1fbx Citations

Zinc plays a key role in human and bacterial GTP cyclohydrolase I.

Abstract

The crystal structure of recombinant human GTP cyclohydrolase I was solved by Patterson search methods by using the coordinates of the Escherichia coli enzyme as a model. The human as well as bacterial enzyme were shown to contain an essential zinc ion coordinated to a His side chain and two thiol groups in each active site of the homodecameric enzymes that had escaped detection during earlier studies of the E. coli enzyme. The zinc ion is proposed to generate a hydroxyl nucleophile for attack of imidazole ring carbon atom eight of the substrate, GTP. It may also be involved in the hydrolytic release of formate from the intermediate, 2-amino-5-formylamino-6-ribosylamino-4(3H)-pyrimidinone 5'-triphosphate, and in the consecutive Amadori rearrangement of the ribosyl moiety.

Articles - 1fbx mentioned but not cited (5)

  1. Zinc plays a key role in human and bacterial GTP cyclohydrolase I. Auerbach G, Herrmann A, Bracher A, Bader G, Gutlich M, Fischer M, Neukamm M, Garrido-Franco M, Richardson J, Nar H, Huber R, Bacher A. Proc Natl Acad Sci U S A 97 13567-13572 (2000)
  2. Zinc-independent folate biosynthesis: genetic, biochemical, and structural investigations reveal new metal dependence for GTP cyclohydrolase IB. Sankaran B, Bonnett SA, Shah K, Gabriel S, Reddy R, Schimmel P, Rodionov DA, de Crécy-Lagard V, Helmann JD, Iwata-Reuyl D, Swairjo MA. J Bacteriol 191 6936-6949 (2009)
  3. Crystal structure of the stimulatory complex of GTP cyclohydrolase I and its feedback regulatory protein GFRP. Maita N, Okada K, Hatakeyama K, Hakoshima T. Proc Natl Acad Sci U S A 99 1212-1217 (2002)
  4. Crystallization and preliminary X-ray characterization of the nitrile reductase QueF: a queuosine-biosynthesis enzyme. Swairjo MA, Reddy RR, Lee B, Van Lanen SG, Brown S, de Crécy-Lagard V, Iwata-Reuyl D, Schimmel P. Acta Crystallogr Sect F Struct Biol Cryst Commun 61 945-948 (2005)
  5. GTP cyclohydrolase I activity from Rickettsia monacensis strain Humboldt, a rickettsial endosymbiont of Ixodes pacificus. Bodnar J, Fitch S, Sanchez J, Lesser M, Baston DS, Zhong J. Ticks Tick Borne Dis 11 101434 (2020)


Reviews citing this publication (15)

  1. Tetrahydrobiopterin: biochemistry and pathophysiology. Werner ER, Blau N, Thöny B. Biochem J 438 397-414 (2011)
  2. The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery. Bermingham A, Derrick JP. Bioessays 24 637-648 (2002)
  3. Disulfides as redox switches: from molecular mechanisms to functional significance. Wouters MA, Fan SW, Haworth NL. Antioxid Redox Signal 12 53-91 (2010)
  4. Tetrahydrobiopterin deficiencies without hyperphenylalaninemia: diagnosis and genetics of dopa-responsive dystonia and sepiapterin reductase deficiency. Blau N, Bonafé L, Thöny B. Mol Genet Metab 74 172-185 (2001)
  5. Nucleoside 5'-triphosphates: self-association, acid-base, and metal ion-binding properties in solution. Sigel H, Griesser R. Chem Soc Rev 34 875-900 (2005)
  6. Biosynthesis of flavocoenzymes. Fischer M, Bacher A. Nat Prod Rep 22 324-350 (2005)
  7. Zinc-binding cysteines: diverse functions and structural motifs. Pace NJ, Weerapana E. Biomolecules 4 419-434 (2014)
  8. Biosynthesis of pyrrolopyrimidines. McCarty RM, Bandarian V. Bioorg Chem 43 15-25 (2012)
  9. Folates in Plants: Research Advances and Progress in Crop Biofortification. Gorelova V, Ambach L, Rébeillé F, Stove C, Van Der Straeten D. Front Chem 5 21 (2017)
  10. Pineal function: impact of microarray analysis. Klein DC, Bailey MJ, Carter DA, Kim JS, Shi Q, Ho AK, Chik CL, Gaildrat P, Morin F, Ganguly S, Rath MF, Møller M, Sugden D, Rangel ZG, Munson PJ, Weller JL, Coon SL. Mol Cell Endocrinol 314 170-183 (2010)
  11. Utility of the Biosynthetic Folate Pathway for Targets in Antimicrobial Discovery. Bourne CR. Antibiotics (Basel) 3 1-28 (2014)
  12. Deazaguanine derivatives, examples of crosstalk between RNA and DNA modification pathways. Hutinet G, Swarjo MA, de Crécy-Lagard V. RNA Biol 14 1175-1184 (2017)
  13. Folate biosynthesis pathway: mechanisms and insights into drug design for infectious diseases. Bertacine Dias MV, Santos JC, Libreros-Zúñiga GA, Ribeiro JA, Chavez-Pacheco SM. Future Med Chem 10 935-959 (2018)
  14. The regulation of vascular tetrahydrobiopterin bioavailability. Starr A, Hussein D, Nandi M. Vascul Pharmacol 58 219-230 (2013)
  15. Revitalizing antifolates through understanding mechanisms that govern susceptibility and resistance. Kordus SL, Baughn AD. Medchemcomm 10 880-895 (2019)

Articles citing this publication (49)

  1. Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Mukamolova GV, Murzin AG, Salina EG, Demina GR, Kell DB, Kaprelyants AS, Young M. Mol Microbiol 59 84-98 (2006)
  2. M-ZDOCK: a grid-based approach for Cn symmetric multimer docking. Pierce B, Tong W, Weng Z. Bioinformatics 21 1472-1478 (2005)
  3. Night/day changes in pineal expression of >600 genes: central role of adrenergic/cAMP signaling. Bailey MJ, Coon SL, Carter DA, Humphries A, Kim JS, Shi Q, Gaildrat P, Morin F, Ganguly S, Hogenesch JB, Weller JL, Rath MF, Møller M, Baler R, Sugden D, Rangel ZG, Munson PJ, Klein DC. J Biol Chem 284 7606-7622 (2009)
  4. Proteins evolve on the edge of supramolecular self-assembly. Garcia-Seisdedos H, Empereur-Mot C, Elad N, Levy ED. Nature 548 244-247 (2017)
  5. From cyclohydrolase to oxidoreductase: discovery of nitrile reductase activity in a common fold. Van Lanen SG, Reader JS, Swairjo MA, de Crécy-Lagard V, Lee B, Iwata-Reuyl D. Proc Natl Acad Sci U S A 102 4264-4269 (2005)
  6. Deciphering deazapurine biosynthesis: pathway for pyrrolopyrimidine nucleosides toyocamycin and sangivamycin. McCarty RM, Bandarian V. Chem Biol 15 790-798 (2008)
  7. Pterin chemistry and its relationship to the molybdenum cofactor. Basu P, Burgmayer SJ. Coord Chem Rev 255 1016-1038 (2011)
  8. Folate synthesis in plants: the first step of the pterin branch is mediated by a unique bimodular GTP cyclohydrolase I. Basset G, Quinlivan EP, Ziemak MJ, Diaz De La Garza R, Fischer M, Schiffmann S, Bacher A, Gregory JF, Hanson AD. Proc Natl Acad Sci U S A 99 12489-12494 (2002)
  9. Identification of a cyclic nucleotide as a cryptic intermediate in molybdenum cofactor biosynthesis. Hover BM, Loksztejn A, Ribeiro AA, Yokoyama K. J Am Chem Soc 135 7019-7032 (2013)
  10. The mechanism of potent GTP cyclohydrolase I inhibition by 2,4-diamino-6-hydroxypyrimidine: requirement of the GTP cyclohydrolase I feedback regulatory protein. Kolinsky MA, Gross SS. J Biol Chem 279 40677-40682 (2004)
  11. Biosynthesis of pteridines. Reaction mechanism of GTP cyclohydrolase I. Rebelo J, Auerbach G, Bader G, Bracher A, Nar H, Hösl C, Schramek N, Kaiser J, Bacher A, Huber R, Fischer M. J Mol Biol 326 503-516 (2003)
  12. Conformational changes in redox pairs of protein structures. Fan SW, George RA, Haworth NL, Feng LL, Liu JY, Wouters MA. Protein Sci 18 1745-1765 (2009)
  13. GTP cyclohydrolase II structure and mechanism. Ren J, Kotaka M, Lockyer M, Lamb HK, Hawkins AR, Stammers DK. J Biol Chem 280 36912-36919 (2005)
  14. Modeling oligomers with Cn or Dn symmetry: application to CAPRI target 10. Berchanski A, Segal D, Eisenstein M. Proteins 60 202-206 (2005)
  15. A yeast 2-hybrid analysis of human GTP cyclohydrolase I protein interactions. Swick L, Kapatos G. J Neurochem 97 1447-1455 (2006)
  16. Biosynthesis of vitamin B2. Kaiser J, Schramek N, Eberhardt S, Püttmer S, Schuster M, Bacher A. Eur J Biochem 269 5264-5270 (2002)
  17. Stabilities and isomeric equilibria in solutions of monomeric metal-ion complexes of guanosine 5'-triphosphate (GTP4-) and inosine 5'-triphosphate (ITP4-) in comparison with those of adenosine 5'-triphosphate (ATP4-). Sigel H, Bianchi EM, Corfù NA, Kinjo Y, Tribolet R, Martin RB. Chemistry 7 3729-3737 (2001)
  18. Cloning and developmental expression of zebrafish GTP cyclohydrolase I. Pelletier I, Bally-Cuif L, Ziegler I. Mech Dev 109 99-103 (2001)
  19. GTP-cyclohydrolase I gene mutations in patients with autosomal dominant and recessive GTP-CH1 deficiency: identification and functional characterization of four novel mutations. Garavaglia B, Invernizzi F, Carbone ML, Viscardi V, Saracino F, Ghezzi D, Zeviani M, Zorzi G, Nardocci N. J Inherit Metab Dis 27 455-463 (2004)
  20. Synthesis of nickel-iron hydrogenase in Cupriavidus metallidurans is controlled by metal-dependent silencing and un-silencing of genomic islands. Herzberg M, Schüttau M, Reimers M, Große C, Hans-Günther-Schlegel, Nies DH. Metallomics 7 632-649 (2015)
  21. Expression of one isoform of GTP cyclohydrolase I coincides with the larval black markings of the swallowtail butterfly, Papilio xuthus. Futahashi R, Fujiwara H. Insect Biochem Mol Biol 36 63-70 (2006)
  22. Metabolism of tetrahydrobiopterin: its relevance in monoaminergic neurons and neurological disorders. Ichinose H, Nomura T, Sumi-Ichinose C. Chem Rec 8 378-385 (2008)
  23. Evolution of folate biosynthesis and metabolism across algae and land plant lineages. Gorelova V, Bastien O, De Clerck O, Lespinats S, Rébeillé F, Van Der Straeten D. Sci Rep 9 5731 (2019)
  24. Peroxynitrite-dependent zinc release and inactivation of guanosine 5'-triphosphate cyclohydrolase 1 instigate its ubiquitination in diabetes. Zhao Y, Wu J, Zhu H, Song P, Zou MH. Diabetes 62 4247-4256 (2013)
  25. Reaction mechanism of GTP cyclohydrolase I: single turnover experiments using a kinetically competent reaction intermediate. Schramek N, Bracher A, Fischer M, Auerbach G, Nar H, Huber R, Bacher A. J Mol Biol 316 829-837 (2002)
  26. DIFFUSE: predicting isoform functions from sequences and expression profiles via deep learning. Chen H, Shaw D, Zeng J, Bu D, Jiang T. Bioinformatics 35 i284-i294 (2019)
  27. Biochemical and functional characterization of Plasmodium falciparum GTP cyclohydrolase I. Kümpornsin K, Kotanan N, Chobson P, Kochakarn T, Jirawatcharadech P, Jaru-ampornpan P, Yuthavong Y, Chookajorn T. Malar J 13 150 (2014)
  28. GTP cyclohydrolase I: purification, characterization, and effects of inhibition on nitric oxide synthase in nocardia species. He A, Rosazza JP. Appl Environ Microbiol 69 7507-7513 (2003)
  29. Evolution of new function in the GTP cyclohydrolase II proteins of Streptomyces coelicolor. Spoonamore JE, Dahlgran AL, Jacobsen NE, Bandarian V. Biochemistry 45 12144-12155 (2006)
  30. Interaction of human GTP cyclohydrolase I with its splice variants. Pandya MJ, Golderer G, Werner ER, Werner-Felmayer G. Biochem J 400 75-80 (2006)
  31. Structures and reaction mechanisms of GTP cyclohydrolases. Gräwert T, Fischer M, Bacher A. IUBMB Life 65 310-322 (2013)
  32. The N-terminal peptide of mammalian GTP cyclohydrolase I is an autoinhibitory control element and contributes to binding the allosteric regulatory protein GFRP. Higgins CE, Gross SS. J Biol Chem 286 11919-11928 (2011)
  33. Effect of zinc deficiency on chronic kidney disease progression and effect modification by hypoalbuminemia. Tokuyama A, Kanda E, Itano S, Kondo M, Wada Y, Kadoya H, Kidokoro K, Nagasu H, Sasaki T, Kashihara N. PLoS One 16 e0251554 (2021)
  34. GTP cyclohydrolase I utilizes metal-free GTP as its substrate. Suzuki T, Kurita H, Ichinose H. Eur J Biochem 271 349-355 (2004)
  35. Moraxella catarrhalis expresses a cardiolipin synthase that impacts adherence to human epithelial cells. Buskirk SW, Lafontaine ER. J Bacteriol 196 107-120 (2014)
  36. Crystal structure of rat GTP cyclohydrolase I feedback regulatory protein, GFRP. Bader G, Schiffmann S, Herrmann A, Fischer M, Gütlich M, Auerbach G, Ploom T, Bacher A, Huber R, Lemm T. J Mol Biol 312 1051-1057 (2001)
  37. A hybrid approach reveals the allosteric regulation of GTP cyclohydrolase I. Ebenhoch R, Prinz S, Kaltwasser S, Mills DJ, Meinecke R, Rübbelke M, Reinert D, Bauer M, Weixler L, Zeeb M, Vonck J, Nar H. Proc Natl Acad Sci U S A 117 31838-31849 (2020)
  38. Characterization of Two Highly Arsenic-Resistant Caulobacteraceae Strains of Brevundimonas nasdae: Discovery of a New Arsenic Resistance Determinant. Yang X, Li Y, Feng R, Chen J, Alwathnani HA, Xu W, Rensing C. Int J Mol Sci 23 5619 (2022)
  39. Compensated pathogenic deviations. Barešić A, Martin AC. Biomol Concepts 2 281-292 (2011)
  40. Structural and biochemical characterization of GTP cyclohydrolase II from Helicobacter pylori reveals its redox dependent catalytic activity. Yadav S, Karthikeyan S. J Struct Biol 192 100-115 (2015)
  41. Validating the GTP-cyclohydrolase 1-feedback regulatory complex as a therapeutic target using biophysical and in vivo approaches. Hussein D, Starr A, Heikal L, McNeill E, Channon KM, Brown PR, Sutton BJ, McDonnell JM, Nandi M. Br J Pharmacol 172 4146-4157 (2015)
  42. Biochemical characterization of oligomerization of Escherichia coli GTP cyclohydrolase I. Lee S, Ahn C, Park E, Hwang DS, Yim J. J Biochem Mol Biol 35 255-261 (2002)
  43. The absence of the queuosine tRNA modification leads to pleiotropic phenotypes revealing perturbations of metal and oxidative stress homeostasis in Escherichia coli K12. Pollo-Oliveira L, Davis NK, Hossain I, Ho P, Yuan Y, Salguero García P, Pereira C, Byrne SR, Leng J, Sze M, Blaby-Haas CE, Sekowska A, Montoya A, Begley T, Danchin A, Aalberts DP, Angerhofer A, Hunt J, Conesa A, Dedon PC, de Crécy-Lagard V. Metallomics 14 mfac065 (2022)
  44. Letter A novel mutation in GCH-1 gene in a case of dopa-responsive dystonia. De Rosa A, Carducci C, Antonozzi I, Giovanniello T, Xhoxhi E, Criscuolo C, Menchise V, Striano S, Filla A, De Michele G. J Neurol 254 1133-1134 (2007)
  45. A novel missense mutation in GCH1 gene in a Korean family with Segawa disease. Kim JI, Choi JK, Lee JW, Kim J, Ki CS, Hong JY. Brain Dev 37 359-361 (2015)
  46. In Silico Investigation of the Human GTP Cyclohydrolase 1 Enzyme Reveals the Potential of Drug Repurposing Approaches towards the Discovery of Effective BH4 Therapeutics. Hussein D. Int J Mol Sci 24 1210 (2023)
  47. IsoFrog: a reversible jump Markov Chain Monte Carlo feature selection-based method for predicting isoform functions. Liu Y, Yang C, Li HD, Wang J. Bioinformatics 39 btad530 (2023)
  48. Metal retention and replacement in QueD2 protect queuosine-tRNA biosynthesis in metal-starved Acinetobacter baumannii. Jordan MR, Gonzalez-Gutierrez G, Trinidad JC, Giedroc DP. Proc Natl Acad Sci U S A 119 e2213630119 (2022)
  49. Structure-based design of guanosine analogue inhibitors targeting GTP cyclohydrolase IB towards a new class of antibiotics. Samaan GN, Paranagama N, Haque A, Hecht DA, Swairjo MA, Purse BW. Bioorg Med Chem Lett 30 126818 (2020)