1f8a Citations

Structural basis for phosphoserine-proline recognition by group IV WW domains.

Nat Struct Biol 7 639-43 (2000)
Cited: 398 times
EuropePMC logo PMID: 10932246

Abstract

Pin1 contains an N-terminal WW domain and a C-terminal peptidyl-prolyl cis-trans isomerase (PPIase) domain connected by a flexible linker. To address the energetic and structural basis for WW domain recognition of phosphoserine (P.Ser)/phosphothreonine (P. Thr)- proline containing proteins, we report the energetic and structural analysis of a Pin1-phosphopeptide complex. The X-ray crystal structure of Pin1 bound to a doubly phosphorylated peptide (Tyr-P.Ser-Pro-Thr-P.Ser-Pro-Ser) representing a heptad repeat of the RNA polymerase II large subunit's C-terminal domain (CTD), reveals the residues involved in the recognition of a single P.Ser side chain, the rings of two prolines, and the backbone of the CTD peptide. The side chains of neighboring Arg and Ser residues along with a backbone amide contribute to recognition of P.Ser. The lack of widespread conservation of the Arg and Ser residues responsible for P.Ser recognition in the WW domain family suggests that only a subset of WW domains can bind P.Ser-Pro in a similar fashion to that of Pin1.

Reviews - 1f8a mentioned but not cited (6)

  1. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Gareau JR, Lima CD. Nat. Rev. Mol. Cell Biol. 11 861-871 (2010)
  2. The Ess1 prolyl isomerase: traffic cop of the RNA polymerase II transcription cycle. Hanes SD. Biochim. Biophys. Acta 1839 316-333 (2014)
  3. Roles of Prolyl Isomerases in RNA-Mediated Gene Expression. Thapar R. Biomolecules 5 974-999 (2015)
  4. Cross-talk of phosphorylation and prolyl isomerization of the C-terminal domain of RNA Polymerase II. Yogesha SD, Mayfield JE, Zhang Y. Molecules 19 1481-1511 (2014)
  5. Orchestrating serine/threonine phosphorylation and elucidating downstream effects by short linear motifs. Kliche J, Ivarsson Y. Biochem J 479 1-22 (2022)
  6. What's all the phos about? Insights into the phosphorylation state of the RNA polymerase II C-terminal domain via mass spectrometry. LeBlanc BM, Moreno RY, Escobar EE, Venkat Ramani MK, Brodbelt JS, Zhang Y. RSC Chem Biol 2 1084-1095 (2021)

Articles - 1f8a mentioned but not cited (37)

  1. Structure-function-folding relationship in a WW domain. Jäger M, Zhang Y, Bieschke J, Nguyen H, Dendle M, Bowman ME, Noel JP, Gruebele M, Kelly JW. Proc. Natl. Acad. Sci. U.S.A. 103 10648-10653 (2006)
  2. Accurate prediction of peptide binding sites on protein surfaces. Petsalaki E, Stark A, García-Urdiales E, Russell RB, Russell RB. PLoS Comput. Biol. 5 e1000335 (2009)
  3. Structural insights to how mammalian capping enzyme reads the CTD code. Ghosh A, Shuman S, Lima CD. Mol. Cell 43 299-310 (2011)
  4. Novel mode of phosphorylation-triggered reorganization of the nuclear lamina during nuclear egress of human cytomegalovirus. Milbradt J, Webel R, Auerochs S, Sticht H, Marschall M. J. Biol. Chem. 285 13979-13989 (2010)
  5. A molecular basis for phosphorylation-dependent SUMO conjugation by the E2 UBC9. Mohideen F, Capili AD, Bilimoria PM, Yamada T, Bonni A, Lima CD. Nat. Struct. Mol. Biol. 16 945-952 (2009)
  6. Epigallocatechin-gallate suppresses tumorigenesis by directly targeting Pin1. Urusova DV, Shim JH, Kim DJ, Jung SK, Zykova TA, Carper A, Bode AM, Dong Z. Cancer Prev Res (Phila) 4 1366-1377 (2011)
  7. Identification, structure, and functional requirement of the Mediator submodule Med7N/31. Koschubs T, Seizl M, Larivière L, Kurth F, Baumli S, Martin DE, Cramer P. EMBO J. 28 69-80 (2009)
  8. SENP1 deSUMOylates and regulates Pin1 protein activity and cellular function. Chen CH, Chang CC, Lee TH, Luo M, Huang P, Liao PH, Wei S, Li FA, Chen RH, Zhou XZ, Shih HM, Lu KP. Cancer Res. 73 3951-3962 (2013)
  9. Modeling conformational ensembles of slow functional motions in Pin1-WW. Morcos F, Chatterjee S, McClendon CL, Brenner PR, López-Rendón R, Zintsmaster J, Ercsey-Ravasz M, Sweet CR, Jacobson MP, Peng JW, Izaguirre JA. PLoS Comput. Biol. 6 e1001015 (2010)
  10. Solution structure of the parvulin-type PPIase domain of Staphylococcus aureus PrsA--implications for the catalytic mechanism of parvulins. Heikkinen O, Seppala R, Tossavainen H, Heikkinen S, Koskela H, Permi P, Kilpeläinen I. BMC Struct. Biol. 9 17 (2009)
  11. The role of the turn in beta-hairpin formation during WW domain folding. Sharpe T, Jonsson AL, Rutherford TJ, Daggett V, Fersht AR. Protein Sci. 16 2233-2239 (2007)
  12. Characterization of native protein complexes using ultraviolet photodissociation mass spectrometry. O'Brien JP, Li W, Zhang Y, Brodbelt JS. J. Am. Chem. Soc. 136 12920-12928 (2014)
  13. Two pathways mediate interdomain allosteric regulation in pin1. Guo J, Pang X, Zhou HX. Structure 23 237-247 (2015)
  14. Structural and kinetic analysis of prolyl-isomerization/phosphorylation cross-talk in the CTD code. Zhang M, Wang XJ, Chen X, Bowman ME, Luo Y, Noel JP, Ellington AD, Etzkorn FA, Zhang Y. ACS Chem. Biol. 7 1462-1470 (2012)
  15. A computational method for the analysis and prediction of protein:phosphopeptide-binding sites. Joughin BA, Tidor B, Yaffe MB. Protein Sci. 14 131-139 (2005)
  16. OGlcNAcylation and phosphorylation have opposing structural effects in tau: phosphothreonine induces particular conformational order. Brister MA, Pandey AK, Bielska AA, Zondlo NJ. J. Am. Chem. Soc. 136 3803-3816 (2014)
  17. Influence of hPin1 WW N-terminal domain boundaries on function, protein stability, and folding. Jäger M, Nguyen H, Dendle M, Gruebele M, Kelly JW. Protein Sci. 16 1495-1501 (2007)
  18. Non-catalytic participation of the Pin1 peptidyl-prolyl isomerase domain in target binding. Innes BT, Bailey ML, Brandl CJ, Shilton BH, Litchfield DW. Front Physiol 4 18 (2013)
  19. Complete thermodynamic and kinetic characterization of the isomer-specific interaction between Pin1-WW domain and the amyloid precursor protein cytoplasmic tail phosphorylated at Thr668. De S, Greenwood AI, Rogals MJ, Kovrigin EL, Lu KP, Nicholson LK. Biochemistry 51 8583-8596 (2012)
  20. FlexE: Using elastic network models to compare models of protein structure. Perez A, Yang Z, Bahar I, Dill KA, MacCallum JL. J Chem Theory Comput 8 3985-3991 (2012)
  21. Discovery and binding studies on a series of novel Pin1 ligands. Wu B, Rega MF, Wei J, Yuan H, Dahl R, Zhang Z, Pellecchia M. Chem Biol Drug Des 73 369-379 (2009)
  22. Solution structural analysis of the single-domain parvulin TbPin1. Sun L, Wu X, Peng Y, Goh JY, Liou YC, Lin D, Zhao Y. PLoS ONE 7 e43017 (2012)
  23. Mechanism of PhosphoThreonine/Serine Recognition and Specificity for Modular Domains from All-atom Molecular Dynamics. Huang YM, Chang CE. BMC Biophys 4 12 (2011)
  24. The natively disordered loop of Bcl-2 undergoes phosphorylation-dependent conformational change and interacts with Pin1. Kang C, Bharatham N, Chia J, Mu Y, Baek K, Yoon HS. PLoS ONE 7 e52047 (2012)
  25. A mechanism of global shape-dependent recognition and phosphorylation of filamin by protein kinase A. Ithychanda SS, Fang X, Mohan ML, Zhu L, Tirupula KC, Naga Prasad SV, Wang YX, Karnik SS, Qin J. J. Biol. Chem. 290 8527-8538 (2015)
  26. Computationally mapping sequence space to understand evolutionary protein engineering. Armstrong KA, Tidor B. Biotechnol. Prog. 24 62-73 (2008)
  27. Crystallization and preliminary X-ray diffraction studies of the WW4 domain of the Nedd4-2 ubiquitin-protein ligase. Umadevi N, Kumar S, Narayana N. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61 1084-1086 (2005)
  28. Computer-based screening of functional conformers of proteins. Montiel Molina HM, Millán-Pacheco C, Pastor N, del Rio G. PLoS Comput. Biol. 4 e1000009 (2008)
  29. Evidence for small-molecule-mediated loop stabilization in the structure of the isolated Pin1 WW domain. Mortenson DE, Kreitler DF, Yun HG, Gellman SH, Forest KT. Acta Crystallogr. D Biol. Crystallogr. 69 2506-2512 (2013)
  30. Tau Antibody Structure Reveals a Molecular Switch Defining a Pathological Conformation of the Tau Protein. Chukwu JE, Pedersen JT, Pedersen LØ, Volbracht C, Sigurdsson EM, Kong XP. Sci Rep 8 6209 (2018)
  31. Genetic interactions and transcriptomics implicate fission yeast CTD prolyl isomerase Pin1 as an agent of RNA 3' processing and transcription termination that functions via its effects on CTD phosphatase Ssu72. Sanchez AM, Garg A, Shuman S, Schwer B. Nucleic Acids Res 48 4811-4826 (2020)
  32. Bio-molecular architects: a scaffold provided by the C-terminal domain of eukaryotic RNA polymerase II. Zhang M, Gill GN, Zhang Y. Nano Rev 1 (2010)
  33. Structure analysis suggests Ess1 isomerizes the carboxy-terminal domain of RNA polymerase II via a bivalent anchoring mechanism. Namitz KEW, Zheng T, Canning AJ, Alicea-Velazquez NL, Castañeda CA, Cosgrove MS, Hanes SD. Commun Biol 4 398 (2021)
  34. Enhanced Sampling of Interdomain Motion Using Map-Restrained Langevin Dynamics and NMR: Application to Pin1. Bouchard JJ, Xia J, Case DA, Peng JW. J. Mol. Biol. 430 2164-2180 (2018)
  35. Ligand-specific conformational change drives interdomain allostery in Pin1. Born A, Soetbeer J, Henen MA, Breitgoff F, Polyhach Y, Jeschke G, Vögeli B. Nat Commun 13 4546 (2022)
  36. Non-additive stabilization by halogenated amino acids reveals protein plasticity on a sub-angstrom scale. Hosseini AS, Pace CJ, Esposito AA, Gao J. Protein Sci. 26 2051-2058 (2017)
  37. Regulation of eukaryotic protein kinases by Pin1, a peptidyl-prolyl isomerase. Chen XR, Igumenova TI. Adv Biol Regul 87 100938 (2023)


Reviews citing this publication (89)

  1. Validating survivin as a cancer therapeutic target. Altieri DC. Nat. Rev. Cancer 3 46-54 (2003)
  2. Cell death by mitotic catastrophe: a molecular definition. Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G. Oncogene 23 2825-2837 (2004)
  3. Chromosomal passengers: conducting cell division. Ruchaud S, Carmena M, Earnshaw WC. Nat Rev Mol Cell Biol 8 798-812 (2007)
  4. Survivin, versatile modulation of cell division and apoptosis in cancer. Altieri DC. Oncogene 22 8581-8589 (2003)
  5. The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Lu KP, Zhou XZ. Nat Rev Mol Cell Biol 8 904-916 (2007)
  6. The RNA polymerase II CTD coordinates transcription and RNA processing. Hsin JP, Manley JL. Genes Dev 26 2119-2137 (2012)
  7. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Bentley DL. Curr. Opin. Cell Biol. 17 251-256 (2005)
  8. Prolyl cis-trans isomerization as a molecular timer. Lu KP, Finn G, Lee TH, Nicholson LK. Nat. Chem. Biol. 3 619-629 (2007)
  9. WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. Macias MJ, Wiesner S, Sudol M. FEBS Lett. 513 30-37 (2002)
  10. The molecular basis and potential role of survivin in cancer diagnosis and therapy. Altieri DC. Trends Mol Med 7 542-547 (2001)
  11. The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture. Ingham RJ, Gish G, Pawson T. Oncogene 23 1972-1984 (2004)
  12. Structure and mechanism of the RNA polymerase II transcription machinery. Hahn S. Nat. Struct. Mol. Biol. 11 394-403 (2004)
  13. Cracking the RNA polymerase II CTD code. Egloff S, Murphy S. Trends Genet. 24 280-288 (2008)
  14. Protein factors in pre-mRNA 3'-end processing. Mandel CR, Bai Y, Tong L. Cell. Mol. Life Sci. 65 1099-1122 (2008)
  15. Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Li SS. Biochem. J. 390 641-653 (2005)
  16. NeW wrinkles for an old domain. Sudol M, Hunter T. Cell 103 1001-1004 (2000)
  17. Pinning down proline-directed phosphorylation signaling. Lu KP, Liou YC, Zhou XZ. Trends Cell Biol. 12 164-172 (2002)
  18. Chromosomal passengers: the four-dimensional regulation of mitotic events. Vagnarelli P, Earnshaw WC. Chromosoma 113 211-222 (2004)
  19. Survivin study: what is the next wave? Li F. J. Cell. Physiol. 197 8-29 (2003)
  20. Phosphoserine/threonine-binding domains. Yaffe MB, Elia AE. Curr. Opin. Cell Biol. 13 131-138 (2001)
  21. Insights into programmed cell death through structural biology. Fesik SW. Cell 103 273-282 (2000)
  22. The case for survivin as a regulator of microtubule dynamics and cell-death decisions. Altieri DC. Curr. Opin. Cell Biol. 18 609-615 (2006)
  23. Ubiquitin and membrane protein turnover: from cradle to grave. MacGurn JA, Hsu PC, Emr SD. Annu. Rev. Biochem. 81 231-259 (2012)
  24. Phosphorylation-specific prolyl isomerization: is there an underlying theme? Wulf G, Finn G, Suizu F, Lu KP. Nat. Cell Biol. 7 435-441 (2005)
  25. Multisite protein modification and intramolecular signaling. Yang XJ. Oncogene 24 1653-1662 (2005)
  26. The structure and function of proline recognition domains. Zarrinpar A, Bhattacharyya RP, Lim WA. Sci. STKE 2003 RE8 (2003)
  27. Structure of eukaryotic RNA polymerases. Cramer P, Armache KJ, Baumli S, Benkert S, Brueckner F, Buchen C, Damsma GE, Dengl S, Geiger SR, Jasiak AJ, Jawhari A, Jennebach S, Kamenski T, Kettenberger H, Kuhn CD, Lehmann E, Leike K, Sydow JF, Vannini A. Annu Rev Biophys 37 337-352 (2008)
  28. Apoptosis and non-apoptotic deaths in cancer development and treatment response. de Bruin EC, Medema JP. Cancer Treat. Rev. 34 737-749 (2008)
  29. Pinning down cell signaling, cancer and Alzheimer's disease. Lu KP. Trends Biochem. Sci. 29 200-209 (2004)
  30. Survivin: a promising tumor biomarker. Duffy MJ, O'Donovan N, Brennan DJ, Gallagher WM, Ryan BM. Cancer Lett. 249 49-60 (2007)
  31. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response. Reinhardt HC, Yaffe MB. Nat. Rev. Mol. Cell Biol. 14 563-580 (2013)
  32. The WW domain: linking cell signalling to the membrane cytoskeleton. Ilsley JL, Sudol M, Winder SJ. Cell. Signal. 14 183-189 (2002)
  33. The case for Survivin as mitotic regulator. Lens SM, Vader G, Medema RH. Curr. Opin. Cell Biol. 18 616-622 (2006)
  34. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Theillet FX, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M, Kyne C, Li C, Crowley PB, Gierasch L, Pielak GJ, Elcock AH, Gershenson A, Selenko P. Chem. Rev. 114 6661-6714 (2014)
  35. Molecular circuits of apoptosis regulation and cell division control: the survivin paradigm. Altieri DC. J. Cell. Biochem. 92 656-663 (2004)
  36. Recognition of proline-rich motifs by protein-protein-interaction domains. Ball LJ, Kühne R, Schneider-Mergener J, Oschkinat H. Angew. Chem. Int. Ed. Engl. 44 2852-2869 (2005)
  37. Impacting tumor cell-fate by targeting the inhibitor of apoptosis protein survivin. Kelly RJ, Lopez-Chavez A, Citrin D, Janik JE, Morris JC. Mol. Cancer 10 35 (2011)
  38. Molecular evolution of the RNA polymerase II CTD. Chapman RD, Heidemann M, Hintermair C, Eick D. Trends Genet. 24 289-296 (2008)
  39. BIRinging chromosomes through cell division--and survivin' the experience. Reed JC, Bischoff JR. Cell 102 545-548 (2000)
  40. Pin1 in Alzheimer's disease. Butterfield DA, Abdul HM, Opii W, Newman SF, Joshi G, Ansari MA, Sultana R. J. Neurochem. 98 1697-1706 (2006)
  41. Understanding IAP function and regulation: a view from Drosophila. Hay BA. Cell Death Differ. 7 1045-1056 (2000)
  42. Ternary complex factors: prime nuclear targets for mitogen-activated protein kinases. Shaw PE, Saxton J. Int. J. Biochem. Cell Biol. 35 1210-1226 (2003)
  43. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Corden JL. Chem. Rev. 113 8423-8455 (2013)
  44. Adaptable hydrogel networks with reversible linkages for tissue engineering. Wang H, Heilshorn SC. Adv. Mater. Weinheim 27 3717-3736 (2015)
  45. Peptidyl-prolyl isomerases: a new twist to transcription. Shaw PE. EMBO Rep. 3 521-526 (2002)
  46. Trafficking and cell surface stability of ENaC. Rotin D, Kanelis V, Schild L. Am. J. Physiol. Renal Physiol. 281 F391-9 (2001)
  47. RNA processing and export. Hocine S, Singer RH, Grünwald D. Cold Spring Harb Perspect Biol 2 a000752 (2010)
  48. The cell cycle as a therapeutic target for Alzheimer's disease. Neve RL, McPhie DL. Pharmacol. Ther. 111 99-113 (2006)
  49. An overview of apoptosis and the prevention of colorectal cancer. Watson AJ. Crit. Rev. Oncol. Hematol. 57 107-121 (2006)
  50. Protein Allostery and Conformational Dynamics. Guo J, Zhou HX. Chem. Rev. 116 6503-6515 (2016)
  51. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships. Zeke A, Misheva M, Reményi A, Bogoyevitch MA. Microbiol. Mol. Biol. Rev. 80 793-835 (2016)
  52. The use of in vitro peptide-library screens in the analysis of phosphoserine/threonine-binding domain structure and function. Yaffe MB, Smerdon SJ. Annu Rev Biophys Biomol Struct 33 225-244 (2004)
  53. PhosphoSerine/threonine binding domains: you can't pSERious? Yaffe MB, Smerdon SJ. Structure 9 R33-8 (2001)
  54. The chemical biology of apoptosis. Exploring protein-protein interactions and the life and death of cells with small molecules. Huang Z. Chem. Biol. 9 1059-1072 (2002)
  55. Peptidyl-prolyl cis/trans isomerases and transcription: is there a twist in the tail? Shaw PE. EMBO Rep. 8 40-45 (2007)
  56. Natural cellular inhibitors of caspases. LeBlanc AC. Prog. Neuropsychopharmacol. Biol. Psychiatry 27 215-229 (2003)
  57. Targeting carcinogenesis: a role for the prolyl isomerase Pin1? Lu KP, Suizu F, Zhou XZ, Finn G, Lam P, Wulf G. Mol. Carcinog. 45 397-402 (2006)
  58. Molecular mechanisms of the phospho-dependent prolyl cis/trans isomerase Pin1. Lippens G, Landrieu I, Smet C. FEBS J. 274 5211-5222 (2007)
  59. Tetraploidy/aneuploidy and stem cells in cancer promotion: The role of chromosome passenger proteins. Nguyen HG, Ravid K. J. Cell. Physiol. 208 12-22 (2006)
  60. The alphabet of intrinsic disorder: I. Act like a Pro: On the abundance and roles of proline residues in intrinsically disordered proteins. Theillet FX, Kalmar L, Tompa P, Han KH, Selenko P, Dunker AK, Daughdrill GW, Uversky VN. Intrinsically Disord Proteins 1 e24360 (2013)
  61. Peptidyl-prolyl isomerase inhibitors. Wang XJ, Etzkorn FA. Biopolymers 84 125-146 (2006)
  62. Prolyl isomerases in gene transcription. Hanes SD. Biochim. Biophys. Acta 1850 2017-2034 (2015)
  63. The CTD code of RNA polymerase II: a structural view. Jasnovidova O, Stefl R. Wiley Interdiscip Rev RNA 4 1-16 (2013)
  64. NAIPs: building an innate immune barrier against bacterial pathogens. NAIPs function as sensors that initiate innate immunity by detection of bacterial proteins in the host cell cytosol. Kofoed EM, Vance RE. Bioessays 34 589-598 (2012)
  65. Protein recognition using synthetic small-molecular binders toward optical protein sensing in vitro and in live cells. Kubota R, Hamachi I. Chem Soc Rev 44 4454-4471 (2015)
  66. Regulation of AU-Rich Element RNA Binding Proteins by Phosphorylation and the Prolyl Isomerase Pin1. Shen ZJ, Malter JS. Biomolecules 5 412-434 (2015)
  67. The roles of peptidyl-proline isomerases in gene regulation. Dilworth D, Gudavicius G, Leung A, Nelson CJ. Biochem. Cell Biol. 90 55-69 (2012)
  68. Apoptosis and toxicology--what relevance? Vaux DL. Toxicology 181-182 3-7 (2002)
  69. A tale of chromatin and transcription in 100 structures. Cramer P. Cell 159 985-994 (2014)
  70. Targeting HECT-type E3 ligases - insights from catalysis, regulation and inhibitors. Fajner V, Maspero E, Polo S. FEBS Lett. 591 2636-2647 (2017)
  71. Lessons from nature: On the molecular recognition elements of the phosphoprotein binding-domains. Roque AC, Lowe CR. Biotechnol. Bioeng. 91 546-555 (2005)
  72. Simplicity is the Ultimate Sophistication-Crosstalk of Post-translational Modifications on the RNA Polymerase II. Venkat Ramani MK, Yang W, Irani S, Zhang Y. J Mol Biol 433 166912 (2021)
  73. Understanding the role of PIN1 in hepatocellular carcinoma. Cheng CW, Leong KW, Tse E. World J. Gastroenterol. 22 9921-9932 (2016)
  74. [Unexpected roles of the peptidyl-prolyl cis/trans isomerase Pin1]. Lavoie SB, Albert AL, Vincent M. Med Sci (Paris) 19 1251-1258 (2003)
  75. Association between survivin -31G>C polymorphism and cancer risk: meta-analysis of 29 studies. Qin Q, Zhang C, Zhu H, Yang X, Xu L, Liu J, Lu J, Zhan L, Cheng H, Sun X. J. Cancer Res. Clin. Oncol. 140 179-188 (2014)
  76. A combinatorial view of old and new RNA polymerase II modifications. Lyons DE, McMahon S, Ott M. Transcription 11 66-82 (2020)
  77. Do polyproline II helix associations modulate biomolecular condensates? Mompeán M, Oroz J, Laurents DV. FEBS Open Bio 11 2390-2399 (2021)
  78. Optical chemosensors for the detection of proximally phosphorylated peptides and proteins. Cabral AD, Radu TB, de Araujo ED, Gunning PT. RSC Chem Biol 2 815-829 (2021)
  79. Pin1 Plays Essential Roles in NASH Development by Modulating Multiple Target Proteins. Inoue MK, Nakatsu Y, Yamamotoya T, Hasei S, Kanamoto M, Naitou M, Matsunaga Y, Sakoda H, Fujishiro M, Ono H, Kushiyama A, Asano T. Cells 8 (2019)
  80. SMURF1, a promoter of tumor cell progression? Xia Q, Li Y, Han D, Dong L. Cancer Gene Ther 28 551-565 (2021)
  81. Activity and Affinity of Pin1 Variants. Born A, Henen MA, Vögeli B. Molecules 25 (2019)
  82. Fatal Attraction: The Case of Toxic Soluble Dimers of Truncated PQBP-1 Mutants in X-Linked Intellectual Disability. Chen YW, Rahman SK. Int J Mol Sci 22 2240 (2021)
  83. Gears-In-Motion: The Interplay of WW and PPIase Domains in Pin1. Lee YM, Liou YC. Front Oncol 8 469 (2018)
  84. Interaction modules that impart specificity to disordered protein. Cermakova K, Hodges HC. Trends Biochem Sci 48 477-490 (2023)
  85. Oncogenic Hijacking of the PIN1 Signaling Network. Zannini A, Rustighi A, Campaner E, Del Sal G. Front Oncol 9 94 (2019)
  86. Pin1 Modulation in Physiological Status and Neurodegeneration. Any Contribution to the Pathogenesis of Type 3 Diabetes? Bianchi M, Manco M. Int J Mol Sci 19 (2018)
  87. Prolyl Isomerase Pin1 in Human Cancer: Function, Mechanism, and Significance. Pu W, Zheng Y, Peng Y. Front Cell Dev Biol 8 168 (2020)
  88. The kingdom of the prolyl-isomerase Pin1: The structural and functional convergence and divergence of Pin1. Lee YM, Teoh DE, Yeung K, Liou YC. Front Cell Dev Biol 10 956071 (2022)
  89. [Chromatin and transcription regulation]. Razin SV. Mol. Biol. (Mosk.) 41 387-394 (2007)

Articles citing this publication (266)

  1. Structural basis of IAP recognition by Smac/DIABLO. Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X, Shi Y. Nature 408 1008-1012 (2000)
  2. Structural basis for the inhibition of caspase-3 by XIAP. Riedl SJ, Renatus M, Schwarzenbacher R, Zhou Q, Sun C, Fesik SW, Liddington RC, Salvesen GS. Cell 104 791-800 (2001)
  3. The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Elia AE, Rellos P, Haire LF, Chao JW, Ivins FJ, Hoepker K, Mohammad D, Cantley LC, Smerdon SJ, Yaffe MB. Cell 115 83-95 (2003)
  4. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Liu Z, Sun C, Olejniczak ET, Meadows RP, Betz SF, Oost T, Herrmann J, Wu JC, Fesik SW. Nature 408 1004-1008 (2000)
  5. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Orlicky S, Tang X, Willems A, Tyers M, Sicheri F. Cell 112 243-256 (2003)
  6. Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Huang Y, Park YC, Rich RL, Segal D, Myszka DG, Wu H. Cell 104 781-790 (2001)
  7. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Zacchi P, Gostissa M, Uchida T, Salvagno C, Avolio F, Volinia S, Ronai Z, Blandino G, Schneider C, Del Sal G. Nature 419 853-857 (2002)
  8. Prevalent overexpression of prolyl isomerase Pin1 in human cancers. Bao L, Kimzey A, Sauter G, Sowadski JM, Lu KP, Wang DG. Am. J. Pathol. 164 1727-1737 (2004)
  9. FY is an RNA 3' end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Simpson GG, Dijkwel PP, Quesada V, Henderson I, Dean C. Cell 113 777-787 (2003)
  10. Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Liou YC, Ryo A, Huang HK, Lu PJ, Bronson R, Fujimori F, Uchida T, Hunter T, Lu KP. Proc. Natl. Acad. Sci. U.S.A. 99 1335-1340 (2002)
  11. The folding mechanism of a beta-sheet: the WW domain. Jäger M, Nguyen H, Crane JC, Kelly JW, Gruebele M. J. Mol. Biol. 311 373-393 (2001)
  12. News The CTD code. Buratowski S. Nat. Struct. Biol. 10 679-680 (2003)
  13. A p34(cdc2) survival checkpoint in cancer. O'Connor DS, Wall NR, Porter AC, Altieri DC. Cancer Cell 2 43-54 (2002)
  14. Recognition of RNA polymerase II carboxy-terminal domain by 3'-RNA-processing factors. Meinhart A, Cramer P. Nature 430 223-226 (2004)
  15. Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling. Gao S, Alarcón C, Sapkota G, Rahman S, Chen PY, Goerner N, Macias MJ, Erdjument-Bromage H, Tempst P, Massagué J. Mol. Cell 36 457-468 (2009)
  16. The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Vasiljeva L, Kim M, Mutschler H, Buratowski S, Meinhart A. Nat. Struct. Mol. Biol. 15 795-804 (2008)
  17. Structure of a Survivin-Borealin-INCENP core complex reveals how chromosomal passengers travel together. Jeyaprakash AA, Klein UR, Lindner D, Ebert J, Nigg EA, Conti E. Cell 131 271-285 (2007)
  18. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Akhtar MS, Heidemann M, Tietjen JR, Zhang DW, Chapman RD, Eick D, Ansari AZ. Mol. Cell 34 387-393 (2009)
  19. Rational design of shepherdin, a novel anticancer agent. Plescia J, Salz W, Xia F, Pennati M, Zaffaroni N, Daidone MG, Meli M, Dohi T, Fortugno P, Nefedova Y, Gabrilovich DI, Colombo G, Altieri DC. Cancer Cell 7 457-468 (2005)
  20. Regulation of the transcriptional activity of c-Fos by ERK. A novel role for the prolyl isomerase PIN1. Monje P, Hernández-Losa J, Lyons RJ, Castellone MD, Gutkind JS. J Biol Chem 280 35081-35084 (2005)
  21. A genetically encoded fluorescent sensor of ERK activity. Harvey CD, Ehrhardt AG, Cellurale C, Zhong H, Yasuda R, Davis RJ, Svoboda K. Proc. Natl. Acad. Sci. U.S.A. 105 19264-19269 (2008)
  22. The crystal structure of the human polo-like kinase-1 polo box domain and its phospho-peptide complex. Cheng KY, Lowe ED, Sinclair J, Nigg EA, Johnson LN. EMBO J. 22 5757-5768 (2003)
  23. The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2. Ramón-Maiques S, Kuo AJ, Carney D, Matthews AG, Oettinger MA, Gozani O, Yang W. Proc. Natl. Acad. Sci. U.S.A. 104 18993-18998 (2007)
  24. Natural-like function in artificial WW domains. Russ WP, Lowery DM, Mishra P, Yaffe MB, Ranganathan R. Nature 437 579-583 (2005)
  25. Structure of an mRNA capping enzyme bound to the phosphorylated carboxy-terminal domain of RNA polymerase II. Fabrega C, Shen V, Shuman S, Lima CD. Mol. Cell 11 1549-1561 (2003)
  26. A novel peptide recognition mode revealed by the X-ray structure of a core U2AF35/U2AF65 heterodimer. Kielkopf CL, Rodionova NA, Green MR, Burley SK. Cell 106 595-605 (2001)
  27. Survivin splice variants regulate the balance between proliferation and cell death. Caldas H, Jiang Y, Holloway MP, Fangusaro J, Mahotka C, Conway EM, Altura RA. Oncogene 24 1994-2007 (2005)
  28. WW domains provide a platform for the assembly of multiprotein networks. Ingham RJ, Colwill K, Howard C, Dettwiler S, Lim CS, Yu J, Hersi K, Raaijmakers J, Gish G, Mbamalu G, Taylor L, Yeung B, Vassilovski G, Amin M, Chen F, Matskova L, Winberg G, Ernberg I, Linding R, O'donnell P, Starostine A, Keller W, Metalnikov P, Stark C, Pawson T. Mol. Cell. Biol. 25 7092-7106 (2005)
  29. Pin1 modulates the structure and function of human RNA polymerase II. Xu YX, Hirose Y, Zhou XZ, Lu KP, Manley JL. Genes Dev. 17 2765-2776 (2003)
  30. Differential subcellular localization of functionally divergent survivin splice variants. Mahotka C, Liebmann J, Wenzel M, Suschek CV, Schmitt M, Gabbert HE, Gerharz CD. Cell Death Differ. 9 1334-1342 (2002)
  31. Phosphorylation stabilizes Nanog by promoting its interaction with Pin1. Moretto-Zita M, Jin H, Shen Z, Zhao T, Briggs SP, Xu Y. Proc. Natl. Acad. Sci. U.S.A. 107 13312-13317 (2010)
  32. Identification of a novel splice variant of the human anti-apoptopsis gene survivin. Badran A, Yoshida A, Ishikawa K, Goi T, Yamaguchi A, Ueda T, Inuzuka M. Biochem. Biophys. Res. Commun. 314 902-907 (2004)
  33. Pin1 and Par14 peptidyl prolyl isomerase inhibitors block cell proliferation. Uchida T, Takamiya M, Takahashi M, Miyashita H, Ikeda H, Terada T, Matsuo Y, Shirouzu M, Yokoyama S, Fujimori F, Hunter T. Chem. Biol. 10 15-24 (2003)
  34. The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1. Goldstrohm AC, Albrecht TR, Suñé C, Bedford MT, Garcia-Blanco MA. Mol. Cell. Biol. 21 7617-7628 (2001)
  35. Deciphering the RNA polymerase II CTD code in fission yeast. Schwer B, Shuman S. Mol. Cell 43 311-318 (2011)
  36. Distinct in vivo expression patterns of survivin splice variants in renal cell carcinomas. Mahotka C, Krieg T, Krieg A, Wenzel M, Suschek CV, Heydthausen M, Gabbert HE, Gerharz CD. Int. J. Cancer 100 30-36 (2002)
  37. Structural analysis of a functional DIAP1 fragment bound to grim and hid peptides. Wu JW, Cocina AE, Chai J, Hay BA, Shi Y. Mol. Cell 8 95-104 (2001)
  38. Structure and mechanism of RNA polymerase II CTD phosphatases. Kamenski T, Heilmeier S, Meinhart A, Cramer P. Mol. Cell 15 399-407 (2004)
  39. WW domain sequence activity relationships identified using ligand recognition propensities of 42 WW domains. Otte L, Wiedemann U, Schlegel B, Pires JR, Beyermann M, Schmieder P, Krause G, Volkmer-Engert R, Schneider-Mergener J, Oschkinat H. Protein Sci. 12 491-500 (2003)
  40. cis-Proline-mediated Ser(P)5 dephosphorylation by the RNA polymerase II C-terminal domain phosphatase Ssu72. Werner-Allen JW, Lee CJ, Liu P, Nicely NI, Wang S, Greenleaf AL, Zhou P. J. Biol. Chem. 286 5717-5726 (2011)
  41. FAK phosphorylation by ERK primes ras-induced tyrosine dephosphorylation of FAK mediated by PIN1 and PTP-PEST. Zheng Y, Xia Y, Hawke D, Halle M, Tremblay ML, Gao X, Zhou XZ, Aldape K, Cobb MH, Xie K, He J, Lu Z. Mol. Cell 35 11-25 (2009)
  42. Determinants for dephosphorylation of the RNA polymerase II C-terminal domain by Scp1. Zhang Y, Kim Y, Genoud N, Gao J, Kelly JW, Pfaff SL, Gill GN, Dixon JE, Noel JP. Mol. Cell 24 759-770 (2006)
  43. Structural basis for high-affinity peptide inhibition of human Pin1. Zhang Y, Daum S, Wildemann D, Zhou XZ, Verdecia MA, Bowman ME, Lücke C, Hunter T, Lu KP, Fischer G, Noel JP. ACS Chem. Biol. 2 320-328 (2007)
  44. Voltage-gated sodium channel Nav1.6 is modulated by p38 mitogen-activated protein kinase. Wittmack EK, Rush AM, Hudmon A, Waxman SG, Dib-Hajj SD. J. Neurosci. 25 6621-6630 (2005)
  45. Peptidyl-prolyl isomerase 1 (Pin1) serves as a coactivator of steroid receptor by regulating the activity of phosphorylated steroid receptor coactivator 3 (SRC-3/AIB1). Yi P, Wu RC, Sandquist J, Wong J, Tsai SY, Tsai MJ, Means AR, O'Malley BW. Mol. Cell. Biol. 25 9687-9699 (2005)
  46. Survivin expression correlates with clinical stage, histological grade, invasive behavior and survival rate in endometrial carcinoma. Takai N, Miyazaki T, Nishida M, Nasu K, Miyakawa I. Cancer Lett. 184 105-116 (2002)
  47. Pin1 interacts with a specific serine-proline motif of hepatitis B virus X-protein to enhance hepatocarcinogenesis. Pang R, Lee TK, Poon RT, Fan ST, Wong KB, Kwong YL, Tse E. Gastroenterology 132 1088-1103 (2007)
  48. Structure of the mediator head module bound to the carboxy-terminal domain of RNA polymerase II. Robinson PJ, Bushnell DA, Trnka MJ, Burlingame AL, Kornberg RD. Proc. Natl. Acad. Sci. U.S.A. 109 17931-17935 (2012)
  49. Regulation of p53 localization and transcription by the HECT domain E3 ligase WWP1. Laine A, Ronai Z. Oncogene 26 1477-1483 (2007)
  50. Key features of the interaction between Pcf11 CID and RNA polymerase II CTD. Noble CG, Hollingworth D, Martin SR, Ennis-Adeniran V, Smerdon SJ, Kelly G, Taylor IA, Ramos A. Nat. Struct. Mol. Biol. 12 144-151 (2005)
  51. Characterizing Class I WW domains defines key specificity determinants and generates mutant domains with novel specificities. Kasanov J, Pirozzi G, Uveges AJ, Kay BK. Chem. Biol. 8 231-241 (2001)
  52. Solution structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1. Li M, Phatnani HP, Guan Z, Sage H, Greenleaf AL, Zhou P. Proc. Natl. Acad. Sci. U.S.A. 102 17636-17641 (2005)
  53. A phase II study of the survivin suppressant YM155 in patients with refractory diffuse large B-cell lymphoma. Cheson BD, Bartlett NL, Vose JM, Lopez-Hernandez A, Seiz AL, Keating AT, Shamsili S, Papadopoulos KP. Cancer 118 3128-3134 (2012)
  54. Pin1 modulates RNA polymerase II activity during the transcription cycle. Xu YX, Manley JL. Genes Dev. 21 2950-2962 (2007)
  55. The Ess1 prolyl isomerase is required for transcription termination of small noncoding RNAs via the Nrd1 pathway. Singh N, Ma Z, Gemmill T, Wu X, Defiglio H, Rossettini A, Rabeler C, Beane O, Morse RH, Palumbo MJ, Hanes SD. Mol. Cell 36 255-266 (2009)
  56. The structure of an FF domain from human HYPA/FBP11. Allen M, Friedler A, Schon O, Bycroft M. J. Mol. Biol. 323 411-416 (2002)
  57. Solution structure and ligand recognition of the WW domain pair of the yeast splicing factor Prp40. Wiesner S, Stier G, Sattler M, Macias MJ. J. Mol. Biol. 324 807-822 (2002)
  58. A nuclear FK506-binding protein is a histone chaperone regulating rDNA silencing. Kuzuhara T, Horikoshi M. Nat. Struct. Mol. Biol. 11 275-283 (2004)
  59. Molecular mechanisms of ubiquitin-dependent membrane traffic. Hurley JH, Stenmark H. Annu Rev Biophys 40 119-142 (2011)
  60. Survivin acts as an antiapoptotic factor during the development of mouse preimplantation embryos. Kawamura K, Sato N, Fukuda J, Kodama H, Kumagai J, Tanikawa H, Shimizu Y, Tanaka T. Dev. Biol. 256 331-341 (2003)
  61. The polymorphism and haplotypes of PIN1 gene are associated with the risk of lung cancer in Southern and Eastern Chinese populations. Lu J, Yang L, Zhao H, Liu B, Li Y, Wu H, Li Q, Zeng B, Wang Y, Ji W, Zhou Y. Hum. Mutat. 32 1299-1308 (2011)
  62. The E3 ubiquitin ligase atrophin interacting protein 4 binds directly to the chemokine receptor CXCR4 via a novel WW domain-mediated interaction. Bhandari D, Robia SL, Marchese A. Mol. Biol. Cell 20 1324-1339 (2009)
  63. Rapid amyloid fiber formation from the fast-folding WW domain FBP28. Ferguson N, Berriman J, Petrovich M, Sharpe TD, Finch JT, Fersht AR. Proc. Natl. Acad. Sci. U.S.A. 100 9814-9819 (2003)
  64. Structural determinants for high-affinity binding in a Nedd4 WW3* domain-Comm PY motif complex. Kanelis V, Bruce MC, Skrynnikov NR, Rotin D, Forman-Kay JD. Structure 14 543-553 (2006)
  65. Substrate recognition reduces side-chain flexibility for conserved hydrophobic residues in human Pin1. Namanja AT, Peng T, Zintsmaster JS, Elson AC, Shakour MG, Peng JW. Structure 15 313-327 (2007)
  66. Functional unit of the RNA polymerase II C-terminal domain lies within heptapeptide pairs. Stiller JW, Cook MS. Eukaryotic Cell 3 735-740 (2004)
  67. Integrating folding kinetics and protein function: biphasic kinetics and dual binding specificity in a WW domain. Karanicolas J, Brooks CL. Proc. Natl. Acad. Sci. U.S.A. 101 3432-3437 (2004)
  68. NMR solution structure of the isolated Apo Pin1 WW domain: comparison to the x-ray crystal structures of Pin1. Kowalski JA, Liu K, Kelly JW. Biopolymers 63 111-121 (2002)
  69. FF domains of CA150 bind transcription and splicing factors through multiple weak interactions. Smith MJ, Kulkarni S, Pawson T. Mol. Cell. Biol. 24 9274-9285 (2004)
  70. Global analysis of protein folding using massively parallel design, synthesis, and testing. Rocklin GJ, Chidyausiku TM, Goreshnik I, Ford A, Houliston S, Lemak A, Carter L, Ravichandran R, Mulligan VK, Chevalier A, Arrowsmith CH, Baker D. Science 357 168-175 (2017)
  71. Functionally important residues in the peptidyl-prolyl isomerase Pin1 revealed by unigenic evolution. Behrsin CD, Bailey ML, Bateman KS, Hamilton KS, Wahl LM, Brandl CJ, Shilton BH, Litchfield DW. J. Mol. Biol. 365 1143-1162 (2007)
  72. Pin1 modulates the dephosphorylation of the RNA polymerase II C-terminal domain by yeast Fcp1. Kops O, Zhou XZ, Lu KP. FEBS Lett. 513 305-311 (2002)
  73. Common mechanism of ligand recognition by group II/III WW domains: redefining their functional classification. Kato Y, Nagata K, Takahashi M, Lian L, Herrero JJ, Sudol M, Tanokura M. J. Biol. Chem. 279 31833-31841 (2004)
  74. The Ess1 prolyl isomerase is required for growth and morphogenetic switching in Candida albicans. Devasahayam G, Chaturvedi V, Hanes SD. Genetics 160 37-48 (2002)
  75. A serine protease is involved in the initiation of DNA damage-induced apoptosis. de Bruin EC, Meersma D, de Wilde J, den Otter I, Schipper EM, Medema JP, Peltenburg LT. Cell Death Differ. 10 1204-1212 (2003)
  76. A cross-strand Trp Trp pair stabilizes the hPin1 WW domain at the expense of function. Jäger M, Dendle M, Fuller AA, Kelly JW. Protein Sci. 16 2306-2313 (2007)
  77. Implicit solvent models for flexible protein-protein docking by molecular dynamics simulation. Wang T, Wade RC. Proteins 50 158-169 (2003)
  78. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces. Zerbe BS, Hall DR, Vajda S, Whitty A, Kozakov D. J Chem Inf Model 52 2236-2244 (2012)
  79. Structure of melanoma inhibitory activity protein, a member of a recently identified family of secreted proteins. Lougheed JC, Holton JM, Alber T, Bazan JF, Handel TM. Proc. Natl. Acad. Sci. U.S.A. 98 5515-5520 (2001)
  80. The prolyl isomerase Pin1 affects Che-1 stability in response to apoptotic DNA damage. De Nicola F, Bruno T, Iezzi S, Di Padova M, Floridi A, Passananti C, Del Sal G, Fanciulli M. J Biol Chem 282 19685-19691 (2007)
  81. Multiple interactions of the cytosolic polyproline region of the CD95 ligand: hints for the reverse signal transduction capacity of a death factor. Wenzel J, Sanzenbacher R, Ghadimi M, Lewitzky M, Zhou Q, Kaplan DR, Kabelitz D, Feller SM, Janssen O. FEBS Lett. 509 255-262 (2001)
  82. Sequence-specific dynamics modulate recognition specificity in WW domains. Peng T, Zintsmaster JS, Namanja AT, Peng JW. Nat. Struct. Mol. Biol. 14 325-331 (2007)
  83. Vanishingly low levels of Ess1 prolyl-isomerase activity are sufficient for growth in Saccharomyces cerevisiae. Gemmill TR, Wu X, Hanes SD. J. Biol. Chem. 280 15510-15517 (2005)
  84. Dipentamethylene thiuram monosulfide is a novel inhibitor of Pin1. Tatara Y, Lin YC, Bamba Y, Mori T, Uchida T. Biochem. Biophys. Res. Commun. 384 394-398 (2009)
  85. Increasing protein stability using a rational approach combining sequence homology and structural alignment: Stabilizing the WW domain. Jiang X, Kowalski J, Kelly JW. Protein Sci. 10 1454-1465 (2001)
  86. A cell-permeable dominant-negative survivin protein induces apoptosis and sensitizes prostate cancer cells to TNF-α therapy. Cheung CH, Sun X, Kanwar JR, Bai JZ, Cheng L, Krissansen GW. Cancer Cell Int. 10 36 (2010)
  87. Shortfalls in the peptidyl-prolyl cis-trans isomerase protein Pin1 in neurons are associated with frontotemporal dementias. Thorpe JR, Mosaheb S, Hashemzadeh-Bonehi L, Cairns NJ, Kay JE, Morley SJ, Rulten SL. Neurobiol. Dis. 17 237-249 (2004)
  88. Comparative structural and energetic analysis of WW domain-peptide interactions. Schleinkofer K, Wiedemann U, Otte L, Wang T, Krause G, Oschkinat H, Wade RC. J. Mol. Biol. 344 865-881 (2004)
  89. HIPK2 kinase activity depends on cis-autophosphorylation of its activation loop. Saul VV, de la Vega L, Milanovic M, Krüger M, Braun T, Fritz-Wolf K, Becker K, Schmitz ML. J Mol Cell Biol 5 27-38 (2013)
  90. Mathematical modeling of the regulation of caspase-3 activation and degradation. Stucki JW, Simon HU. J. Theor. Biol. 234 123-131 (2005)
  91. Sequence determinants of thermodynamic stability in a WW domain--an all-beta-sheet protein. Jäger M, Dendle M, Kelly JW. Protein Sci. 18 1806-1813 (2009)
  92. The prolyl isomerase Pin1 targets stem-loop binding protein (SLBP) to dissociate the SLBP-histone mRNA complex linking histone mRNA decay with SLBP ubiquitination. Krishnan N, Lam TT, Fritz A, Rempinski D, O'Loughlin K, Minderman H, Berezney R, Marzluff WF, Thapar R. Mol. Cell. Biol. 32 4306-4322 (2012)
  93. Discovery of a novel small molecule binding site of human survivin. Wendt MD, Sun C, Kunzer A, Sauer D, Sarris K, Hoff E, Yu L, Nettesheim DG, Chen J, Jin S, Comess KM, Fan Y, Anderson SN, Isaac B, Olejniczak ET, Hajduk PJ, Rosenberg SH, Elmore SW. Bioorg. Med. Chem. Lett. 17 3122-3129 (2007)
  94. Evolution of binding affinity in a WW domain probed by phage display. Dalby PA, Hoess RH, DeGrado WF. Protein Sci. 9 2366-2376 (2000)
  95. Structural and functional analysis of the phosphoryl transfer reaction mediated by the human small C-terminal domain phosphatase, Scp1. Zhang M, Liu J, Kim Y, Dixon JE, Pfaff SL, Gill GN, Noel JP, Zhang Y. Protein Sci. 19 974-986 (2010)
  96. Structural basis for polyproline recognition by the FE65 WW domain. Meiyappan M, Birrane G, Ladias JAA. J. Mol. Biol. 372 970-980 (2007)
  97. Survivin interacts with Smac/DIABLO in ovarian carcinoma cells but is redundant in Smac-mediated apoptosis. McNeish IA, Lopes R, Bell SJ, McKay TR, Fernandez M, Lockley M, Wheatley SP, Lemoine NR. Exp. Cell Res. 302 69-82 (2005)
  98. The antiapoptotic gene survivin is highly expressed in human chondrosarcoma and promotes drug resistance in chondrosarcoma cells in vitro. Lechler P, Renkawitz T, Campean V, Balakrishnan S, Tingart M, Grifka J, Schaumburger J. BMC Cancer 11 120 (2011)
  99. Procaspase 3 expression in ovarian carcinoma cells increases survivin transcription which can be countered with a dominant-negative mutant, survivin T34A; a combination gene therapy strategy. McKay TR, Bell S, Tenev T, Stoll V, Lopes R, Lemoine NR, McNeish IA. Oncogene 22 3539-3547 (2003)
  100. Proline-directed random-coil chemical shift values as a tool for the NMR assignment of the tau phosphorylation sites. Lippens G, Wieruszeski JM, Leroy A, Smet C, Sillen A, Buée L, Landrieu I. Chembiochem 5 73-78 (2004)
  101. Stereospecific gating of functional motions in Pin1. Namanja AT, Wang XJ, Xu B, Mercedes-Camacho AY, Wilson KA, Etzkorn FA, Peng JW. Proc. Natl. Acad. Sci. U.S.A. 108 12289-12294 (2011)
  102. Survivin, a novel anti-apoptosis inhibitor, expression in uterine cervical cancer and relationship with prognostic factors. Lee JP, Chang KH, Han JH, Ryu HS. Int. J. Gynecol. Cancer 15 113-119 (2005)
  103. Synthesis of an Array Comprising 837 Variants of the hYAP WW Protein Domain This work was supported by the DFG (INK 16/B1-1), by the Fonds der Chemischen Industrie, and by the Universitätsklinikum Charité Berlin. Toepert F, Pires JR, Landgraf C, Oschkinat H, Schneider-Mergener J. Angew. Chem. Int. Ed. Engl. 40 897-900 (2001)
  104. On the benefit of bivalency in peptide ligand/pin1 interactions. Daum S, Lücke C, Wildemann D, Schiene-Fischer C. J. Mol. Biol. 374 147-161 (2007)
  105. Comparative genomics and evolution of proteins associated with RNA polymerase II C-terminal domain. Guo Z, Stiller JW. Mol. Biol. Evol. 22 2166-2178 (2005)
  106. Genome-wide prediction of SH2 domain targets using structural information and the FoldX algorithm. Sánchez IE, Beltrao P, Stricher F, Schymkowitz J, Ferkinghoff-Borg J, Rousseau F, Serrano L. PLoS Comput. Biol. 4 e1000052 (2008)
  107. A critical step for JNK activation: isomerization by the prolyl isomerase Pin1. Park JE, Lee JA, Park SG, Lee DH, Kim SJ, Kim HJ, Uchida C, Uchida T, Park BC, Cho S. Cell Death Differ. 19 153-161 (2012)
  108. Pin1: a therapeutic target in Alzheimer neurodegeneration. Hamdane M, Smet C, Sambo AV, Leroy A, Wieruszeski JM, Delobel P, Maurage CA, Ghestem A, Wintjens R, Bégard S, Sergeant N, Delacourte A, Horvath D, Landrieu I, Lippens G, Buée L. J. Mol. Neurosci. 19 275-287 (2002)
  109. Specificity and autoregulation of Notch binding by tandem WW domains in suppressor of Deltex. Jennings MD, Blankley RT, Baron M, Golovanov AP, Avis JM. J. Biol. Chem. 282 29032-29042 (2007)
  110. The N-terminal basic domain of human parvulin hPar14 is responsible for the entry to the nucleus and high-affinity DNA-binding. Surmacz TA, Bayer E, Rahfeld JU, Fischer G, Bayer P. J. Mol. Biol. 321 235-247 (2002)
  111. Characterization of novel elongated Parvulin isoforms that are ubiquitously expressed in human tissues and originate from alternative transcription initiation. Mueller JW, Kessler D, Neumann D, Stratmann T, Papatheodorou P, Hartmann-Fatu C, Bayer P. BMC Mol. Biol. 7 9 (2006)
  112. Dephosphorylation of RNA polymerase II by CTD-phosphatase FCP1 is inhibited by phospho-CTD associating proteins. Palancade B, Marshall NF, Tremeau-Bravard A, Bensaude O, Dahmus ME, Dubois MF. J. Mol. Biol. 335 415-424 (2004)
  113. Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis. Greenwood AI, Rogals MJ, De S, Lu KP, Kovrigin EL, Nicholson LK. J. Biomol. NMR 51 21-34 (2011)
  114. research-article The anti-apoptotic factor Che-1/AATF links transcriptional regulation, cell cycle control, and DNA damage response. Passananti C, Fanciulli M. Cell Div 2 21 (2007)
  115. Cell cycle-dependent phosphorylation of Disabled-2 by cdc2. He J, Xu J, Xu XX, Hall RA. Oncogene 22 4524-4530 (2003)
  116. Crystal structure of human filamin C domain 23 and small angle scattering model for filamin C 23-24 dimer. Sjekloća L, Pudas R, Sjöblom B, Konarev P, Carugo O, Rybin V, Kiema TR, Svergun D, Ylänne J, Djinović Carugo K. J. Mol. Biol. 368 1011-1023 (2007)
  117. Expression and significance of new inhibitor of apoptosis protein survivin in hepatocellular carcinoma. Zhu H, Chen XP, Zhang WG, Luo SF, Zhang BX. World J. Gastroenterol. 11 3855-3859 (2005)
  118. Comparative analysis of enzyme activities and mRNA levels of peptidyl prolyl cis/trans isomerases in various organs of wild type and Pin1-/- mice. Fanghänel J, Akiyama H, Uchida C, Uchida T. FEBS Lett. 580 3237-3245 (2006)
  119. Nuclear interaction of Smac/DIABLO with Survivin at G2/M arrest prompts docetaxel-induced apoptosis in DU145 prostate cancer cells. Kim JY, Chung JY, Lee SG, Kim YJ, Park JE, Yoo KS, Yoo YH, Park YC, Kim BG, Kim JM. Biochem. Biophys. Res. Commun. 350 949-954 (2006)
  120. Outcome of treatment of human HeLa cervical cancer cells with roscovitine strongly depends on the dosage and cell cycle status prior to the treatment. Wesierska-Gadek J, Borza A, Walzi E, Krystof V, Maurer M, Komina O, Wandl S. J. Cell. Biochem. 106 937-955 (2009)
  121. Survivin expression and serum levels in pancreatic cancer. Dong H, Qian D, Wang Y, Meng L, Chen D, Ji X, Feng W. World J Surg Oncol 13 189 (2015)
  122. novel modifications on C-terminal domain of RNA polymerase II can fine-tune the phosphatase activity of Ssu72. Luo Y, Yogesha SD, Cannon JR, Yan W, Ellington AD, Brodbelt JS, Zhang Y. ACS Chem. Biol. 8 2042-2052 (2013)
  123. The structure of the Candida albicans Ess1 prolyl isomerase reveals a well-ordered linker that restricts domain mobility. Li Z, Li H, Devasahayam G, Gemmill T, Chaturvedi V, Hanes SD, Van Roey P. Biochemistry 44 6180-6189 (2005)
  124. Alternative splicing of a beta4 subunit proline-rich motif regulates voltage-dependent gating and toxin block of Cav2.1 Ca2+ channels. Helton TD, Kojetin DJ, Cavanagh J, Horne WA. J. Neurosci. 22 9331-9339 (2002)
  125. Exosomes Secreted from Human Cancer Cell Lines Contain Inhibitors of Apoptosis (IAP). Valenzuela MM, Ferguson Bennit HR, Gonda A, Diaz Osterman CJ, Hibma A, Khan S, Wall NR. Cancer Microenviron 8 65-73 (2015)
  126. Solution structure of the single-domain prolyl cis/trans isomerase PIN1At from Arabidopsis thaliana. Landrieu I, Wieruszeski JM, Wintjens R, Inzé D, Lippens G. J. Mol. Biol. 320 321-332 (2002)
  127. Survivin expression in rat testis is upregulated by stem-cell factor. Wang Y, Suominen JS, Hakovirta H, Parvinen M, Martinand-Mari C, Toppari J, Robbins I. Mol. Cell. Endocrinol. 218 165-174 (2004)
  128. Targeted inhibition of metastatic melanoma through interference with Pin1-FOXM1 signaling. Kruiswijk F, Hasenfuss SC, Sivapatham R, Baar MP, Putavet D, Naipal KA, van den Broek NJ, Kruit W, van der Spek PJ, van Gent DC, Brenkman AB, Campisi J, Burgering BM, Hoeijmakers JH, de Keizer PL. Oncogene 35 2166-2177 (2016)
  129. Unraveling a phosphorylation event in a folded protein by NMR spectroscopy: phosphorylation of the Pin1 WW domain by PKA. Smet-Nocca C, Launay H, Wieruszeski JM, Lippens G, Landrieu I. J. Biomol. NMR 55 323-337 (2013)
  130. WAC, a novel WW domain-containing adapter with a coiled-coil region, is colocalized with splicing factor SC35. Xu GM, Arnaout MA. Genomics 79 87-94 (2002)
  131. High-level expression, purification and pro-apoptosis activity of HIV-TAT-survivin (T34A) mutant to cancer cells in vitro. Ma X, Zheng W, Wei D, Ma Y, Wang T, Wang J, Liu Q, Yang S. J. Biotechnol. 123 367-378 (2006)
  132. Interdomain interactions support interdomain communication in human Pin1. Wilson KA, Bouchard JJ, Peng JW. Biochemistry 52 6968-6981 (2013)
  133. Structural basis for APPTPPPLPP peptide recognition by the FBP11WW1 domain. Pires JR, Parthier C, Aido-Machado Rd, Wiedemann U, Otte L, Böhm G, Rudolph R, Oschkinat H. J. Mol. Biol. 348 399-408 (2005)
  134. The ubiquitin-protein ligase Nedd4-2 differentially interacts with and regulates members of the Tweety family of chloride ion channels. He Y, Hryciw DH, Carroll ML, Myers SA, Whitbread AK, Kumar S, Poronnik P, Hooper JD. J. Biol. Chem. 283 24000-24010 (2008)
  135. Dephosphorylation of the inhibitory phosphorylation site S287 in Xenopus Cdc25C by protein phosphatase-2A is inhibited by 14-3-3 binding. Hutchins JR, Dikovskaya D, Clarke PR. FEBS Lett. 528 267-271 (2002)
  136. Identification of a novel mutation in the myosin VIIA motor domain in a family with autosomal dominant hearing loss (DFNA11). Di Leva F, D'Adamo P, Cubellis MV, D'Eustacchio A, Errichiello M, Saulino C, Auletta G, Giannini P, Donaudy F, Ciccodicola A, Gasparini P, Franzè A, Marciano E. Audiol Neurootol 11 157-164 (2006)
  137. Interpretation of NMR relaxation properties of Pin1, a two-domain protein, based on Brownian dynamic simulations. Bernadó P, Fernandes MX, Jacobs DM, Fiebig K, García de la Torre J, Pons M. J. Biomol. NMR 29 21-35 (2004)
  138. NMR structural studies of the ItchWW3 domain reveal that phosphorylation at T30 inhibits the interaction with PPxY-containing ligands. Morales B, Ramirez-Espain X, Shaw AZ, Martin-Malpartida P, Yraola F, Sánchez-Tilló E, Farrera C, Celada A, Royo M, Macias MJ. Structure 15 473-483 (2007)
  139. Research Support, U.S. Gov't, P.H.S. Cytokinesis, apoptosis and survivin: three for tango? Altieri DC. Cell Death Differ. 8 4-5 (2001)
  140. PCIF1, a novel human WW domain-containing protein, interacts with the phosphorylated RNA polymerase II. Fan H, Sakuraba K, Komuro A, Kato S, Harada F, Hirose Y. Biochem. Biophys. Res. Commun. 301 378-385 (2003)
  141. Radiation-induced apoptosis of tumor cells is facilitated by inhibition of the interaction between Survivin and Smac/DIABLO. Ogura A, Watanabe Y, Iizuka D, Yasui H, Amitani M, Kobayashi S, Kuwabara M, Inanami O. Cancer Lett. 259 71-81 (2008)
  142. Structure and dynamics of human Nedd4-1 WW3 in complex with the αENaC PY motif. Bobby R, Medini K, Neudecker P, Lee TV, Brimble MA, McDonald FJ, Lott JS, Dingley AJ. Biochim. Biophys. Acta 1834 1632-1641 (2013)
  143. Survivin mediates prostate cell protection by HIF-1alpha against zinc toxicity. Yun YJ, Li SH, Cho YS, Park JW, Chun YS. Prostate 70 1179-1188 (2010)
  144. Survivin mutant (Surv-DD70, 71AA) disrupts the interaction of Survivin with Aurora B and causes multinucleation in HeLa cells. Cao L, Yan X, Wu Y, Hu H, Li Q, Zhou T, Jiang S, Yu L. Biochem. Biophys. Res. Commun. 346 400-407 (2006)
  145. Testing simplified proteins models of the hPin1 WW domain. Cecconi F, Guardiani C, Livi R. Biophys. J. 91 694-704 (2006)
  146. The human interferon-regulated ISG95 protein interacts with RNA polymerase II and shows methyltransferase activity. Haline-Vaz T, Silva TC, Zanchin NI. Biochem. Biophys. Res. Commun. 372 719-724 (2008)
  147. Inhibition of fibroblast growth factor 2-induced apoptosis involves survivin expression, protein kinase C alpha activation and subcellular translocation of Smac in human small cell lung cancer cells. Xiao D, Wang K, Zhou J, Cao H, Deng Z, Hu Y, Qu X, Wen J. Acta Biochim. Biophys. Sin. (Shanghai) 40 297-303 (2008)
  148. Mapping the dynamics of ligand reorganization via 13CH3 and 13CH2 relaxation dispersion at natural abundance. Peng JW, Wilson BD, Namanja AT. J. Biomol. NMR 45 171-183 (2009)
  149. Phosphothreonine (pThr)-Based Multifunctional Peptide Catalysis for Asymmetric Baeyer-Villiger Oxidations of Cyclobutanones. Featherston AL, Shugrue CR, Mercado BQ, Miller SJ. ACS Catal 9 242-252 (2019)
  150. Pin1 inhibits PP2A-mediated Rb dephosphorylation in regulation of cell cycle and S-phase DNA damage. Tong Y, Ying H, Liu R, Li L, Bergholz J, Xiao ZX. Cell Death Dis 6 e1640 (2015)
  151. Pre-Anchoring of Pin1 to Unphosphorylated c-Myc in a Fuzzy Complex Regulates c-Myc Activity. Helander S, Montecchio M, Pilstål R, Su Y, Kuruvilla J, Elvén M, Ziauddin JME, Anandapadamanaban M, Cristobal S, Lundström P, Sears RC, Wallner B, Sunnerhagen M. Structure 23 2267-2279 (2015)
  152. Rpb4/7 facilitates RNA polymerase II CTD dephosphorylation. Allepuz-Fuster P, Martínez-Fernández V, Garrido-Godino AI, Alonso-Aguado S, Hanes SD, Navarro F, Calvo O. Nucleic Acids Res. 42 13674-13688 (2014)
  153. Survivin acts as anti-apoptotic factor during the development of bovine pre-implantation embryos. Park SY, Kim EY, Jeon K, Cui XS, Lee WD, Kim NH, Park SP, Lim JH. Mol. Reprod. Dev. 74 582-590 (2007)
  154. WW domain folding complexity revealed by infrared spectroscopy. Davis CM, Dyer RB. Biochemistry 53 5476-5484 (2014)
  155. A reduced-amide inhibitor of Pin1 binds in a conformation resembling a twisted-amide transition state. Xu GG, Zhang Y, Mercedes-Camacho AY, Etzkorn FA. Biochemistry 50 9545-9550 (2011)
  156. Cytosolic Aryl sulfotransferase 4A1 interacts with the peptidyl prolyl cis-trans isomerase Pin1. Mitchell DJ, Minchin RF. Mol Pharmacol 76 388-395 (2009)
  157. Failure in downregulation of intratumoral survivin expression following neoadjuvant chemoradiation in esophageal cancer. Vallböhmer D, Kuhn E, Warnecke-Eberz U, Brabender J, Hoffmann AC, Metzger R, Baldus SE, Drebber U, Hoelscher AH, Schneider PM. Pharmacogenomics 9 681-690 (2008)
  158. Interfacial water molecules in SH3 interactions: a revised paradigm for polyproline recognition. Martin-Garcia JM, Ruiz-Sanz J, Luque I. Biochem. J. 442 443-451 (2012)
  159. Investigating Dynamic Interdomain Allostery in Pin1. Peng JW. Biophys Rev 7 239-249 (2015)
  160. OGlcNAcylation and phosphorylation have similar structural effects in α-helices: post-translational modifications as inducible start and stop signals in α-helices, with greater structural effects on threonine modification. Elbaum MB, Zondlo NJ. Biochemistry 53 2242-2260 (2014)
  161. Protein-protein docking by simulating the process of association subject to biochemical constraints. Motiejunas D, Gabdoulline R, Wang T, Feldman-Salit A, Johann T, Winn PJ, Wade RC. Proteins 71 1955-1969 (2008)
  162. Protein-protein recognition as a first step towards the inhibition of XIAP and Survivin anti-apoptotic proteins. Obiol-Pardo C, Granadino-Roldán JM, Rubio-Martinez J. J. Mol. Recognit. 21 190-204 (2008)
  163. A Selective, Cell-Permeable Nonphosphorylated Bicyclic Peptidyl Inhibitor against Peptidyl-Prolyl Isomerase Pin1. Jiang B, Pei D. J. Med. Chem. 58 6306-6312 (2015)
  164. Anti-survivin antibody responses in lung cancer. Karanikas V, Khalil S, Kerenidi T, Gourgoulianis KI, Germenis AE. Cancer Lett. 282 159-166 (2009)
  165. Designed phosphoprotein recognition in Escherichia coli. Sawyer N, Gassaway BM, Haimovich AD, Isaacs FJ, Rinehart J, Regan L. ACS Chem. Biol. 9 2502-2507 (2014)
  166. Ex vivo imaging of active caspase 3 by a FRET-based molecular probe demonstrates the cellular dynamics and localization of the protease in cerebellar granule cells and its regulation by the apoptosis-inhibiting protein survivin. Lossi L, Cocito C, Alasia S, Merighi A. Mol Neurodegener 11 34 (2016)
  167. Mass spectroscopic phosphoprotein mapping of Ral binding protein 1 (RalBP1/Rip1/RLIP76). Herlevsen MC, Theodorescu D. Biochem. Biophys. Res. Commun. 362 56-62 (2007)
  168. Multisite phosphorylation of Pin1-associated mitotic phosphoproteins revealed by monoclonal antibodies MPM-2 and CC-3. Albert AL, Lavoie SB, Vincent M. BMC Cell Biol. 5 22 (2004)
  169. Negative Regulation of Peptidyl-Prolyl Isomerase Activity by Interdomain Contact in Human Pin1. Wang X, Mahoney BJ, Zhang M, Zintsmaster JS, Peng JW. Structure 23 2224-2233 (2015)
  170. Structural basis of the interaction between P-element somatic inhibitor and U1-70k essential for the alternative splicing of P-element transposase. Ignjatovic T, Yang JC, Butler J, Neuhaus D, Nagai K. J. Mol. Biol. 351 52-65 (2005)
  171. Survivin increased vascular development during Xenopus ontogenesis. Du Pasquier D, Phung AC, Ymlahi-Ouazzani Q, Sinzelle L, Ballagny C, Bronchain O, Du Pasquier L, Mazabraud A. Differentiation 74 244-253 (2006)
  172. Transient domain interactions enhance the affinity of the mitotic regulator Pin1 toward phosphorylated peptide ligands. Matena A, Sinnen C, van den Boom J, Wilms C, Dybowski JN, Maltaner R, Mueller JW, Link NM, Hoffmann D, Bayer P. Structure 21 1769-1777 (2013)
  173. Virion incorporation of the herpes simplex virus type 1 tegument protein VP22 is facilitated by trans-Golgi network localization and is independent of interaction with glycoprotein E. O'Regan KJ, Brignati MJ, Murphy MA, Bucks MA, Courtney RJ. Virology 405 176-192 (2010)
  174. Condensed-phase signaling can expand kinase specificity and respond to macromolecular crowding. Sang D, Shu T, Pantoja CF, Ibáñez de Opakua A, Zweckstetter M, Holt LJ. Mol Cell 82 3693-3711.e10 (2022)
  175. Identification and characterization of a novel and functional murine Pin1 isoform. Zhu JX, Dagostino E, Rejto PA, Mroczkowski B, Murray B. Biochem. Biophys. Res. Commun. 359 529-535 (2007)
  176. Multivalent binding of formin-binding protein 21 (FBP21)-tandem-WW domains fosters protein recognition in the pre-spliceosome. Klippel S, Wieczorek M, Schümann M, Krause E, Marg B, Seidel T, Meyer T, Knapp EW, Freund C. J. Biol. Chem. 286 38478-38487 (2011)
  177. Phosphorylation of the HTLV-1 matrix L-domain-containing protein by virus-associated ERK-2 kinase. Hémonnot B, Molle D, Bardy M, Gay B, Laune D, Devaux C, Briant L. Virology 349 430-439 (2006)
  178. Pin1 impairs microRNA biogenesis by mediating conformation change of XPO5 in hepatocellular carcinoma. Li J, Pu W, Sun HL, Zhou JK, Fan X, Zheng Y, He J, Liu X, Xia Z, Liu L, Wei YQ, Peng Y. Cell Death Differ. 25 1612-1624 (2018)
  179. Pin1 promotes cell death in NGF-dependent neurons through a mechanism requiring c-Jun activity. Barone MC, Desouza LA, Freeman RS. J. Neurochem. 106 734-745 (2008)
  180. Rct1, a nuclear RNA recognition motif-containing cyclophilin, regulates phosphorylation of the RNA polymerase II C-terminal domain. Gullerova M, Barta A, Lorkovic ZJ. Mol. Cell. Biol. 27 3601-3611 (2007)
  181. The Prolyl Isomerase Pin1 Promotes the Herpesvirus-Induced Phosphorylation-Dependent Disassembly of the Nuclear Lamina Required for Nucleocytoplasmic Egress. Milbradt J, Hutterer C, Bahsi H, Wagner S, Sonntag E, Horn AH, Kaufer BB, Mori Y, Sticht H, Fossen T, Marschall M. PLoS Pathog. 12 e1005825 (2016)
  182. Dynamics of an ultrafast folding subdomain in the context of a larger protein fold. Davis CM, Dyer RB. J. Am. Chem. Soc. 135 19260-19267 (2013)
  183. Structure of FBP11 WW1-PL ligand complex reveals the mechanism of proline-rich ligand recognition by group II/III WW domains. Kato Y, Miyakawa T, Kurita J, Tanokura M. J Biol Chem 281 40321-40329 (2006)
  184. The functional repertoire of survivin's tails. Wheatley SP. Cell Cycle 14 261-268 (2015)
  185. WW domains in the heart of Smad regulation. Sudol M. Structure 20 1619-1620 (2012)
  186. A putative protein structurally related to zygote arrest 1 (Zar1), Zar1-like, is encoded by a novel gene conserved in the vertebrate lineage. Sangiorgio L, Strumbo B, Brevini TA, Ronchi S, Simonic T. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 150 233-239 (2008)
  187. A retrogen plasmid-based vaccine generates high titer antibody responses against the autologous cancer antigen survivin and demonstrates anti-tumor efficacy. Decker WK, Qiu J, Farhangfar F, Hester JH, Altieri DC, Lin AY. Cancer Lett. 237 45-55 (2006)
  188. An autonomously folding beta-hairpin derived from the human YAP65 WW domain: attempts to define a minimum ligand-binding motif. Espinosa JF, Syud FA, Gellman SH. Biopolymers 80 303-311 (2005)
  189. Chemical Tools To Decipher Regulation of Phosphatases by Proline Isomerization on Eukaryotic RNA Polymerase II. Mayfield JE, Fan S, Wei S, Zhang M, Li B, Ellington AD, Etzkorn FA, Zhang YJ. ACS Chem. Biol. 10 2405-2414 (2015)
  190. Electrochemical investigations of Tau protein phosphorylations and interactions with Pin1. Martić S, Beheshti S, Kraatz HB, Litchfield DW. Chem. Biodivers. 9 1693-1702 (2012)
  191. Expression of the C-terminal domain of novel human SR-A1 protein: interaction with the CTD domain of RNA polymerase II. Katsarou ME, Papakyriakou A, Katsaros N, Scorilas A. Biochem. Biophys. Res. Commun. 334 61-68 (2005)
  192. Comment Inducing interactions with the CTD. Lima CD. Nat. Struct. Mol. Biol. 12 102-103 (2005)
  193. Loss of Survivin in Intestinal Epithelial Progenitor Cells Leads to Mitotic Catastrophe and Breakdown of Gut Immune Homeostasis. Martini E, Wittkopf N, Günther C, Leppkes M, Okada H, Watson AJ, Podstawa E, Backert I, Amann K, Neurath MF, Becker C. Cell Rep 14 1062-1073 (2016)
  194. Renal uptake of the antiapoptotic protein survivin is mediated by megalin at the apical membrane of the proximal tubule. Jobst-Schwan T, Knaup KX, Nielsen R, Hackenbeck T, Buettner-Herold M, Lechler P, Kroening S, Goppelt-Struebe M, Schloetzer-Schrehardt U, Fürnrohr BG, Voll RE, Amann K, Eckardt KU, Christensen EI, Wiesener MS. Am. J. Physiol. Renal Physiol. 305 F734-44 (2013)
  195. Sub1 contacts the RNA polymerase II stalk to modulate mRNA synthesis. Garavís M, González-Polo N, Allepuz-Fuster P, Louro JA, Fernández-Tornero C, Calvo O. Nucleic Acids Res. 45 2458-2471 (2017)
  196. The Role of Electrostatic Interactions in Folding of β-Proteins. Davis CM, Dyer RB. J. Am. Chem. Soc. 138 1456-1464 (2016)
  197. Different phosphoisoforms of RNA polymerase II engage the Rtt103 termination factor in a structurally analogous manner. Nemec CM, Yang F, Gilmore JM, Hintermair C, Ho YH, Tseng SC, Heidemann M, Zhang Y, Florens L, Gasch AP, Eick D, Washburn MP, Varani G, Ansari AZ. Proc. Natl. Acad. Sci. U.S.A. 114 E3944-E3953 (2017)
  198. Effect of Phosphorylation and O-GlcNAcylation on Proline-Rich Domains of Tau. Rani L, Mittal J, Mallajosyula SS. J Phys Chem B 124 1909-1918 (2020)
  199. Human phosphorylated CTD-interacting protein, PCIF1, negatively modulates gene expression by RNA polymerase II. Hirose Y, Iwamoto Y, Sakuraba K, Yunokuchi I, Harada F, Ohkuma Y. Biochem. Biophys. Res. Commun. 369 449-455 (2008)
  200. Peptidylprolyl Isomerase Pin1 Directly Enhances the DNA Binding Functions of Estrogen Receptor α. Rajbhandari P, Ozers MS, Solodin NM, Warren CL, Alarid ET. J. Biol. Chem. 290 13749-13762 (2015)
  201. Regulation of mouse brain-selective sulfotransferase sult4a1 by cAMP response element-binding protein and activating transcription factor-2. Butcher NJ, Mitchell DJ, Burow R, Minchin RF. Mol Pharmacol 78 503-510 (2010)
  202. Selection of a high-affinity WW domain against the extracellular region of VEGF receptor isoform-2 from a combinatorial library using CIS display. Patel S, Mathonet P, Jaulent AM, Ullman CG. Protein Eng. Des. Sel. 26 307-315 (2013)
  203. Suppression of tumor growth using a recombinant adenoviral vector carrying the dominant-negative mutant gene Survivin-D53A in a nude mice model. Zhu DE, Höti N, Song Z, Jin L, Wu Z, Wu Q, Wu M. Cancer Gene Ther. 13 762-770 (2006)
  204. SurvivinT34A increases the therapeutic efficacy of arsenic trioxide in mouse hepatocellular carcinoma models. Huang A, Yue D, Liao D, Cheng L, Ma J, Wei Y, Tong A, Cheng P. Oncol. Rep. 36 3283-3290 (2016)
  205. Synthesis and Pin1 inhibitory activity of thiazole derivatives. Zhao H, Cui G, Jin J, Chen X, Xu B. Bioorg. Med. Chem. 24 5911-5920 (2016)
  206. Letter 1H, 13C and 15N backbone resonance assignment of the peptidyl-prolyl cis-trans isomerase Pin1. Jacobs DM, Saxena K, Grimme S, Vogtherr M, Pescatore B, Langer T, Elshorst B, Fiebig KM. J. Biomol. NMR 23 163-164 (2002)
  207. An essential role for Pin1 in Xenopus laevis embryonic development revealed by specific inhibitors. Wildemann D, Hernandez Alvarez B, Stoller G, Zhou XZ, Lu KP, Erdmann F, Ferrari D, Fischer G. Biol. Chem. 388 1103-1111 (2007)
  208. Dynamic Allostery Modulates Catalytic Activity by Modifying the Hydrogen Bonding Network in the Catalytic Site of Human Pin1. Wang J, Kawasaki R, Uewaki JI, Rashid AUR, Tochio N, Tate SI. Molecules 22 (2017)
  209. Microprocessor Recruitment to Elongating RNA Polymerase II Is Required for Differential Expression of MicroRNAs. Church VA, Pressman S, Isaji M, Truscott M, Cizmecioglu NT, Buratowski S, Frolov MV, Carthew RW. Cell Rep 20 3123-3134 (2017)
  210. Phosphosite Analysis of the Cytomegaloviral mRNA Export Factor pUL69 Reveals Serines with Critical Importance for Recruitment of Cellular Proteins Pin1 and UAP56/URH49. Thomas M, Müller R, Horn G, Bogdanow B, Imami K, Milbradt J, Steingruber M, Marschall M, Schilling EM, Fossen T, Stamminger T. J Virol 94 e02151-19 (2020)
  211. Achieving peptide binding specificity and promiscuity by loops: case of the forkhead-associated domain. Huang YM, Chang CE. PLoS ONE 9 e98291 (2014)
  212. Activity-dependent isomerization of Kv4.2 by Pin1 regulates cognitive flexibility. Hu JH, Malloy C, Tabor GT, Gutzmann JJ, Liu Y, Abebe D, Karlsson RM, Durell S, Cameron HA, Hoffman DA. Nat Commun 11 1567 (2020)
  213. Bifunctional roles of survivin-ΔEx3 and survivin-2B for susceptibility to apoptosis in endometrial carcinomas. Tazo Y, Hara A, Onda T, Saegusa M. J Cancer Res Clin Oncol (2014)
  214. Construction, expression, and purification of HIV-TAT-survivin (T34A) mutant: a pro-apoptosis protein in Escherichia coli. Ma X, Zheng W, Wei D, Ma Y, Wang T, Wang J, Liu Q, Yang S. Protein Expr. Purif. 47 36-44 (2006)
  215. Getting a grip on the CTD of Pol II. Greenleaf A. Structure 11 900-902 (2003)
  216. Inhibition of human lung adenocarcinoma growth using survivint34a by low-dose systematic administration. Shan Y, Wang C, Yang L, Chen LJ, Deng HX, Yang HS, Li Z, Li Z, Pan L, Leng F, Wei Y. J Biosci 35 209-216 (2010)
  217. NEDD4 regulates ubiquitination and stability of the cell adhesion molecule IGPR-1 via lysosomal pathway. Sun L, Amraei R, Rahimi N. J Biomed Sci 28 35 (2021)
  218. Prolyl isomerase Pin1: a promoter of cancer and a target for therapy. Chen Y, Wu YR, Yang HY, Li XZ, Jie MM, Hu CJ, Wu YY, Yang SM, Yang YB. Cell Death Dis 9 883 (2018)
  219. Reduced amyloidogenic processing of the amyloid beta-protein precursor by the small-molecule Differentiation Inducing Factor-1. Myre MA, Washicosky K, Moir RD, Tesco G, Tanzi RE, Wasco W. Cell. Signal. 21 567-576 (2009)
  220. Restricted domain mobility in the Candida albicans Ess1 prolyl isomerase. McNaughton L, Li Z, Van Roey P, Hanes SD, LeMaster DM. Biochim. Biophys. Acta 1804 1537-1541 (2010)
  221. Role of Ess1 in growth, morphogenetic switching, and RNA polymerase II transcription in Candida albicans. Samaranayake D, Atencio D, Morse R, Wade JT, Chaturvedi V, Hanes SD. PLoS ONE 8 e59094 (2013)
  222. Structural Analysis of the Pin1-CPEB1 interaction and its potential role in CPEB1 degradation. Schelhorn C, Martín-Malpartida P, Suñol D, Macias MJ. Sci Rep 5 14990 (2015)
  223. Allostery and Epistasis: Emergent Properties of Anisotropic Networks. Campitelli P, Ozkan SB. Entropy (Basel) 22 E667 (2020)
  224. Isolation and expression analysis of a homolog of the 14-3-3 epsilon gene in the diamondback moth, Plutella xylostella. Yoo JY, Hwang SH, Han YS, Cho S. Arch. Insect Biochem. Physiol. 76 114-124 (2011)
  225. Mitotic activity of survivin is regulated by acetylation at K129. Aljaberi AM, Webster JR, Wheatley SP. Cell Cycle 14 1738-1747 (2015)
  226. Modulating the folding stability and ligand binding affinity of Pin1 WW domain by proline ring puckering. Tang HC, Lin YJ, Horng JC. Proteins 82 67-76 (2014)
  227. Comment Multienzyme assembly of a p53 transcription complex. Hupp TR, Walkinshaw M. Nat. Struct. Mol. Biol. 14 885-887 (2007)
  228. Neighboring phosphoSer-Pro motifs in the undefined domain of IRAK1 impart bivalent advantage for Pin1 binding. Rogals MJ, Greenwood AI, Kwon J, Lu KP, Nicholson LK. FEBS J. 283 4528-4548 (2016)
  229. NmPin from the marine thaumarchaeote Nitrosopumilus maritimus is an active membrane associated prolyl isomerase. Hoppstock L, Trusch F, Lederer C, van West P, Koenneke M, Bayer P. BMC Biol. 14 53 (2016)
  230. Phosphate Transfer in Activated Protein Complexes Reveals Interaction Sites. Tamara S, Scheltema RA, Heck AJR, Leney AC. Angew. Chem. Int. Ed. Engl. 56 13641-13644 (2017)
  231. Structural and cellular mechanisms of peptidyl-prolyl isomerase Pin1-mediated enhancement of Tissue Factor gene expression, protein half-life, and pro-coagulant activity. Kurakula K, Koenis DS, Herzik MA, Liu Y, Craft JW, van Loenen PB, Vos M, Tran MK, Versteeg HH, Goumans MTH, Ruf W, de Vries CJM, Şen M. Haematologica 103 1073-1082 (2018)
  232. The N-terminus of survivin is a mitochondrial-targeting sequence and Src regulator. Dunajová L, Cash E, Markus R, Rochette S, Townley AR, Wheatley SP. J. Cell. Sci. 129 2707-2712 (2016)
  233. The yeast Ess1 prolyl isomerase controls Swi6 and Whi5 nuclear localization. Atencio D, Barnes C, Duncan TM, Willis IM, Hanes SD. G3 (Bethesda) 4 523-537 (2014)
  234. Visualization of Compartmentalized Kinase Activity Dynamics Using Adaptable BimKARs. Depry C, Mehta S, Li R, Zhang J. Chem. Biol. 22 1470-1479 (2015)
  235. An Alternative Pin1 Binding and Isomerization Site in the N-Terminus Domain of PSD-95. Delgado JY. Front Mol Neurosci 13 31 (2020)
  236. Bayesian Analysis of MicroScale Thermophoresis Data to Quantify Affinity of Protein:Protein Interactions with Human Survivin. Garcia-Bonete MJ, Jensen M, Recktenwald CV, Rocha S, Stadler V, Bokarewa M, Katona G. Sci Rep 7 16816 (2017)
  237. Coupled intra- and interdomain dynamics support domain cross-talk in Pin1. Zhang M, Frederick TE, VanPelt J, Case DA, Peng JW. J Biol Chem 295 16585-16603 (2020)
  238. Funneled energy landscape unifies principles of protein binding and evolution. Yan Z, Wang J. Proc Natl Acad Sci U S A 117 27218-27223 (2020)
  239. Hinge-Shift Mechanism Modulates Allosteric Regulations in Human Pin1. Campitelli P, Guo J, Guo J, Zhou HX, Ozkan SB. J Phys Chem B 122 5623-5629 (2018)
  240. Host-Driven Phosphorylation Appears to Regulate the Budding Activity of the Lassa Virus Matrix Protein. Ziegler CM, Eisenhauer P, Manuelyan I, Weir ME, Bruce EA, Ballif BA, Botten J. Pathogens 7 (2018)
  241. Phosphoserines of the carboxy terminal domain of RNA polymerase II are involved in the interaction with transcription-associated proteins (TAPs). Vidyalakshmi S, Ramamurthy V. OMICS 17 130-135 (2013)
  242. Pin1 Binding to Phosphorylated PSD-95 Regulates the Number of Functional Excitatory Synapses. Delgado JY, Nall D, Selvin PR. Front Mol Neurosci 13 10 (2020)
  243. Pin1 promotes pancreatic cancer progression and metastasis by activation of NF-κB-IL-18 feedback loop. Sun Q, Fan G, Zhuo Q, Dai W, Ye Z, Ji S, Xu W, Liu W, Hu Q, Zhang Z, Liu M, Yu X, Xu X, Qin Y. Cell Prolif 53 e12816 (2020)
  244. Prolyl isomerase Pin1 shares functional similarity with phosphorylated CTD interacting factor PCIF1 in vertebrate cells. Yunokuchi I, Fan H, Iwamoto Y, Araki C, Yuda M, Umemura H, Harada F, Ohkuma Y, Hirose Y. Genes Cells 14 1105-1118 (2009)
  245. A novel RNA pol II CTD interaction site on the mRNA capping enzyme is essential for its allosteric activation. Bage MG, Almohammed R, Cowling VH, Pisliakov AV. Nucleic Acids Res 49 3109-3126 (2021)
  246. A quantitative connection of experimental and simulated folding landscapes by vibrational spectroscopy. Davis CM, Zanetti-Polzi L, Gruebele M, Amadei A, Dyer RB, Daidone I. Chem Sci 9 9002-9011 (2018)
  247. BAFF signaling drives interstitial transformation of mouse renal tubular epithelial cells in a Pin1-dependent manner. Xu H, Song D, Xu R, He X. In Vitro Cell Dev Biol Anim 57 649-659 (2021)
  248. Casein Kinase 1δ Stabilizes Mature Axons by Inhibiting Transcription Termination of Ankyrin. LaBella ML, Hujber EJ, Moore KA, Rawson RL, Merrill SA, Allaire PD, Ailion M, Hollien J, Bastiani MJ, Jorgensen EM. Dev Cell 52 88-103.e18 (2020)
  249. Coevolution of the Ess1-CTD axis in polar fungi suggests a role for phase separation in cold tolerance. Palumbo RJ, McKean N, Leatherman E, Namitz KEW, Connell L, Wolfe A, Moody K, Gostinčar C, Gunde-Cimerman N, Bah A, Hanes SD. Sci Adv 8 eabq3235 (2022)
  250. Effects of naturally occurring charged mutations on the structure, stability, and binding of the Pin1 WW domain. Qiao X, Liu Y, Luo L, Chen L, Zhao C, Ai X. Biochem. Biophys. Res. Commun. 487 470-476 (2017)
  251. Enzyme-linked enzyme-binding assay for Pin1 WW domain ligands. Mercedes-Camacho AY, Etzkorn FA. Anal. Biochem. 402 77-82 (2010)
  252. Evaluation of β-Amino Acid Replacements in Protein Loops: Effects on Conformational Stability and Structure. Mortenson DE, Kreitler DF, Thomas NC, Guzei IA, Gellman SH, Forest KT. Chembiochem 19 604-612 (2018)
  253. Exploring the binding mechanism between human profilin (PFN1) and polyproline-10 through binding mode screening. Zhang L, Bell DR, Luan B, Zhou R. J Chem Phys 150 015102 (2019)
  254. Harnessing the master transcriptional repressor REST to reciprocally regulate neurogenesis. Nesti E. Neurogenesis (Austin) 2 e1055419 (2015)
  255. Identification of novel functional mini-receptors by combinatorial screening of split-WW domains. Neitz H, Paul NB, Häge FR, Lindner C, Graebner R, Kovermann M, Thomas F. Chem Sci 13 9079-9090 (2022)
  256. Kinase-Modulated Bioluminescent Indicators Enable Noninvasive Imaging of Drug Activity in the Brain. Wu Y, Walker JR, Westberg M, Ning L, Monje M, Kirkland TA, Lin MZ, Su Y. ACS Cent Sci 9 719-732 (2023)
  257. Molecular Interactions between Two LMP2A PY Motifs of EBV and WW Domains of E3 Ubiquitin Ligase AIP4. Seo MD, Seok SH, Kim JH, Choi JW, Park SJ, Lee BJ. Life (Basel) 11 379 (2021)
  258. Molecular Mechanism of the Pin1-Histone H1 Interaction. Jinasena D, Simmons R, Gyamfi H, Fitzkee NC. Biochemistry 58 788-798 (2019)
  259. Letter Multiple WW domains of Nedd4-1 undergo conformational exchange that is quenched upon peptide binding. Panwalkar V, Neudecker P, Willbold D, Dingley AJ. FEBS Lett. 591 1573-1583 (2017)
  260. PHF3 regulates neuronal gene expression through the Pol II CTD reader domain SPOC. Appel LM, Franke V, Bruno M, Grishkovskaya I, Kasiliauskaite A, Kaufmann T, Schoeberl UE, Puchinger MG, Kostrhon S, Ebenwaldner C, Sebesta M, Beltzung E, Mechtler K, Lin G, Vlasova A, Leeb M, Pavri R, Stark A, Akalin A, Stefl R, Bernecky C, Djinovic-Carugo K, Slade D. Nat Commun 12 6078 (2021)
  261. Pin1 and secondary hyperparathyroidism of chronic kidney disease: gene polymorphisms and protein levels. Zhao Y, Zhang LL, Ding FX, Cao P, Qi YY, Wang J. Ren Fail 39 159-165 (2017)
  262. Pin1 mediates Aβ42-induced dendritic spine loss. Stallings NR, O'Neal MA, Hu J, Kavalali ET, Bezprozvanny I, Malter JS. Sci Signal 11 (2018)
  263. Structural mechanism of extranucleosomal DNA readout by the INO80 complex. Kunert F, Metzner FJ, Jung J, Höpfler M, Woike S, Schall K, Kostrewa D, Moldt M, Chen JX, Bantele S, Pfander B, Eustermann S, Hopfner KP. Sci Adv 8 eadd3189 (2022)
  264. Superfunneled Energy Landscape of Protein Evolution Unifies the Principles of Protein Evolution, Folding, and Design. Yan Z, Wang J. Phys. Rev. Lett. 122 018103 (2019)
  265. The Peptidyl-Prolyl cis-trans isomerase, Pin1, associates with Protein Kinase C θ via a critical Phospho-Thr-Pro motif in the V3 regulatory domain. Anto NP, Muraleedharan A, Nath PR, Sun Z, Keasar C, Livneh E, Braiman A, Altman A, Kong KF, Isakov N. Front Immunol 14 1126464 (2023)
  266. The WW domain of IQGAP1 binds directly to the p110α catalytic subunit of PI 3-kinase. Bardwell AJ, Paul M, Yoneda KC, Andrade-Ludeña MD, Nguyen OT, Fruman D, Bardwell L. Biochem J BCJ20220493 (2023)