factor binding site prediction. Qin W, Zhao G, Carson M, Jia C, Lu H. IET Syst Biol 10 23-29 (2016)
  28. Prediction of cooperative homeodomain DNA binding sites from high-throughput-SELEX data. Cain B, Webb J, Yuan Z, Cheung D, Lim HW, Kovall RA, Weirauch MT, Gebelein B. Nucleic Acids Res 51 6055-6072 (2023)


Reviews citing this publication (31)

  1. PAX-6 in development and evolution. Callaerts P, Halder G, Gehring WJ. Annu Rev Neurosci 20 483-532 (1997)
  2. The origin of protein interactions and allostery in colocalization. Kuriyan J, Eisenberg D. Nature 450 983-990 (2007)
  3. Pax6: a multi-level regulator of ocular development. Shaham O, Menuchin Y, Farhy C, Ashery-Padan R. Prog Retin Eye Res 31 351-376 (2012)
  4. The role of water in protein-DNA recognition. Jayaram B, Jain T. Annu Rev Biophys Biomol Struct 33 343-361 (2004)
  5. The role of water in protein-DNA interactions. Schwabe JW. Curr Opin Struct Biol 7 126-134 (1997)
  6. What drives proteins into the major or minor grooves of DNA? Privalov PL, Dragan AI, Crane-Robinson C, Breslauer KJ, Remeta DP, Minetti CA. J Mol Biol 365 1-9 (2007)
  7. Pax genes in eye development and evolution. Kozmik Z. Curr Opin Genet Dev 15 430-438 (2005)
  8. Homeodomain interactions. Wolberger C. Curr Opin Struct Biol 6 62-68 (1996)
  9. Eukaryotic transcription factor-DNA complexes. Patikoglou G, Burley SK. Annu Rev Biophys Biomol Struct 26 289-325 (1997)
  10. Pigmentation PAX-ways: the role of Pax3 in melanogenesis, melanocyte stem cell maintenance, and disease. Kubic JD, Young KP, Plummer RS, Ludvik AE, Lang D. Pigment Cell Melanoma Res 21 627-645 (2008)
  11. Pax genes and eye organogenesis. Pichaud F, Desplan C. Curr Opin Genet Dev 12 430-434 (2002)
  12. Multiprotein-DNA complexes in transcriptional regulation. Wolberger C. Annu Rev Biophys Biomol Struct 28 29-56 (1999)
  13. Regulation of gene expression by Pax6 in ocular cells: a case of tissue-preferred expression of crystallins in lens. Cvekl A, Yang Y, Chauhan BK, Cveklova K. Int J Dev Biol 48 829-844 (2004)
  14. Transcription factor genes and the developing eye: a genetic perspective. Freund C, Horsford DJ, McInnes RR. Hum Mol Genet 5 Spec No 1471-1488 (1996)
  15. Dominant Leber congenital amaurosis, cone-rod degeneration, and retinitis pigmentosa caused by mutant versions of the transcription factor CRX. Rivolta C, Berson EL, Dryja TP. Hum Mutat 18 488-498 (2001)
  16. A conserved blueprint for the eye? Treisman JE. Bioessays 21 843-850 (1999)
  17. Genetic and biochemical diversity in the Pax gene family. Underhill DA. Biochem Cell Biol 78 629-638 (2000)
  18. PAX6 and congenital eye malformations. Hanson IM. Pediatr Res 54 791-796 (2003)
  19. The role of Pax genes in eye evolution. Kozmik Z. Brain Res Bull 75 335-339 (2008)
  20. Transcription factors in disease. Engelkamp D, van Heyningen V. Curr Opin Genet Dev 6 334-342 (1996)
  21. Homeodomain-type DNA recognition. Billeter M. Prog Biophys Mol Biol 66 211-225 (1996)
  22. Analysis and design of three-stranded coiled coils and three-helix bundles. Schneider JP, Lombardi A, DeGrado WF. Fold Des 3 R29-40 (1998)
  23. SHOX at a glance: from gene to protein. Marchini A, Rappold G, Schneider KU. Arch Physiol Biochem 113 116-123 (2007)
  24. HESX1 and Septo-Optic Dysplasia. Dattani MT, Robinson IC. Rev Endocr Metab Disord 3 289-300 (2002)
  25. Segmentation: painting stripes from flies to vertebrates. Pick L. Dev Genet 23 1-10 (1998)
  26. Genotype/phenotype association in Indian congenital aniridia. Neethirajan G, Solomon A, Krishnadas SR, Vijayalakshmi P, Sundaresan P. Indian J Pediatr 76 513-517 (2009)
  27. Protein interactions of homeodomain proteins. Vershon AK. Curr Opin Biotechnol 7 392-396 (1996)
  28. The role of homeobox genes in hematopoiesis. Magli MC. Biotherapy 10 279-294 (1998)
  29. Homeodomains: together again for the first time. Tullius T. Structure 3 1143-1145 (1995)
  30. Incorporating anomalous scattering centres into macromolecules. Pappa HS, Stewart AE, McDonald NQ. Curr Opin Struct Biol 6 611-616 (1996)
  31. The power of the (imperfect) palindrome: Sequence-specific roles of palindromic motifs in gene regulation. Datta RR, Rister J. Bioessays 44 e2100191 (2022)

Articles citing this publication (162)

  1. Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Sornson MW, Wu W, Dasen JS, Flynn SE, Norman DJ, O'Connell SM, Gukovsky I, Carrière C, Ryan AK, Miller AP, Zuo L, Gleiberman AS, Andersen B, Beamer WG, Rosenfeld MG. Nature 384 327-333 (1996)
  2. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Dattani MT, Martinez-Barbera JP, Thomas PQ, Brickman JM, Gupta R, Mårtensson IL, Toresson H, Fox M, Wales JK, Hindmarsh PC, Krauss S, Beddington RS, Robinson IC. Nat Genet 19 125-133 (1998)
  3. Cone-rod dystrophy due to mutations in a novel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor. Freund CL, Gregory-Evans CY, Furukawa T, Papaioannou M, Looser J, Ploder L, Bellingham J, Ng D, Herbrick JA, Duncan A, Scherer SW, Tsui LC, Loutradis-Anagnostou A, Jacobson SG, Cepko CL, Bhattacharya SS, McInnes RR. Cell 91 543-553 (1997)
  4. Partial V(D)J recombination activity leads to Omenn syndrome. Villa A, Santagata S, Bozzi F, Giliani S, Frattini A, Imberti L, Gatta LB, Ochs HD, Schwarz K, Notarangelo LD, Vezzoni P, Spanopoulou E. Cell 93 885-896 (1998)
  5. Structure of a HoxB1-Pbx1 heterodimer bound to DNA: role of the hexapeptide and a fourth homeodomain helix in complex formation. Piper DE, Batchelor AH, Chang CP, Cleary ML, Wolberger C. Cell 96 587-597 (1999)
  6. Human microphthalmia associated with mutations in the retinal homeobox gene CHX10. Ferda Percin E, Ploder LA, Yu JJ, Arici K, Horsford DJ, Rutherford A, Bapat B, Cox DW, Duncan AM, Kalnins VI, Kocak-Altintas A, Sowden JC, Traboulsi E, Sarfarazi M, McInnes RR. Nat Genet 25 397-401 (2000)
  7. Structural basis for cooperative DNA binding by two dimers of the multidrug-binding protein QacR. Schumacher MA, Miller MC, Grkovic S, Brown MH, Skurray RA, Brennan RG. EMBO J 21 1210-1218 (2002)
  8. Microarray analysis of the transcriptional network controlled by the photoreceptor homeobox gene Crx. Livesey FJ, Furukawa T, Steffen MA, Church GM, Cepko CL. Curr Biol 10 301-310 (2000)
  9. Modulation of cardiac growth and development by HOP, an unusual homeodomain protein. Shin CH, Liu ZP, Passier R, Zhang CL, Wang DZ, Harris TM, Yamagishi H, Richardson JA, Childs G, Olson EN. Cell 110 725-735 (2002)
  10. Mutations in the cone-rod homeobox gene are associated with the cone-rod dystrophy photoreceptor degeneration. Swain PK, Chen S, Wang QL, Affatigato LM, Coats CL, Brady KD, Fishman GA, Jacobson SG, Swaroop A, Stone E, Sieving PA, Zack DJ. Neuron 19 1329-1336 (1997)
  11. Geometric analysis and comparison of protein-DNA interfaces: why is there no simple code for recognition? Pabo CO, Nekludova L. J Mol Biol 301 597-624 (2000)
  12. The leucine zipper of NRL interacts with the CRX homeodomain. A possible mechanism of transcriptional synergy in rhodopsin regulation. Mitton KP, Swain PK, Chen S, Xu S, Zack DJ, Swaroop A. J Biol Chem 275 29794-29799 (2000)
  13. The zebrafish bonnie and clyde gene encodes a Mix family homeodomain protein that regulates the generation of endodermal precursors. Kikuchi Y, Trinh LA, Reiter JF, Alexander J, Yelon D, Stainier DY. Genes Dev 14 1279-1289 (2000)
  14. PAX6 mutations: genotype-phenotype correlations. Tzoulaki I, White IM, Hanson IM. BMC Genet 6 27 (2005)
  15. The structure of plasmid-encoded transcriptional repressor CopG unliganded and bound to its operator. Gomis-Rüth FX, Solá M, Acebo P, Párraga A, Guasch A, Eritja R, González A, Espinosa M, del Solar G, Coll M. EMBO J 17 7404-7415 (1998)
  16. Structure-based prediction of DNA target sites by regulatory proteins. Kono H, Sarai A. Proteins 35 114-131 (1999)
  17. The XHex homeobox gene is expressed during development of the vascular endothelium: overexpression leads to an increase in vascular endothelial cell number. Newman CS, Chia F, Krieg PA. Mech Dev 66 83-93 (1997)
  18. Zebrafish contains two pax6 genes involved in eye development. Nornes S, Clarkson M, Mikkola I, Pedersen M, Bardsley A, Martinez JP, Krauss S, Johansen T. Mech Dev 77 185-196 (1998)
  19. Barrier to autointegration factor interacts with the cone-rod homeobox and represses its transactivation function. Wang X, Xu S, Rivolta C, Li LY, Peng GH, Swain PK, Sung CH, Swaroop A, Berson EL, Dryja TP, Chen S. J Biol Chem 277 43288-43300 (2002)
  20. The Arabidopsis zinc finger-homeodomain genes encode proteins with unique biochemical properties that are coordinately expressed during floral development. Tan QK, Irish VF. Plant Physiol 140 1095-1108 (2006)
  21. A role for CH...O interactions in protein-DNA recognition. Mandel-Gutfreund Y, Margalit H, Jernigan RL, Zhurkin VB. J Mol Biol 277 1129-1140 (1998)
  22. BMP-4-responsive regulation of dorsal-ventral patterning by the homeobox protein Mix.1. Mead PE, Brivanlou IH, Kelley CM, Zon LI. Nature 382 357-360 (1996)
  23. Structure of the human NF-kappaB p52 homodimer-DNA complex at 2.1 A resolution. Cramer P, Larson CJ, Verdine GL, Müller CW. EMBO J 16 7078-7090 (1997)
  24. Helix bending as a factor in protein/DNA recognition. Dickerson RE, Chiu TK. Biopolymers 44 361-403 (1997)
  25. Conservation and diversification in homeodomain-DNA interactions: a comparative genetic analysis. Wilson DS, Sheng G, Jun S, Desplan C. Proc Natl Acad Sci U S A 93 6886-6891 (1996)
  26. Engrailed homeodomain-DNA complex at 2.2 A resolution: a detailed view of the interface and comparison with other engrailed structures. Fraenkel E, Rould MA, Chambers KA, Pabo CO. J Mol Biol 284 351-361 (1998)
  27. Flexible DNA target site recognition by divergent homing endonuclease isoschizomers I-CreI and I-MsoI. Chevalier B, Turmel M, Lemieux C, Monnat RJ, Stoddard BL. J Mol Biol 329 253-269 (2003)
  28. Solution structure of the cellular factor BAF responsible for protecting retroviral DNA from autointegration. Cai M, Huang Y, Zheng R, Wei SQ, Ghirlando R, Lee MS, Craigie R, Gronenborn AM, Clore GM. Nat Struct Biol 5 903-909 (1998)
  29. Do water molecules mediate protein-DNA recognition? Reddy CK, Das A, Jayaram B. J Mol Biol 314 619-632 (2001)
  30. The oncogenic potential of the Pax3-FKHR fusion protein requires the Pax3 homeodomain recognition helix but not the Pax3 paired-box DNA binding domain. Lam PY, Sublett JE, Hollenbach AD, Roussel MF. Mol Cell Biol 19 594-601 (1999)
  31. Comparison of X-ray and NMR structures for the Antennapedia homeodomain-DNA complex. Fraenkel E, Pabo CO. Nat Struct Biol 5 692-697 (1998)
  32. Cryo-EM Structure of the Fork Protection Complex Bound to CMG at a Replication Fork. Baretić D, Jenkyn-Bedford M, Aria V, Cannone G, Skehel M, Yeeles JTP. Mol Cell 78 926-940.e13 (2020)
  33. HESX1 mutations are an uncommon cause of septooptic dysplasia and hypopituitarism. McNay DE, Turton JP, Kelberman D, Woods KS, Brauner R, Papadimitriou A, Keller E, Keller A, Haufs N, Krude H, Shalet SM, Dattani MT. J Clin Endocrinol Metab 92 691-697 (2007)
  34. Crystal structure of the specific DNA-binding domain of Tc3 transposase of C.elegans in complex with transposon DNA. van Pouderoyen G, Ketting RF, Perrakis A, Plasterk RH, Sixma TK. EMBO J 16 6044-6054 (1997)
  35. Differences in water release for the binding of EcoRI to specific and nonspecific DNA sequences. Sidorova NY, Rau DC. Proc Natl Acad Sci U S A 93 12272-12277 (1996)
  36. Hydration and DNA recognition by homeodomains. Billeter M, Güntert P, Luginbühl P, Wüthrich K. Cell 85 1057-1065 (1996)
  37. Lune/eye gone, a Pax-like protein, uses a partial paired domain and a homeodomain for DNA recognition. Jun S, Wallen RV, Goriely A, Kalionis B, Desplan C. Proc Natl Acad Sci U S A 95 13720-13725 (1998)
  38. A molecular code dictates sequence-specific DNA recognition by homeodomains. Damante G, Pellizzari L, Esposito G, Fogolari F, Viglino P, Fabbro D, Tell G, Formisano S, Di Lauro R. EMBO J 15 4992-5000 (1996)
  39. Compound heterozygosity for mutations in PAX6 in a patient with complex brain anomaly, neonatal diabetes mellitus, and microophthalmia. Solomon BD, Pineda-Alvarez DE, Balog JZ, Hadley D, Gropman AL, Nandagopal R, Han JC, Hahn JS, Blain D, Brooks B, Muenke M. Am J Med Genet A 149A 2543-2546 (2009)
  40. Engrailed (Gln50-->Lys) homeodomain-DNA complex at 1.9 A resolution: structural basis for enhanced affinity and altered specificity. Tucker-Kellogg L, Rould MA, Chambers KA, Ades SE, Sauer RT, Pabo CO. Structure 5 1047-1054 (1997)
  41. Mouse Alx3: an aristaless-like homeobox gene expressed during embryogenesis in ectomesenchyme and lateral plate mesoderm. ten Berge D, Brouwer A, el Bahi S, Guénet JL, Robert B, Meijlink F. Dev Biol 199 11-25 (1998)
  42. Normal reproductive and macrophage function in Pem homeobox gene-deficient mice. Pitman JL, Lin TP, Kleeman JE, Erickson GF, MacLeod CL. Dev Biol 202 196-214 (1998)
  43. RINX(VSX1), a novel homeobox gene expressed in the inner nuclear layer of the adult retina. Hayashi T, Huang J, Deeb SS. Genomics 67 128-139 (2000)
  44. Tumor-specific PAX3-FKHR transcription factor, but not PAX3, activates the platelet-derived growth factor alpha receptor. Epstein JA, Song B, Lakkis M, Wang C. Mol Cell Biol 18 4118-4130 (1998)
  45. Cell Type-Specific Epigenomic Analysis Reveals a Uniquely Closed Chromatin Architecture in Mouse Rod Photoreceptors. Hughes AE, Enright JM, Myers CA, Shen SQ, Corbo JC. Sci Rep 7 43184 (2017)
  46. PAX6, paired domain influences sequence recognition by the homeodomain. Mishra R, Gorlov IP, Chao LY, Singh S, Saunders GF. J Biol Chem 277 49488-49494 (2002)
  47. Pax6 interactions with chromatin and identification of its novel direct target genes in lens and forebrain. Xie Q, Yang Y, Huang J, Ninkovic J, Walcher T, Wolf L, Vitenzon A, Zheng D, Götz M, Beebe DC, Zavadil J, Cvekl A. PLoS One 8 e54507 (2013)
  48. Solution structure of a telomeric DNA complex of human TRF1. Nishikawa T, Okamura H, Nagadoi A, König P, Rhodes D, Nishimura Y. Structure 9 1237-1251 (2001)
  49. Molecular characterization of Pax6(2Neu) through Pax6(10Neu): an extension of the Pax6 allelic series and the identification of two possible hypomorph alleles in the mouse Mus musculus. Favor J, Peters H, Hermann T, Schmahl W, Chatterjee B, Neuhäuser-Klaus A, Sandulache R. Genetics 159 1689-1700 (2001)
  50. Connecting protein structure with predictions of regulatory sites. Morozov AV, Siggia ED. Proc Natl Acad Sci U S A 104 7068-7073 (2007)
  51. A conserved regulatory element present in all Drosophila rhodopsin genes mediates Pax6 functions and participates in the fine-tuning of cell-specific expression. Papatsenko D, Nazina A, Desplan C. Mech Dev 101 143-153 (2001)
  52. Analysis of the transforming and growth suppressive activities of the PAX3-FKHR oncoprotein. Xia SJ, Barr FG. Oncogene 23 6864-6871 (2004)
  53. Protein and drug interactions in the minor groove of DNA. Morávek Z, Neidle S, Schneider B. Nucleic Acids Res 30 1182-1191 (2002)
  54. Alx-4, a transcriptional activator whose expression is restricted to sites of epithelial-mesenchymal interactions. Hudson R, Taniguchi-Sidle A, Boras K, Wiggan O, Hamel PA. Dev Dyn 213 159-169 (1998)
  55. The OAR/aristaless domain of the homeodomain protein Cart1 has an attenuating role in vivo. Brouwer A, ten Berge D, Wiegerinck R, Meijlink F. Mech Dev 120 241-252 (2003)
  56. The MH1 domain of Smad3 interacts with Pax6 and represses autoregulation of the Pax6 P1 promoter. Grocott T, Frost V, Maillard M, Johansen T, Wheeler GN, Dawes LJ, Wormstone IM, Chantry A. Nucleic Acids Res 35 890-901 (2007)
  57. Electrostatic effects in homeodomain-DNA interactions. Fogolari F, Elcock AH, Esposito G, Viglino P, Briggs JM, McCammon JA. J Mol Biol 267 368-381 (1997)
  58. Cloning of Mix-related homeodomain proteins using fast retrieval of gel shift activities, (FROGS), a technique for the isolation of DNA-binding proteins. Mead PE, Zhou Y, Lustig KD, Huber TL, Kirschner MW, Zon LI. Proc Natl Acad Sci U S A 95 11251-11256 (1998)
  59. NMR structure of a parallel homotrimeric coiled coil. Dames SA, Kammerer RA, Wiltscheck R, Engel J, Alexandrescu AT. Nat Struct Biol 5 687-691 (1998)
  60. Stereospecificity and PAX6 function direct Hoxd4 neural enhancer activity along the antero-posterior axis. Nolte C, Rastegar M, Amores A, Bouchard M, Grote D, Maas R, Kovacs EN, Postlethwait J, Rambaldi I, Rowan S, Yan YL, Zhang F, Featherstone M. Dev Biol 299 582-593 (2006)
  61. Binding properties of the human homeodomain protein OTX2 to a DNA target sequence. Briata P, Ilengo C, Bobola N, Corte G. FEBS Lett 445 160-164 (1999)
  62. Cloning of zebrafish vsx1: expression of a paired-like homeobox gene during CNS development. Passini MA, Kurtzman AL, Canger AK, Asch WS, Wray GA, Raymond PA, Schechter N. Dev Genet 23 128-141 (1998)
  63. Alx-4: cDNA cloning and characterization of a novel paired-type homeodomain protein. Qu S, Li L, Wisdom R. Gene 203 217-223 (1997)
  64. Analysis of mouse models carrying the I26T and R160C substitutions in the transcriptional repressor HESX1 as models for septo-optic dysplasia and hypopituitarism. Sajedi E, Gaston-Massuet C, Signore M, Andoniadou CL, Kelberman D, Castro S, Etchevers HC, Gerrelli D, Dattani MT, Martinez-Barbera JP. Dis Model Mech 1 241-254 (2008)
  65. Single-base pair differences in a shared motif determine differential Rhodopsin expression. Rister J, Razzaq A, Boodram P, Desai N, Tsanis C, Chen H, Jukam D, Desplan C. Science 350 1258-1261 (2015)
  66. The human homeodomain protein OTX2 binds to the human tenascin-C promoter and trans-represses its activity in transfected cells. Gherzi R, Briata P, Boncinelli E, Ponassi M, Querzè G, Viti F, Corte G, Zardi L. DNA Cell Biol 16 559-567 (1997)
  67. A novel loss-of-function mutation in OTX2 in a patient with anophthalmia and isolated growth hormone deficiency. Ashkenazi-Hoffnung L, Lebenthal Y, Wyatt AW, Ragge NK, Dateki S, Fukami M, Ogata T, Phillip M, Gat-Yablonski G. Hum Genet 127 721-729 (2010)
  68. A direct role of the homeodomain proteins Phox2a/2b in noradrenaline neurotransmitter identity determination. Seo H, Hong SJ, Guo S, Kim HS, Kim CH, Hwang DY, Isacson O, Rosenthal A, Kim KS. J Neurochem 80 905-916 (2002)
  69. BNP is a transcriptional target of the short stature homeobox gene SHOX. Marchini A, Häcker B, Marttila T, Hesse V, Emons J, Weiss B, Karperien M, Rappold G. Hum Mol Genet 16 3081-3087 (2007)
  70. The solution structure of the native K50 Bicoid homeodomain bound to the consensus TAATCC DNA-binding site. Baird-Titus JM, Clark-Baldwin K, Dave V, Caperelli CA, Ma J, Rance M. J Mol Biol 356 1137-1151 (2006)
  71. Alteration of DNA binding, dimerization, and nuclear translocation of SHOX homeodomain mutations identified in idiopathic short stature and Leri-Weill dyschondrosteosis. Schneider KU, Marchini A, Sabherwal N, Röth R, Niesler B, Marttila T, Blaschke RJ, Lawson M, Dumic M, Rappold G. Hum Mutat 26 44-52 (2005)
  72. Positively charged residues at the N-terminal arm of the homeodomain are required for efficient DNA binding by homeodomain-leucine zipper proteins. Palena CM, Tron AE, Bertoncini CW, Gonzalez DH, Chan RL. J Mol Biol 308 39-47 (2001)
  73. Functional analysis of Waardenburg syndrome-associated PAX3 and SOX10 mutations: report of a dominant-negative SOX10 mutation in Waardenburg syndrome type II. Zhang H, Chen H, Luo H, An J, Sun L, Mei L, He C, Jiang L, Jiang W, Xia K, Li JD, Feng Y. Hum Genet 131 491-503 (2012)
  74. PAX3 and PAX3-FKHR promote rhabdomyosarcoma cell survival through downregulation of PTEN. Li HG, Wang Q, Li HM, Kumar S, Parker C, Slevin M, Kumar P. Cancer Lett 253 215-223 (2007)
  75. Reciprocal effect of Waardenburg syndrome mutations on DNA binding by the Pax-3 paired domain and homeodomain. Fortin AS, Underhill DA, Gros P. Hum Mol Genet 6 1781-1790 (1997)
  76. Psx, a novel murine homeobox gene expressed in placenta. Han YJ, Park AR, Sung DY, Chun JY. Gene 207 159-166 (1998)
  77. The extended left-handed helix: a simple nucleic acid-binding motif. Hicks JM, Hsu VL. Proteins 55 330-338 (2004)
  78. Transcription factor Hlx controls a systematic switch from white to brown fat through Prdm16-mediated co-activation. Huang L, Pan D, Chen Q, Zhu LJ, Ou J, Wabitsch M, Wang YX. Nat Commun 8 68 (2017)
  79. Water-mediated interactions between DNA and PhoB DNA-binding/transactivation domain: NMR-restrained molecular dynamics in explicit water environment. Yamane T, Okamura H, Ikeguchi M, Nishimura Y, Kidera A. Proteins 71 1970-1983 (2008)
  80. A dominant-negative mutation of mouse Lmx1b causes glaucoma and is semi-lethal via LDB1-mediated dimerization [corrected]. Cross SH, Macalinao DG, McKie L, Rose L, Kearney AL, Rainger J, Thaung C, Keighren M, Jadeja S, West K, Kneeland SC, Smith RS, Howell GR, Young F, Robertson M, van T' Hof R, John SW, Jackson IJ. PLoS Genet 10 e1004359 (2014)
  81. A massively parallel reporter assay reveals context-dependent activity of homeodomain binding sites in vivo. Hughes AEO, Myers CA, Corbo JC. Genome Res 28 1520-1531 (2018)
  82. Target selectivity of bicoid is dependent on nonconsensus site recognition and protein-protein interaction. Zhao C, Dave V, Yang F, Scarborough T, Ma J. Mol Cell Biol 20 8112-8123 (2000)
  83. Testing water-mediated DNA recognition by the Hin recombinase. Chiu TK, Sohn C, Dickerson RE, Johnson RC. EMBO J 21 801-814 (2002)
  84. Cdx4 and menin co-regulate Hoxa9 expression in hematopoietic cells. Yan J, Chen YX, Desmond A, Silva A, Yang Y, Wang H, Hua X. PLoS One 1 e47 (2006)
  85. Genome-wide discovery of Pax7 target genes during development. White RB, Ziman MR. Physiol Genomics 33 41-49 (2008)
  86. Siamois and Twin are redundant and essential in formation of the Spemann organizer. Bae S, Reid CD, Kessler DS. Dev Biol 352 367-381 (2011)
  87. Crystal Structure of the Double Homeodomain of DUX4 in Complex with DNA. Lee JK, Bosnakovski D, Toso EA, Dinh T, Banerjee S, Bohl TE, Shi K, Orellana K, Kyba M, Aihara H. Cell Rep 25 2955-2962.e3 (2018)
  88. Assembly of the Sos1-Grb2-Gab1 ternary signaling complex is under allosteric control. McDonald CB, Seldeen KL, Deegan BJ, Bhat V, Farooq A. Arch Biochem Biophys 494 216-225 (2010)
  89. Identification and characterization of Psx-2, a novel member of the Psx (placenta-specific homeobox) family. Han YJ, Lee YH, Chun JY. Gene 241 149-155 (2000)
  90. The SKN-1 amino-terminal arm is a DNA specificity segment. Kophengnavong T, Carroll AS, Blackwell TK. Mol Cell Biol 19 3039-3050 (1999)
  91. The homeoprotein Alx3 contains discrete functional domains and exhibits cell-specific and selective monomeric binding and transactivation. Pérez-Villamil B, Mirasierra M, Vallejo M. J Biol Chem 279 38062-38071 (2004)
  92. DNA wrapping and distortion by an oligomeric homeodomain protein. Williams H, Jayaraman PS, Gaston K. J Mol Biol 383 10-23 (2008)
  93. Dissecting the Engrailed homeodomain-DNA interaction by phage-displayed shotgun scanning. Sato K, Simon MD, Levin AM, Shokat KM, Weiss GA. Chem Biol 11 1017-1023 (2004)
  94. Gene regulation by PAX6: structural-functional correlations of missense mutants and transcriptional control of Trpm3/miR-204. Xie Q, Ung D, Khafizov K, Fiser A, Cvekl A. Mol Vis 20 270-282 (2014)
  95. Human CART1, a paired-class homeodomain protein, activates transcription through palindromic binding sites. Cai RL. Biochem Biophys Res Commun 250 305-311 (1998)
  96. Isolation of Cladonema Pax-B genes and studies of the DNA-binding properties of cnidarian Pax paired domains. Sun H, Dickinson DP, Costello J, Li WH. Mol Biol Evol 18 1905-1918 (2001)
  97. Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis. Watanabe M, Yasuoka Y, Mawaribuchi S, Kuretani A, Ito M, Kondo M, Ochi H, Ogino H, Fukui A, Taira M, Kinoshita T. Dev Biol 426 301-324 (2017)
  98. The yeast a1 and alpha2 homeodomain proteins do not contribute equally to heterodimeric DNA binding. Jin Y, Zhong H, Vershon AK. Mol Cell Biol 19 585-593 (1999)
  99. Pax6 regulates the expression of Dkk3 in murine and human cell lines, and altered responses to Wnt signaling are shown in FlpIn-3T3 cells stably expressing either the Pax6 or the Pax6(5a) isoform. Forsdahl S, Kiselev Y, Hogseth R, Mjelle JE, Mikkola I. PLoS One 9 e102559 (2014)
  100. Predicting and understanding transcription factor interactions based on sequence level determinants of combinatorial control. van Dijk AD, ter Braak CJ, Immink RG, Angenent GC, van Ham RC. Bioinformatics 24 26-33 (2008)
  101. Protein and DNA contact surfaces that mediate the selective action of the Phox1 homeodomain at the c-fos serum response element. Simon KJ, Grueneberg DA, Gilman M. Mol Cell Biol 17 6653-6662 (1997)
  102. Structural basis of DUX4/IGH-driven transactivation. Dong X, Zhang W, Wu H, Huang J, Zhang M, Wang P, Zhang H, Chen Z, Chen SJ, Meng G. Leukemia 32 1466-1476 (2018)
  103. Helix 2 of the paired domain plays a key role in the regulation of DNA-binding by the Pax-3 homeodomain. Fortin AS, Underhill DA, Gros P. Nucleic Acids Res 26 4574-4581 (1998)
  104. Modular organization of Pax/homeodomain proteins in transcriptional regulation. Sheng G, Harris E, Bertuccioli C, Desplan C. Biol Chem 378 863-872 (1997)
  105. Molecular cloning of paired related homeobox 2 (prx2) as a novel pituitary transcription factor. Susa T, Ishikawa A, Kato T, Nakayama M, Kato Y. J Reprod Dev 55 502-511 (2009)
  106. Mutational analysis of the eyeless gene and phenotypic rescue reveal that an intact Eyeless protein is necessary for normal eye and brain development in Drosophila. Clements J, Hens K, Merugu S, Dichtl B, de Couet HG, Callaerts P. Dev Biol 334 503-512 (2009)
  107. The DNA binding specificity of engrailed homeodomain. Draganescu A, Tullius TD. J Mol Biol 276 529-536 (1998)
  108. The crystal structure of Staufen1 in complex with a physiological RNA sheds light on substrate selectivity. Lazzaretti D, Bandholz-Cajamarca L, Emmerich C, Schaaf K, Basquin C, Irion U, Bono F. Life Sci Alliance 1 e201800187 (2018)
  109. Differential conservation of transcriptional domains of mammalian Prophet of Pit-1 proteins revealed by structural studies of the bovine gene and comparative functional analysis of the protein. Showalter AD, Smith TP, Bennett GL, Sloop KW, Whitsett JA, Rhodes SJ. Gene 291 211-221 (2002)
  110. Electrostatics and hydration at the homeodomain-DNA interface: chemical probes of an interfacial water cavity. Labeots LA, Weiss MA. J Mol Biol 269 113-128 (1997)
  111. Insights into nonspecific binding of homeodomains from a structure of MATalpha2 bound to DNA. Aishima J, Wolberger C. Proteins 51 544-551 (2003)
  112. The solution structure of the homeodomain of the rat insulin-gene enhancer protein isl-1. Comparison with other homeodomains. Ippel H, Larsson G, Behravan G, Zdunek J, Lundqvist M, Schleucher J, Lycksell PO, Wijmenga S. J Mol Biol 288 689-703 (1999)
  113. Conservation and diversification of an ancestral chordate gene regulatory network for dorsoventral patterning. Kozmikova I, Smolikova J, Vlcek C, Kozmik Z. PLoS One 6 e14650 (2011)
  114. Importin 13 mediates nuclear import of histone fold-containing chromatin accessibility complex heterodimers. Walker P, Doenecke D, Kahle J. J Biol Chem 284 11652-11662 (2009)
  115. Conformational changes of the BS2 operator DNA upon complex formation with the Antennapedia homeodomain studied by NMR with 13C/15N-labeled DNA. Fernández C, Szyperski T, Billeter M, Ono A, Iwai H, Kainosho M, Wüthrich K. J Mol Biol 292 609-617 (1999)
  116. Cross-talk between the paired domain and the homeodomain of Pax3: DNA binding by each domain causes a structural change in the other domain, supporting interdependence for DNA Binding. Apuzzo S, Abdelhakim A, Fortin AS, Gros P. J Biol Chem 279 33601-33612 (2004)
  117. Structural basis for the complex DNA binding behavior of the plant stem cell regulator WUSCHEL. Sloan J, Hakenjos JP, Gebert M, Ermakova O, Gumiero A, Stier G, Wild K, Sinning I, Lohmann JU. Nat Commun 11 2223 (2020)
  118. Homeodomain-DNA interactions of the Pho2 protein are promoter-dependent. Justice MC, Hogan BP, Vershon AK. Nucleic Acids Res 25 4730-4739 (1997)
  119. Quantitative measurement of water diffusion lifetimes at a protein/DNA interface by NMR. Gruschus JM, Ferretti JA. J Biomol NMR 20 111-126 (2001)
  120. Stepwise induced fit in the pico- to nanosecond time scale governs the complexation of the even-skipped transcriptional repressor homeodomain to DNA. Flader W, Wellenzohn B, Winger RH, Hallbrucker A, Mayer E, Liedl KR. Biopolymers 68 139-149 (2003)
  121. Structure-function correlation of micro1 for micromere specification in sea urchin embryos. Yamazaki A, Ki S, Kokubo T, Yamaguchi M. Mech Dev 126 611-623 (2009)
  122. The Homeodomain Resource: sequences, structures and genomic information. Banerjee-Basu S, Ferlanti ES, Ryan JF, Baxevanis AD. Nucleic Acids Res 27 336-337 (1999)
  123. Binding regularities in complexes of transcription factors with operator DNA: homeodomain family. Chirgadze YN, Zheltukhin EI, Polozov RV, Sivozhelezov VS, Ivanov VV. J Biomol Struct Dyn 26 687-700 (2009)
  124. Dimeric PROP1 binding to diverse palindromic TAAT sequences promotes its transcriptional activity. Nakayama M, Kato T, Susa T, Sano A, Kitahara K, Kato Y. Mol Cell Endocrinol 307 36-42 (2009)
  125. Disruption of the homeodomain transcription factor orthopedia homeobox (Otp) is associated with obesity and anxiety. Moir L, Bochukova EG, Dumbell R, Banks G, Bains RS, Nolan PM, Scudamore C, Simon M, Watson KA, Keogh J, Henning E, Hendricks A, O'Rahilly S, Barroso I, UK10K consortium, Sullivan AE, Bersten DC, Whitelaw ML, Kirsch S, Bentley E, Farooqi IS, Cox RD. Mol Metab 6 1419-1428 (2017)
  126. Phosphorylation on Ser106 modulates the cellular functions of the SHOX homeodomain protein. Marchini A, Daeffler L, Marttila T, Schneider KU, Blaschke RJ, Schnölzer M, Rommelaere J, Rappold G. J Mol Biol 355 590-603 (2006)
  127. Pax6 localizes to chromatin-rich territories and displays a slow nuclear mobility altered by disease mutations. Elvenes J, Sjøttem E, Holm T, Bjørkøy G, Johansen T. Cell Mol Life Sci 67 4079-4094 (2010)
  128. Physical basis of the inducer-dependent cooperativity of the Central glycolytic genes Repressor/DNA complex. Chaix D, Ferguson ML, Atmanene C, Van Dorsselaer A, Sanglier-Cianférani S, Royer CA, Declerck N. Nucleic Acids Res 38 5944-5957 (2010)
  129. Removing water from an EcoRI-noncognate DNA complex with osmotic stress. Sidorova NY, Rau DC. J Biomol Struct Dyn 17 19-31 (1999)
  130. Several cis-regulatory elements control mRNA stability, translation efficiency, and expression pattern of Prrxl1 (paired related homeobox protein-like 1). Regadas I, Matos MR, Monteiro FA, Gómez-Skarmeta JL, Lima D, Bessa J, Casares F, Reguenga C. J Biol Chem 288 36285-36301 (2013)
  131. Structural and biophysical insights into the ligand-free Pitx2 homeodomain and a ring dermoid of the cornea inducing homeodomain mutant. Doerdelmann T, Kojetin DJ, Baird-Titus JM, Solt LA, Burris TP, Rance M. Biochemistry 51 665-676 (2012)
  132. In the TTF-1 homeodomain the contribution of several amino acids to DNA recognition depends on the bound sequence. Fabbro D, Tell G, Leonardi A, Pellizzari L, Pucillo C, Lonigro R, Formisano S, Damante G. Nucleic Acids Res 24 3283-3288 (1996)
  133. Molecular analysis of the PAX6 gene for aniridia and congenital cataracts in Tunisian families. Chograni M, Derouiche K, Chaabouni M, Lariani I, Bouhamed HC. Hum Genome Var 1 14008 (2014)
  134. New Insights into Cooperative Binding of Homeodomain Transcription Factors PREP1 and PBX1 to DNA. Zucchelli C, Ferrari E, Blasi F, Musco G, Bruckmann C. Sci Rep 7 40665 (2017)
  135. Pituitary homeodomain transcription factors HESX1 and PROP1 form a heterodimer on the inverted TAAT motif. Kato Y, Kimoto F, Susa T, Nakayama M, Ishikawa A, Kato T. Mol Cell Endocrinol 315 168-173 (2010)
  136. DNA targeting and cleavage by an engineered metalloprotein dimer. Wong-Deyrup SW, Prasannan C, Dupureur CM, Franklin SJ. J Biol Inorg Chem 17 387-398 (2012)
  137. Determination of the minimal domains of Mix.3/Mixer required for endoderm development. Doherty JR, Zhu H, Kuliyev E, Mead PE. Mech Dev 123 56-66 (2006)
  138. Energetic coupling along an allosteric communication channel drives the binding of Jun-Fos heterodimeric transcription factor to DNA. Seldeen KL, Deegan BJ, Bhat V, Mikles DC, McDonald CB, Farooq A. FEBS J 278 2090-2104 (2011)
  139. Histone deacetylase 1 (HDAC1) regulates retinal development through a PAX6-dependent pathway. Kim CH, An MJ, Kim DH, Kim JW. Biochem Biophys Res Commun 482 735-741 (2017)
  140. Identification of the domains for DNA binding and transactivation function of C protein from bacteriophage Mu. Paul BD, Kanhere A, Chakraborty A, Bansal M, Nagaraja V. Proteins 52 272-282 (2003)
  141. Analysis of the DNA-binding properties of Alx1, an evolutionarily conserved regulator of skeletogenesis in echinoderms. Guerrero-Santoro J, Khor JM, Açıkbaş AH, Jaynes JB, Ettensohn CA. J Biol Chem 297 100901 (2021)
  142. Dynamic Molecular Evolution of Mammalian Homeobox Genes: Duplication, Loss, Divergence and Gene Conversion Sculpt PRD Class Repertoires. Lewin TD, Royall AH, Holland PWH. J Mol Evol 89 396-414 (2021)
  143. Meis: New friends of Pax. Schulte D. Neurogenesis (Austin) 1 e976014 (2014)
  144. Putative homeodomain proteins identified in prokaryotes based on pattern and sequence similarity. Kant S, Bagaria A, Ramakumar S. Biochem Biophys Res Commun 299 229-232 (2002)
  145. A novel PAX6 nonsense mutation identified in an Iranian family with various eye anomalies. Torkashvand A, Mohebbi M, Hashemi H. J Curr Ophthalmol 30 234-238 (2018)
  146. Crystallization and preliminary X-ray analysis of the Pax6 paired domain bound to the Pax6 gene enhancer. Ito M, Oyama T, Okazaki K, Morikawa K. Acta Crystallogr Sect F Struct Biol Cryst Commun 61 1009-1012 (2005)
  147. Isolation and expression analysis of a Pax group III gene from the crustacean Cherax destructor. White RB, Lamey TM, Ziman M, Koenders A. Dev Genes Evol 215 306-312 (2005)
  148. Missense mutations in CRX homeodomain cause dominant retinopathies through two distinct mechanisms. Zheng Y, Sun C, Zhang X, Ruzycki PA, Chen S. Elife 12 RP87147 (2023)
  149. Novel PAX6 mutation reported in an aniridia patient. Winegarner A, Oie Y, Kawasaki S, Nishida N, Nishida K. Hum Genome Var 4 17053 (2017)
  150. A Family of Auxiliary Subunits of the TRP Cation Channel Encoded by the Complex inaF Locus. Chen Z, Montell C. Genetics 215 713-728 (2020)
  151. Expression of mOb1, a novel atypical 73 amino acid K50-homeodomain protein, during mouse development. Adu J, Leong FT, Smith NR, Leek JP, Markham AF, Robinson PA, Mighell AJ. Mech Dev 119 Suppl 1 S43-7 (2002)
  152. Molecular analysis of Cypriot families with aniridia reveals a novel PAX6 mutation. Syrimis A, Nicolaou N, Alexandrou A, Papaevripidou I, Nicolaou M, Loukianou E, Sismani C, Malas S, Christophidou-Anastasiadou V, Tanteles GA. Mol Med Rep 18 1623-1627 (2018)
  153. Plasticity of Drosophila paired function. Lan Y, Fujioka M, Polsgrove R, Miskiewicz P, Morrissey D, Goto T, Weir M. Dev Genet 23 45-55 (1998)
  154. Association of Missense Variants in VSX2 With a Peculiar Form of Congenital Stationary Night Blindness Affecting All Bipolar Cells. Smirnov VM, Robert MP, Condroyer C, Navarro J, Antonio A, Rozet JM, Sahel JA, Perrault I, Audo I, Zeitz C. JAMA Ophthalmol 140 1163-1173 (2022)
  155. Case Reports Co-Occurrence of Congenital Aniridia Due to Nonsense PAX6 Variant p.(Cys94*) and Chromosome 21 Trisomy in the Same Patient. Vasilyeva TA, Sukhanova NV, Marakhonov AV, Kuzina NY, Shilova NV, Kadyshev VV, Kutsev SI, Zinchenko RA. Int J Mol Sci 24 15527 (2023)
  156. Essential role of the Pax5 C-terminal domain in controlling B cell commitment and development. Gruenbacher S, Jaritz M, Hill L, Schäfer M, Busslinger M. J Exp Med 220 e20230260 (2023)
  157. Interaction between Pax6 and its novel mutant in Bufo raddei Strauch. Ju F, Zhao Y, Zhao Y, Wang Y, Wen F, Ye L, Gao L. Mol Vis 17 2698-2705 (2011)
  158. Interaction of human CRX and NRL in live HEK293T cells measured using fluorescence resonance energy transfer (FRET). Zhuo X, Knox BE. Sci Rep 12 6937 (2022)
  159. Profile of Claude Desplan. Viegas J. Proc Natl Acad Sci U S A 118 e2110547118 (2021)
  160. Solution structure of CEH-37 homeodomain of the nematode Caenorhabditis elegans. Moon S, Lee YW, Kim WT, Lee W. Biochem Biophys Res Commun 443 370-375 (2014)
  161. Tenuous transcriptional threshold of human sex determination. II. SRY exploits water-mediated clamp at the edge of ambiguity. Racca JD, Chatterjee D, Chen YS, Rai RK, Yang Y, Georgiadis MM, Haas E, Weiss MA. Front Endocrinol (Lausanne) 13 1029177 (2022)
  162. Water and protein movements in ligand-receptor interactions. Chau PL. J Biol Phys 28 173-181 (2002)